memory.c revision e8bff74afbdb4ad72bf6135c84289c47cf557892
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/delayacct.h>
51#include <linux/init.h>
52#include <linux/writeback.h>
53#include <linux/memcontrol.h>
54
55#include <asm/pgalloc.h>
56#include <asm/uaccess.h>
57#include <asm/tlb.h>
58#include <asm/tlbflush.h>
59#include <asm/pgtable.h>
60
61#include <linux/swapops.h>
62#include <linux/elf.h>
63
64#ifndef CONFIG_NEED_MULTIPLE_NODES
65/* use the per-pgdat data instead for discontigmem - mbligh */
66unsigned long max_mapnr;
67struct page *mem_map;
68
69EXPORT_SYMBOL(max_mapnr);
70EXPORT_SYMBOL(mem_map);
71#endif
72
73unsigned long num_physpages;
74/*
75 * A number of key systems in x86 including ioremap() rely on the assumption
76 * that high_memory defines the upper bound on direct map memory, then end
77 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
78 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
79 * and ZONE_HIGHMEM.
80 */
81void * high_memory;
82
83EXPORT_SYMBOL(num_physpages);
84EXPORT_SYMBOL(high_memory);
85
86/*
87 * Randomize the address space (stacks, mmaps, brk, etc.).
88 *
89 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
90 *   as ancient (libc5 based) binaries can segfault. )
91 */
92int randomize_va_space __read_mostly =
93#ifdef CONFIG_COMPAT_BRK
94					1;
95#else
96					2;
97#endif
98
99static int __init disable_randmaps(char *s)
100{
101	randomize_va_space = 0;
102	return 1;
103}
104__setup("norandmaps", disable_randmaps);
105
106
107/*
108 * If a p?d_bad entry is found while walking page tables, report
109 * the error, before resetting entry to p?d_none.  Usually (but
110 * very seldom) called out from the p?d_none_or_clear_bad macros.
111 */
112
113void pgd_clear_bad(pgd_t *pgd)
114{
115	pgd_ERROR(*pgd);
116	pgd_clear(pgd);
117}
118
119void pud_clear_bad(pud_t *pud)
120{
121	pud_ERROR(*pud);
122	pud_clear(pud);
123}
124
125void pmd_clear_bad(pmd_t *pmd)
126{
127	pmd_ERROR(*pmd);
128	pmd_clear(pmd);
129}
130
131/*
132 * Note: this doesn't free the actual pages themselves. That
133 * has been handled earlier when unmapping all the memory regions.
134 */
135static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
136{
137	pgtable_t token = pmd_pgtable(*pmd);
138	pmd_clear(pmd);
139	pte_free_tlb(tlb, token);
140	tlb->mm->nr_ptes--;
141}
142
143static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
144				unsigned long addr, unsigned long end,
145				unsigned long floor, unsigned long ceiling)
146{
147	pmd_t *pmd;
148	unsigned long next;
149	unsigned long start;
150
151	start = addr;
152	pmd = pmd_offset(pud, addr);
153	do {
154		next = pmd_addr_end(addr, end);
155		if (pmd_none_or_clear_bad(pmd))
156			continue;
157		free_pte_range(tlb, pmd);
158	} while (pmd++, addr = next, addr != end);
159
160	start &= PUD_MASK;
161	if (start < floor)
162		return;
163	if (ceiling) {
164		ceiling &= PUD_MASK;
165		if (!ceiling)
166			return;
167	}
168	if (end - 1 > ceiling - 1)
169		return;
170
171	pmd = pmd_offset(pud, start);
172	pud_clear(pud);
173	pmd_free_tlb(tlb, pmd);
174}
175
176static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
177				unsigned long addr, unsigned long end,
178				unsigned long floor, unsigned long ceiling)
179{
180	pud_t *pud;
181	unsigned long next;
182	unsigned long start;
183
184	start = addr;
185	pud = pud_offset(pgd, addr);
186	do {
187		next = pud_addr_end(addr, end);
188		if (pud_none_or_clear_bad(pud))
189			continue;
190		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
191	} while (pud++, addr = next, addr != end);
192
193	start &= PGDIR_MASK;
194	if (start < floor)
195		return;
196	if (ceiling) {
197		ceiling &= PGDIR_MASK;
198		if (!ceiling)
199			return;
200	}
201	if (end - 1 > ceiling - 1)
202		return;
203
204	pud = pud_offset(pgd, start);
205	pgd_clear(pgd);
206	pud_free_tlb(tlb, pud);
207}
208
209/*
210 * This function frees user-level page tables of a process.
211 *
212 * Must be called with pagetable lock held.
213 */
214void free_pgd_range(struct mmu_gather **tlb,
215			unsigned long addr, unsigned long end,
216			unsigned long floor, unsigned long ceiling)
217{
218	pgd_t *pgd;
219	unsigned long next;
220	unsigned long start;
221
222	/*
223	 * The next few lines have given us lots of grief...
224	 *
225	 * Why are we testing PMD* at this top level?  Because often
226	 * there will be no work to do at all, and we'd prefer not to
227	 * go all the way down to the bottom just to discover that.
228	 *
229	 * Why all these "- 1"s?  Because 0 represents both the bottom
230	 * of the address space and the top of it (using -1 for the
231	 * top wouldn't help much: the masks would do the wrong thing).
232	 * The rule is that addr 0 and floor 0 refer to the bottom of
233	 * the address space, but end 0 and ceiling 0 refer to the top
234	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
235	 * that end 0 case should be mythical).
236	 *
237	 * Wherever addr is brought up or ceiling brought down, we must
238	 * be careful to reject "the opposite 0" before it confuses the
239	 * subsequent tests.  But what about where end is brought down
240	 * by PMD_SIZE below? no, end can't go down to 0 there.
241	 *
242	 * Whereas we round start (addr) and ceiling down, by different
243	 * masks at different levels, in order to test whether a table
244	 * now has no other vmas using it, so can be freed, we don't
245	 * bother to round floor or end up - the tests don't need that.
246	 */
247
248	addr &= PMD_MASK;
249	if (addr < floor) {
250		addr += PMD_SIZE;
251		if (!addr)
252			return;
253	}
254	if (ceiling) {
255		ceiling &= PMD_MASK;
256		if (!ceiling)
257			return;
258	}
259	if (end - 1 > ceiling - 1)
260		end -= PMD_SIZE;
261	if (addr > end - 1)
262		return;
263
264	start = addr;
265	pgd = pgd_offset((*tlb)->mm, addr);
266	do {
267		next = pgd_addr_end(addr, end);
268		if (pgd_none_or_clear_bad(pgd))
269			continue;
270		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
271	} while (pgd++, addr = next, addr != end);
272}
273
274void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
275		unsigned long floor, unsigned long ceiling)
276{
277	while (vma) {
278		struct vm_area_struct *next = vma->vm_next;
279		unsigned long addr = vma->vm_start;
280
281		/*
282		 * Hide vma from rmap and vmtruncate before freeing pgtables
283		 */
284		anon_vma_unlink(vma);
285		unlink_file_vma(vma);
286
287		if (is_vm_hugetlb_page(vma)) {
288			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
289				floor, next? next->vm_start: ceiling);
290		} else {
291			/*
292			 * Optimization: gather nearby vmas into one call down
293			 */
294			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
295			       && !is_vm_hugetlb_page(next)) {
296				vma = next;
297				next = vma->vm_next;
298				anon_vma_unlink(vma);
299				unlink_file_vma(vma);
300			}
301			free_pgd_range(tlb, addr, vma->vm_end,
302				floor, next? next->vm_start: ceiling);
303		}
304		vma = next;
305	}
306}
307
308int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
309{
310	pgtable_t new = pte_alloc_one(mm, address);
311	if (!new)
312		return -ENOMEM;
313
314	spin_lock(&mm->page_table_lock);
315	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
316		mm->nr_ptes++;
317		pmd_populate(mm, pmd, new);
318		new = NULL;
319	}
320	spin_unlock(&mm->page_table_lock);
321	if (new)
322		pte_free(mm, new);
323	return 0;
324}
325
326int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
327{
328	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
329	if (!new)
330		return -ENOMEM;
331
332	spin_lock(&init_mm.page_table_lock);
333	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
334		pmd_populate_kernel(&init_mm, pmd, new);
335		new = NULL;
336	}
337	spin_unlock(&init_mm.page_table_lock);
338	if (new)
339		pte_free_kernel(&init_mm, new);
340	return 0;
341}
342
343static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
344{
345	if (file_rss)
346		add_mm_counter(mm, file_rss, file_rss);
347	if (anon_rss)
348		add_mm_counter(mm, anon_rss, anon_rss);
349}
350
351/*
352 * This function is called to print an error when a bad pte
353 * is found. For example, we might have a PFN-mapped pte in
354 * a region that doesn't allow it.
355 *
356 * The calling function must still handle the error.
357 */
358void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
359{
360	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
361			"vm_flags = %lx, vaddr = %lx\n",
362		(long long)pte_val(pte),
363		(vma->vm_mm == current->mm ? current->comm : "???"),
364		vma->vm_flags, vaddr);
365	dump_stack();
366}
367
368static inline int is_cow_mapping(unsigned int flags)
369{
370	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
371}
372
373/*
374 * This function gets the "struct page" associated with a pte.
375 *
376 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
377 * will have each page table entry just pointing to a raw page frame
378 * number, and as far as the VM layer is concerned, those do not have
379 * pages associated with them - even if the PFN might point to memory
380 * that otherwise is perfectly fine and has a "struct page".
381 *
382 * The way we recognize those mappings is through the rules set up
383 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
384 * and the vm_pgoff will point to the first PFN mapped: thus every
385 * page that is a raw mapping will always honor the rule
386 *
387 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
388 *
389 * and if that isn't true, the page has been COW'ed (in which case it
390 * _does_ have a "struct page" associated with it even if it is in a
391 * VM_PFNMAP range).
392 */
393struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
394{
395	unsigned long pfn = pte_pfn(pte);
396
397	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
398		unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
399		if (pfn == vma->vm_pgoff + off)
400			return NULL;
401		if (!is_cow_mapping(vma->vm_flags))
402			return NULL;
403	}
404
405#ifdef CONFIG_DEBUG_VM
406	/*
407	 * Add some anal sanity checks for now. Eventually,
408	 * we should just do "return pfn_to_page(pfn)", but
409	 * in the meantime we check that we get a valid pfn,
410	 * and that the resulting page looks ok.
411	 */
412	if (unlikely(!pfn_valid(pfn))) {
413		print_bad_pte(vma, pte, addr);
414		return NULL;
415	}
416#endif
417
418	/*
419	 * NOTE! We still have PageReserved() pages in the page
420	 * tables.
421	 *
422	 * The PAGE_ZERO() pages and various VDSO mappings can
423	 * cause them to exist.
424	 */
425	return pfn_to_page(pfn);
426}
427
428/*
429 * copy one vm_area from one task to the other. Assumes the page tables
430 * already present in the new task to be cleared in the whole range
431 * covered by this vma.
432 */
433
434static inline void
435copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
436		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
437		unsigned long addr, int *rss)
438{
439	unsigned long vm_flags = vma->vm_flags;
440	pte_t pte = *src_pte;
441	struct page *page;
442
443	/* pte contains position in swap or file, so copy. */
444	if (unlikely(!pte_present(pte))) {
445		if (!pte_file(pte)) {
446			swp_entry_t entry = pte_to_swp_entry(pte);
447
448			swap_duplicate(entry);
449			/* make sure dst_mm is on swapoff's mmlist. */
450			if (unlikely(list_empty(&dst_mm->mmlist))) {
451				spin_lock(&mmlist_lock);
452				if (list_empty(&dst_mm->mmlist))
453					list_add(&dst_mm->mmlist,
454						 &src_mm->mmlist);
455				spin_unlock(&mmlist_lock);
456			}
457			if (is_write_migration_entry(entry) &&
458					is_cow_mapping(vm_flags)) {
459				/*
460				 * COW mappings require pages in both parent
461				 * and child to be set to read.
462				 */
463				make_migration_entry_read(&entry);
464				pte = swp_entry_to_pte(entry);
465				set_pte_at(src_mm, addr, src_pte, pte);
466			}
467		}
468		goto out_set_pte;
469	}
470
471	/*
472	 * If it's a COW mapping, write protect it both
473	 * in the parent and the child
474	 */
475	if (is_cow_mapping(vm_flags)) {
476		ptep_set_wrprotect(src_mm, addr, src_pte);
477		pte = pte_wrprotect(pte);
478	}
479
480	/*
481	 * If it's a shared mapping, mark it clean in
482	 * the child
483	 */
484	if (vm_flags & VM_SHARED)
485		pte = pte_mkclean(pte);
486	pte = pte_mkold(pte);
487
488	page = vm_normal_page(vma, addr, pte);
489	if (page) {
490		get_page(page);
491		page_dup_rmap(page, vma, addr);
492		rss[!!PageAnon(page)]++;
493	}
494
495out_set_pte:
496	set_pte_at(dst_mm, addr, dst_pte, pte);
497}
498
499static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
500		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
501		unsigned long addr, unsigned long end)
502{
503	pte_t *src_pte, *dst_pte;
504	spinlock_t *src_ptl, *dst_ptl;
505	int progress = 0;
506	int rss[2];
507
508again:
509	rss[1] = rss[0] = 0;
510	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
511	if (!dst_pte)
512		return -ENOMEM;
513	src_pte = pte_offset_map_nested(src_pmd, addr);
514	src_ptl = pte_lockptr(src_mm, src_pmd);
515	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
516	arch_enter_lazy_mmu_mode();
517
518	do {
519		/*
520		 * We are holding two locks at this point - either of them
521		 * could generate latencies in another task on another CPU.
522		 */
523		if (progress >= 32) {
524			progress = 0;
525			if (need_resched() ||
526			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
527				break;
528		}
529		if (pte_none(*src_pte)) {
530			progress++;
531			continue;
532		}
533		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
534		progress += 8;
535	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
536
537	arch_leave_lazy_mmu_mode();
538	spin_unlock(src_ptl);
539	pte_unmap_nested(src_pte - 1);
540	add_mm_rss(dst_mm, rss[0], rss[1]);
541	pte_unmap_unlock(dst_pte - 1, dst_ptl);
542	cond_resched();
543	if (addr != end)
544		goto again;
545	return 0;
546}
547
548static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
549		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
550		unsigned long addr, unsigned long end)
551{
552	pmd_t *src_pmd, *dst_pmd;
553	unsigned long next;
554
555	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
556	if (!dst_pmd)
557		return -ENOMEM;
558	src_pmd = pmd_offset(src_pud, addr);
559	do {
560		next = pmd_addr_end(addr, end);
561		if (pmd_none_or_clear_bad(src_pmd))
562			continue;
563		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
564						vma, addr, next))
565			return -ENOMEM;
566	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
567	return 0;
568}
569
570static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
571		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
572		unsigned long addr, unsigned long end)
573{
574	pud_t *src_pud, *dst_pud;
575	unsigned long next;
576
577	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
578	if (!dst_pud)
579		return -ENOMEM;
580	src_pud = pud_offset(src_pgd, addr);
581	do {
582		next = pud_addr_end(addr, end);
583		if (pud_none_or_clear_bad(src_pud))
584			continue;
585		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
586						vma, addr, next))
587			return -ENOMEM;
588	} while (dst_pud++, src_pud++, addr = next, addr != end);
589	return 0;
590}
591
592int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
593		struct vm_area_struct *vma)
594{
595	pgd_t *src_pgd, *dst_pgd;
596	unsigned long next;
597	unsigned long addr = vma->vm_start;
598	unsigned long end = vma->vm_end;
599
600	/*
601	 * Don't copy ptes where a page fault will fill them correctly.
602	 * Fork becomes much lighter when there are big shared or private
603	 * readonly mappings. The tradeoff is that copy_page_range is more
604	 * efficient than faulting.
605	 */
606	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
607		if (!vma->anon_vma)
608			return 0;
609	}
610
611	if (is_vm_hugetlb_page(vma))
612		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
613
614	dst_pgd = pgd_offset(dst_mm, addr);
615	src_pgd = pgd_offset(src_mm, addr);
616	do {
617		next = pgd_addr_end(addr, end);
618		if (pgd_none_or_clear_bad(src_pgd))
619			continue;
620		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
621						vma, addr, next))
622			return -ENOMEM;
623	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
624	return 0;
625}
626
627static unsigned long zap_pte_range(struct mmu_gather *tlb,
628				struct vm_area_struct *vma, pmd_t *pmd,
629				unsigned long addr, unsigned long end,
630				long *zap_work, struct zap_details *details)
631{
632	struct mm_struct *mm = tlb->mm;
633	pte_t *pte;
634	spinlock_t *ptl;
635	int file_rss = 0;
636	int anon_rss = 0;
637
638	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
639	arch_enter_lazy_mmu_mode();
640	do {
641		pte_t ptent = *pte;
642		if (pte_none(ptent)) {
643			(*zap_work)--;
644			continue;
645		}
646
647		(*zap_work) -= PAGE_SIZE;
648
649		if (pte_present(ptent)) {
650			struct page *page;
651
652			page = vm_normal_page(vma, addr, ptent);
653			if (unlikely(details) && page) {
654				/*
655				 * unmap_shared_mapping_pages() wants to
656				 * invalidate cache without truncating:
657				 * unmap shared but keep private pages.
658				 */
659				if (details->check_mapping &&
660				    details->check_mapping != page->mapping)
661					continue;
662				/*
663				 * Each page->index must be checked when
664				 * invalidating or truncating nonlinear.
665				 */
666				if (details->nonlinear_vma &&
667				    (page->index < details->first_index ||
668				     page->index > details->last_index))
669					continue;
670			}
671			ptent = ptep_get_and_clear_full(mm, addr, pte,
672							tlb->fullmm);
673			tlb_remove_tlb_entry(tlb, pte, addr);
674			if (unlikely(!page))
675				continue;
676			if (unlikely(details) && details->nonlinear_vma
677			    && linear_page_index(details->nonlinear_vma,
678						addr) != page->index)
679				set_pte_at(mm, addr, pte,
680					   pgoff_to_pte(page->index));
681			if (PageAnon(page))
682				anon_rss--;
683			else {
684				if (pte_dirty(ptent))
685					set_page_dirty(page);
686				if (pte_young(ptent))
687					SetPageReferenced(page);
688				file_rss--;
689			}
690			page_remove_rmap(page, vma);
691			tlb_remove_page(tlb, page);
692			continue;
693		}
694		/*
695		 * If details->check_mapping, we leave swap entries;
696		 * if details->nonlinear_vma, we leave file entries.
697		 */
698		if (unlikely(details))
699			continue;
700		if (!pte_file(ptent))
701			free_swap_and_cache(pte_to_swp_entry(ptent));
702		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
703	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
704
705	add_mm_rss(mm, file_rss, anon_rss);
706	arch_leave_lazy_mmu_mode();
707	pte_unmap_unlock(pte - 1, ptl);
708
709	return addr;
710}
711
712static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
713				struct vm_area_struct *vma, pud_t *pud,
714				unsigned long addr, unsigned long end,
715				long *zap_work, struct zap_details *details)
716{
717	pmd_t *pmd;
718	unsigned long next;
719
720	pmd = pmd_offset(pud, addr);
721	do {
722		next = pmd_addr_end(addr, end);
723		if (pmd_none_or_clear_bad(pmd)) {
724			(*zap_work)--;
725			continue;
726		}
727		next = zap_pte_range(tlb, vma, pmd, addr, next,
728						zap_work, details);
729	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
730
731	return addr;
732}
733
734static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
735				struct vm_area_struct *vma, pgd_t *pgd,
736				unsigned long addr, unsigned long end,
737				long *zap_work, struct zap_details *details)
738{
739	pud_t *pud;
740	unsigned long next;
741
742	pud = pud_offset(pgd, addr);
743	do {
744		next = pud_addr_end(addr, end);
745		if (pud_none_or_clear_bad(pud)) {
746			(*zap_work)--;
747			continue;
748		}
749		next = zap_pmd_range(tlb, vma, pud, addr, next,
750						zap_work, details);
751	} while (pud++, addr = next, (addr != end && *zap_work > 0));
752
753	return addr;
754}
755
756static unsigned long unmap_page_range(struct mmu_gather *tlb,
757				struct vm_area_struct *vma,
758				unsigned long addr, unsigned long end,
759				long *zap_work, struct zap_details *details)
760{
761	pgd_t *pgd;
762	unsigned long next;
763
764	if (details && !details->check_mapping && !details->nonlinear_vma)
765		details = NULL;
766
767	BUG_ON(addr >= end);
768	tlb_start_vma(tlb, vma);
769	pgd = pgd_offset(vma->vm_mm, addr);
770	do {
771		next = pgd_addr_end(addr, end);
772		if (pgd_none_or_clear_bad(pgd)) {
773			(*zap_work)--;
774			continue;
775		}
776		next = zap_pud_range(tlb, vma, pgd, addr, next,
777						zap_work, details);
778	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
779	tlb_end_vma(tlb, vma);
780
781	return addr;
782}
783
784#ifdef CONFIG_PREEMPT
785# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
786#else
787/* No preempt: go for improved straight-line efficiency */
788# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
789#endif
790
791/**
792 * unmap_vmas - unmap a range of memory covered by a list of vma's
793 * @tlbp: address of the caller's struct mmu_gather
794 * @vma: the starting vma
795 * @start_addr: virtual address at which to start unmapping
796 * @end_addr: virtual address at which to end unmapping
797 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
798 * @details: details of nonlinear truncation or shared cache invalidation
799 *
800 * Returns the end address of the unmapping (restart addr if interrupted).
801 *
802 * Unmap all pages in the vma list.
803 *
804 * We aim to not hold locks for too long (for scheduling latency reasons).
805 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
806 * return the ending mmu_gather to the caller.
807 *
808 * Only addresses between `start' and `end' will be unmapped.
809 *
810 * The VMA list must be sorted in ascending virtual address order.
811 *
812 * unmap_vmas() assumes that the caller will flush the whole unmapped address
813 * range after unmap_vmas() returns.  So the only responsibility here is to
814 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
815 * drops the lock and schedules.
816 */
817unsigned long unmap_vmas(struct mmu_gather **tlbp,
818		struct vm_area_struct *vma, unsigned long start_addr,
819		unsigned long end_addr, unsigned long *nr_accounted,
820		struct zap_details *details)
821{
822	long zap_work = ZAP_BLOCK_SIZE;
823	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
824	int tlb_start_valid = 0;
825	unsigned long start = start_addr;
826	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
827	int fullmm = (*tlbp)->fullmm;
828
829	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
830		unsigned long end;
831
832		start = max(vma->vm_start, start_addr);
833		if (start >= vma->vm_end)
834			continue;
835		end = min(vma->vm_end, end_addr);
836		if (end <= vma->vm_start)
837			continue;
838
839		if (vma->vm_flags & VM_ACCOUNT)
840			*nr_accounted += (end - start) >> PAGE_SHIFT;
841
842		while (start != end) {
843			if (!tlb_start_valid) {
844				tlb_start = start;
845				tlb_start_valid = 1;
846			}
847
848			if (unlikely(is_vm_hugetlb_page(vma))) {
849				unmap_hugepage_range(vma, start, end);
850				zap_work -= (end - start) /
851						(HPAGE_SIZE / PAGE_SIZE);
852				start = end;
853			} else
854				start = unmap_page_range(*tlbp, vma,
855						start, end, &zap_work, details);
856
857			if (zap_work > 0) {
858				BUG_ON(start != end);
859				break;
860			}
861
862			tlb_finish_mmu(*tlbp, tlb_start, start);
863
864			if (need_resched() ||
865				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
866				if (i_mmap_lock) {
867					*tlbp = NULL;
868					goto out;
869				}
870				cond_resched();
871			}
872
873			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
874			tlb_start_valid = 0;
875			zap_work = ZAP_BLOCK_SIZE;
876		}
877	}
878out:
879	return start;	/* which is now the end (or restart) address */
880}
881
882/**
883 * zap_page_range - remove user pages in a given range
884 * @vma: vm_area_struct holding the applicable pages
885 * @address: starting address of pages to zap
886 * @size: number of bytes to zap
887 * @details: details of nonlinear truncation or shared cache invalidation
888 */
889unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
890		unsigned long size, struct zap_details *details)
891{
892	struct mm_struct *mm = vma->vm_mm;
893	struct mmu_gather *tlb;
894	unsigned long end = address + size;
895	unsigned long nr_accounted = 0;
896
897	lru_add_drain();
898	tlb = tlb_gather_mmu(mm, 0);
899	update_hiwater_rss(mm);
900	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
901	if (tlb)
902		tlb_finish_mmu(tlb, address, end);
903	return end;
904}
905
906/*
907 * Do a quick page-table lookup for a single page.
908 */
909struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
910			unsigned int flags)
911{
912	pgd_t *pgd;
913	pud_t *pud;
914	pmd_t *pmd;
915	pte_t *ptep, pte;
916	spinlock_t *ptl;
917	struct page *page;
918	struct mm_struct *mm = vma->vm_mm;
919
920	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
921	if (!IS_ERR(page)) {
922		BUG_ON(flags & FOLL_GET);
923		goto out;
924	}
925
926	page = NULL;
927	pgd = pgd_offset(mm, address);
928	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
929		goto no_page_table;
930
931	pud = pud_offset(pgd, address);
932	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
933		goto no_page_table;
934
935	pmd = pmd_offset(pud, address);
936	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
937		goto no_page_table;
938
939	if (pmd_huge(*pmd)) {
940		BUG_ON(flags & FOLL_GET);
941		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
942		goto out;
943	}
944
945	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
946	if (!ptep)
947		goto out;
948
949	pte = *ptep;
950	if (!pte_present(pte))
951		goto unlock;
952	if ((flags & FOLL_WRITE) && !pte_write(pte))
953		goto unlock;
954	page = vm_normal_page(vma, address, pte);
955	if (unlikely(!page))
956		goto unlock;
957
958	if (flags & FOLL_GET)
959		get_page(page);
960	if (flags & FOLL_TOUCH) {
961		if ((flags & FOLL_WRITE) &&
962		    !pte_dirty(pte) && !PageDirty(page))
963			set_page_dirty(page);
964		mark_page_accessed(page);
965	}
966unlock:
967	pte_unmap_unlock(ptep, ptl);
968out:
969	return page;
970
971no_page_table:
972	/*
973	 * When core dumping an enormous anonymous area that nobody
974	 * has touched so far, we don't want to allocate page tables.
975	 */
976	if (flags & FOLL_ANON) {
977		page = ZERO_PAGE(0);
978		if (flags & FOLL_GET)
979			get_page(page);
980		BUG_ON(flags & FOLL_WRITE);
981	}
982	return page;
983}
984
985int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
986		unsigned long start, int len, int write, int force,
987		struct page **pages, struct vm_area_struct **vmas)
988{
989	int i;
990	unsigned int vm_flags;
991
992	if (len <= 0)
993		return 0;
994	/*
995	 * Require read or write permissions.
996	 * If 'force' is set, we only require the "MAY" flags.
997	 */
998	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
999	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1000	i = 0;
1001
1002	do {
1003		struct vm_area_struct *vma;
1004		unsigned int foll_flags;
1005
1006		vma = find_extend_vma(mm, start);
1007		if (!vma && in_gate_area(tsk, start)) {
1008			unsigned long pg = start & PAGE_MASK;
1009			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1010			pgd_t *pgd;
1011			pud_t *pud;
1012			pmd_t *pmd;
1013			pte_t *pte;
1014			if (write) /* user gate pages are read-only */
1015				return i ? : -EFAULT;
1016			if (pg > TASK_SIZE)
1017				pgd = pgd_offset_k(pg);
1018			else
1019				pgd = pgd_offset_gate(mm, pg);
1020			BUG_ON(pgd_none(*pgd));
1021			pud = pud_offset(pgd, pg);
1022			BUG_ON(pud_none(*pud));
1023			pmd = pmd_offset(pud, pg);
1024			if (pmd_none(*pmd))
1025				return i ? : -EFAULT;
1026			pte = pte_offset_map(pmd, pg);
1027			if (pte_none(*pte)) {
1028				pte_unmap(pte);
1029				return i ? : -EFAULT;
1030			}
1031			if (pages) {
1032				struct page *page = vm_normal_page(gate_vma, start, *pte);
1033				pages[i] = page;
1034				if (page)
1035					get_page(page);
1036			}
1037			pte_unmap(pte);
1038			if (vmas)
1039				vmas[i] = gate_vma;
1040			i++;
1041			start += PAGE_SIZE;
1042			len--;
1043			continue;
1044		}
1045
1046		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1047				|| !(vm_flags & vma->vm_flags))
1048			return i ? : -EFAULT;
1049
1050		if (is_vm_hugetlb_page(vma)) {
1051			i = follow_hugetlb_page(mm, vma, pages, vmas,
1052						&start, &len, i, write);
1053			continue;
1054		}
1055
1056		foll_flags = FOLL_TOUCH;
1057		if (pages)
1058			foll_flags |= FOLL_GET;
1059		if (!write && !(vma->vm_flags & VM_LOCKED) &&
1060		    (!vma->vm_ops || (!vma->vm_ops->nopage &&
1061					!vma->vm_ops->fault)))
1062			foll_flags |= FOLL_ANON;
1063
1064		do {
1065			struct page *page;
1066
1067			/*
1068			 * If tsk is ooming, cut off its access to large memory
1069			 * allocations. It has a pending SIGKILL, but it can't
1070			 * be processed until returning to user space.
1071			 */
1072			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1073				return -ENOMEM;
1074
1075			if (write)
1076				foll_flags |= FOLL_WRITE;
1077
1078			cond_resched();
1079			while (!(page = follow_page(vma, start, foll_flags))) {
1080				int ret;
1081				ret = handle_mm_fault(mm, vma, start,
1082						foll_flags & FOLL_WRITE);
1083				if (ret & VM_FAULT_ERROR) {
1084					if (ret & VM_FAULT_OOM)
1085						return i ? i : -ENOMEM;
1086					else if (ret & VM_FAULT_SIGBUS)
1087						return i ? i : -EFAULT;
1088					BUG();
1089				}
1090				if (ret & VM_FAULT_MAJOR)
1091					tsk->maj_flt++;
1092				else
1093					tsk->min_flt++;
1094
1095				/*
1096				 * The VM_FAULT_WRITE bit tells us that
1097				 * do_wp_page has broken COW when necessary,
1098				 * even if maybe_mkwrite decided not to set
1099				 * pte_write. We can thus safely do subsequent
1100				 * page lookups as if they were reads.
1101				 */
1102				if (ret & VM_FAULT_WRITE)
1103					foll_flags &= ~FOLL_WRITE;
1104
1105				cond_resched();
1106			}
1107			if (pages) {
1108				pages[i] = page;
1109
1110				flush_anon_page(vma, page, start);
1111				flush_dcache_page(page);
1112			}
1113			if (vmas)
1114				vmas[i] = vma;
1115			i++;
1116			start += PAGE_SIZE;
1117			len--;
1118		} while (len && start < vma->vm_end);
1119	} while (len);
1120	return i;
1121}
1122EXPORT_SYMBOL(get_user_pages);
1123
1124pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1125			spinlock_t **ptl)
1126{
1127	pgd_t * pgd = pgd_offset(mm, addr);
1128	pud_t * pud = pud_alloc(mm, pgd, addr);
1129	if (pud) {
1130		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1131		if (pmd)
1132			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1133	}
1134	return NULL;
1135}
1136
1137/*
1138 * This is the old fallback for page remapping.
1139 *
1140 * For historical reasons, it only allows reserved pages. Only
1141 * old drivers should use this, and they needed to mark their
1142 * pages reserved for the old functions anyway.
1143 */
1144static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1145{
1146	int retval;
1147	pte_t *pte;
1148	spinlock_t *ptl;
1149
1150	retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1151	if (retval)
1152		goto out;
1153
1154	retval = -EINVAL;
1155	if (PageAnon(page))
1156		goto out_uncharge;
1157	retval = -ENOMEM;
1158	flush_dcache_page(page);
1159	pte = get_locked_pte(mm, addr, &ptl);
1160	if (!pte)
1161		goto out_uncharge;
1162	retval = -EBUSY;
1163	if (!pte_none(*pte))
1164		goto out_unlock;
1165
1166	/* Ok, finally just insert the thing.. */
1167	get_page(page);
1168	inc_mm_counter(mm, file_rss);
1169	page_add_file_rmap(page);
1170	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1171
1172	retval = 0;
1173	pte_unmap_unlock(pte, ptl);
1174	return retval;
1175out_unlock:
1176	pte_unmap_unlock(pte, ptl);
1177out_uncharge:
1178	mem_cgroup_uncharge_page(page);
1179out:
1180	return retval;
1181}
1182
1183/**
1184 * vm_insert_page - insert single page into user vma
1185 * @vma: user vma to map to
1186 * @addr: target user address of this page
1187 * @page: source kernel page
1188 *
1189 * This allows drivers to insert individual pages they've allocated
1190 * into a user vma.
1191 *
1192 * The page has to be a nice clean _individual_ kernel allocation.
1193 * If you allocate a compound page, you need to have marked it as
1194 * such (__GFP_COMP), or manually just split the page up yourself
1195 * (see split_page()).
1196 *
1197 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1198 * took an arbitrary page protection parameter. This doesn't allow
1199 * that. Your vma protection will have to be set up correctly, which
1200 * means that if you want a shared writable mapping, you'd better
1201 * ask for a shared writable mapping!
1202 *
1203 * The page does not need to be reserved.
1204 */
1205int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1206{
1207	if (addr < vma->vm_start || addr >= vma->vm_end)
1208		return -EFAULT;
1209	if (!page_count(page))
1210		return -EINVAL;
1211	vma->vm_flags |= VM_INSERTPAGE;
1212	return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1213}
1214EXPORT_SYMBOL(vm_insert_page);
1215
1216/**
1217 * vm_insert_pfn - insert single pfn into user vma
1218 * @vma: user vma to map to
1219 * @addr: target user address of this page
1220 * @pfn: source kernel pfn
1221 *
1222 * Similar to vm_inert_page, this allows drivers to insert individual pages
1223 * they've allocated into a user vma. Same comments apply.
1224 *
1225 * This function should only be called from a vm_ops->fault handler, and
1226 * in that case the handler should return NULL.
1227 */
1228int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1229		unsigned long pfn)
1230{
1231	struct mm_struct *mm = vma->vm_mm;
1232	int retval;
1233	pte_t *pte, entry;
1234	spinlock_t *ptl;
1235
1236	BUG_ON(!(vma->vm_flags & VM_PFNMAP));
1237	BUG_ON(is_cow_mapping(vma->vm_flags));
1238
1239	retval = -ENOMEM;
1240	pte = get_locked_pte(mm, addr, &ptl);
1241	if (!pte)
1242		goto out;
1243	retval = -EBUSY;
1244	if (!pte_none(*pte))
1245		goto out_unlock;
1246
1247	/* Ok, finally just insert the thing.. */
1248	entry = pfn_pte(pfn, vma->vm_page_prot);
1249	set_pte_at(mm, addr, pte, entry);
1250	update_mmu_cache(vma, addr, entry);
1251
1252	retval = 0;
1253out_unlock:
1254	pte_unmap_unlock(pte, ptl);
1255
1256out:
1257	return retval;
1258}
1259EXPORT_SYMBOL(vm_insert_pfn);
1260
1261/*
1262 * maps a range of physical memory into the requested pages. the old
1263 * mappings are removed. any references to nonexistent pages results
1264 * in null mappings (currently treated as "copy-on-access")
1265 */
1266static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1267			unsigned long addr, unsigned long end,
1268			unsigned long pfn, pgprot_t prot)
1269{
1270	pte_t *pte;
1271	spinlock_t *ptl;
1272
1273	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1274	if (!pte)
1275		return -ENOMEM;
1276	arch_enter_lazy_mmu_mode();
1277	do {
1278		BUG_ON(!pte_none(*pte));
1279		set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1280		pfn++;
1281	} while (pte++, addr += PAGE_SIZE, addr != end);
1282	arch_leave_lazy_mmu_mode();
1283	pte_unmap_unlock(pte - 1, ptl);
1284	return 0;
1285}
1286
1287static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1288			unsigned long addr, unsigned long end,
1289			unsigned long pfn, pgprot_t prot)
1290{
1291	pmd_t *pmd;
1292	unsigned long next;
1293
1294	pfn -= addr >> PAGE_SHIFT;
1295	pmd = pmd_alloc(mm, pud, addr);
1296	if (!pmd)
1297		return -ENOMEM;
1298	do {
1299		next = pmd_addr_end(addr, end);
1300		if (remap_pte_range(mm, pmd, addr, next,
1301				pfn + (addr >> PAGE_SHIFT), prot))
1302			return -ENOMEM;
1303	} while (pmd++, addr = next, addr != end);
1304	return 0;
1305}
1306
1307static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1308			unsigned long addr, unsigned long end,
1309			unsigned long pfn, pgprot_t prot)
1310{
1311	pud_t *pud;
1312	unsigned long next;
1313
1314	pfn -= addr >> PAGE_SHIFT;
1315	pud = pud_alloc(mm, pgd, addr);
1316	if (!pud)
1317		return -ENOMEM;
1318	do {
1319		next = pud_addr_end(addr, end);
1320		if (remap_pmd_range(mm, pud, addr, next,
1321				pfn + (addr >> PAGE_SHIFT), prot))
1322			return -ENOMEM;
1323	} while (pud++, addr = next, addr != end);
1324	return 0;
1325}
1326
1327/**
1328 * remap_pfn_range - remap kernel memory to userspace
1329 * @vma: user vma to map to
1330 * @addr: target user address to start at
1331 * @pfn: physical address of kernel memory
1332 * @size: size of map area
1333 * @prot: page protection flags for this mapping
1334 *
1335 *  Note: this is only safe if the mm semaphore is held when called.
1336 */
1337int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1338		    unsigned long pfn, unsigned long size, pgprot_t prot)
1339{
1340	pgd_t *pgd;
1341	unsigned long next;
1342	unsigned long end = addr + PAGE_ALIGN(size);
1343	struct mm_struct *mm = vma->vm_mm;
1344	int err;
1345
1346	/*
1347	 * Physically remapped pages are special. Tell the
1348	 * rest of the world about it:
1349	 *   VM_IO tells people not to look at these pages
1350	 *	(accesses can have side effects).
1351	 *   VM_RESERVED is specified all over the place, because
1352	 *	in 2.4 it kept swapout's vma scan off this vma; but
1353	 *	in 2.6 the LRU scan won't even find its pages, so this
1354	 *	flag means no more than count its pages in reserved_vm,
1355	 * 	and omit it from core dump, even when VM_IO turned off.
1356	 *   VM_PFNMAP tells the core MM that the base pages are just
1357	 *	raw PFN mappings, and do not have a "struct page" associated
1358	 *	with them.
1359	 *
1360	 * There's a horrible special case to handle copy-on-write
1361	 * behaviour that some programs depend on. We mark the "original"
1362	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1363	 */
1364	if (is_cow_mapping(vma->vm_flags)) {
1365		if (addr != vma->vm_start || end != vma->vm_end)
1366			return -EINVAL;
1367		vma->vm_pgoff = pfn;
1368	}
1369
1370	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1371
1372	BUG_ON(addr >= end);
1373	pfn -= addr >> PAGE_SHIFT;
1374	pgd = pgd_offset(mm, addr);
1375	flush_cache_range(vma, addr, end);
1376	do {
1377		next = pgd_addr_end(addr, end);
1378		err = remap_pud_range(mm, pgd, addr, next,
1379				pfn + (addr >> PAGE_SHIFT), prot);
1380		if (err)
1381			break;
1382	} while (pgd++, addr = next, addr != end);
1383	return err;
1384}
1385EXPORT_SYMBOL(remap_pfn_range);
1386
1387static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1388				     unsigned long addr, unsigned long end,
1389				     pte_fn_t fn, void *data)
1390{
1391	pte_t *pte;
1392	int err;
1393	pgtable_t token;
1394	spinlock_t *uninitialized_var(ptl);
1395
1396	pte = (mm == &init_mm) ?
1397		pte_alloc_kernel(pmd, addr) :
1398		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1399	if (!pte)
1400		return -ENOMEM;
1401
1402	BUG_ON(pmd_huge(*pmd));
1403
1404	token = pmd_pgtable(*pmd);
1405
1406	do {
1407		err = fn(pte, token, addr, data);
1408		if (err)
1409			break;
1410	} while (pte++, addr += PAGE_SIZE, addr != end);
1411
1412	if (mm != &init_mm)
1413		pte_unmap_unlock(pte-1, ptl);
1414	return err;
1415}
1416
1417static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1418				     unsigned long addr, unsigned long end,
1419				     pte_fn_t fn, void *data)
1420{
1421	pmd_t *pmd;
1422	unsigned long next;
1423	int err;
1424
1425	pmd = pmd_alloc(mm, pud, addr);
1426	if (!pmd)
1427		return -ENOMEM;
1428	do {
1429		next = pmd_addr_end(addr, end);
1430		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1431		if (err)
1432			break;
1433	} while (pmd++, addr = next, addr != end);
1434	return err;
1435}
1436
1437static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1438				     unsigned long addr, unsigned long end,
1439				     pte_fn_t fn, void *data)
1440{
1441	pud_t *pud;
1442	unsigned long next;
1443	int err;
1444
1445	pud = pud_alloc(mm, pgd, addr);
1446	if (!pud)
1447		return -ENOMEM;
1448	do {
1449		next = pud_addr_end(addr, end);
1450		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1451		if (err)
1452			break;
1453	} while (pud++, addr = next, addr != end);
1454	return err;
1455}
1456
1457/*
1458 * Scan a region of virtual memory, filling in page tables as necessary
1459 * and calling a provided function on each leaf page table.
1460 */
1461int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1462			unsigned long size, pte_fn_t fn, void *data)
1463{
1464	pgd_t *pgd;
1465	unsigned long next;
1466	unsigned long end = addr + size;
1467	int err;
1468
1469	BUG_ON(addr >= end);
1470	pgd = pgd_offset(mm, addr);
1471	do {
1472		next = pgd_addr_end(addr, end);
1473		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1474		if (err)
1475			break;
1476	} while (pgd++, addr = next, addr != end);
1477	return err;
1478}
1479EXPORT_SYMBOL_GPL(apply_to_page_range);
1480
1481/*
1482 * handle_pte_fault chooses page fault handler according to an entry
1483 * which was read non-atomically.  Before making any commitment, on
1484 * those architectures or configurations (e.g. i386 with PAE) which
1485 * might give a mix of unmatched parts, do_swap_page and do_file_page
1486 * must check under lock before unmapping the pte and proceeding
1487 * (but do_wp_page is only called after already making such a check;
1488 * and do_anonymous_page and do_no_page can safely check later on).
1489 */
1490static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1491				pte_t *page_table, pte_t orig_pte)
1492{
1493	int same = 1;
1494#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1495	if (sizeof(pte_t) > sizeof(unsigned long)) {
1496		spinlock_t *ptl = pte_lockptr(mm, pmd);
1497		spin_lock(ptl);
1498		same = pte_same(*page_table, orig_pte);
1499		spin_unlock(ptl);
1500	}
1501#endif
1502	pte_unmap(page_table);
1503	return same;
1504}
1505
1506/*
1507 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1508 * servicing faults for write access.  In the normal case, do always want
1509 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1510 * that do not have writing enabled, when used by access_process_vm.
1511 */
1512static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1513{
1514	if (likely(vma->vm_flags & VM_WRITE))
1515		pte = pte_mkwrite(pte);
1516	return pte;
1517}
1518
1519static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1520{
1521	/*
1522	 * If the source page was a PFN mapping, we don't have
1523	 * a "struct page" for it. We do a best-effort copy by
1524	 * just copying from the original user address. If that
1525	 * fails, we just zero-fill it. Live with it.
1526	 */
1527	if (unlikely(!src)) {
1528		void *kaddr = kmap_atomic(dst, KM_USER0);
1529		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1530
1531		/*
1532		 * This really shouldn't fail, because the page is there
1533		 * in the page tables. But it might just be unreadable,
1534		 * in which case we just give up and fill the result with
1535		 * zeroes.
1536		 */
1537		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1538			memset(kaddr, 0, PAGE_SIZE);
1539		kunmap_atomic(kaddr, KM_USER0);
1540		flush_dcache_page(dst);
1541	} else
1542		copy_user_highpage(dst, src, va, vma);
1543}
1544
1545/*
1546 * This routine handles present pages, when users try to write
1547 * to a shared page. It is done by copying the page to a new address
1548 * and decrementing the shared-page counter for the old page.
1549 *
1550 * Note that this routine assumes that the protection checks have been
1551 * done by the caller (the low-level page fault routine in most cases).
1552 * Thus we can safely just mark it writable once we've done any necessary
1553 * COW.
1554 *
1555 * We also mark the page dirty at this point even though the page will
1556 * change only once the write actually happens. This avoids a few races,
1557 * and potentially makes it more efficient.
1558 *
1559 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1560 * but allow concurrent faults), with pte both mapped and locked.
1561 * We return with mmap_sem still held, but pte unmapped and unlocked.
1562 */
1563static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1564		unsigned long address, pte_t *page_table, pmd_t *pmd,
1565		spinlock_t *ptl, pte_t orig_pte)
1566{
1567	struct page *old_page, *new_page;
1568	pte_t entry;
1569	int reuse = 0, ret = 0;
1570	int page_mkwrite = 0;
1571	struct page *dirty_page = NULL;
1572
1573	old_page = vm_normal_page(vma, address, orig_pte);
1574	if (!old_page)
1575		goto gotten;
1576
1577	/*
1578	 * Take out anonymous pages first, anonymous shared vmas are
1579	 * not dirty accountable.
1580	 */
1581	if (PageAnon(old_page)) {
1582		if (!TestSetPageLocked(old_page)) {
1583			reuse = can_share_swap_page(old_page);
1584			unlock_page(old_page);
1585		}
1586	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1587					(VM_WRITE|VM_SHARED))) {
1588		/*
1589		 * Only catch write-faults on shared writable pages,
1590		 * read-only shared pages can get COWed by
1591		 * get_user_pages(.write=1, .force=1).
1592		 */
1593		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1594			/*
1595			 * Notify the address space that the page is about to
1596			 * become writable so that it can prohibit this or wait
1597			 * for the page to get into an appropriate state.
1598			 *
1599			 * We do this without the lock held, so that it can
1600			 * sleep if it needs to.
1601			 */
1602			page_cache_get(old_page);
1603			pte_unmap_unlock(page_table, ptl);
1604
1605			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1606				goto unwritable_page;
1607
1608			/*
1609			 * Since we dropped the lock we need to revalidate
1610			 * the PTE as someone else may have changed it.  If
1611			 * they did, we just return, as we can count on the
1612			 * MMU to tell us if they didn't also make it writable.
1613			 */
1614			page_table = pte_offset_map_lock(mm, pmd, address,
1615							 &ptl);
1616			page_cache_release(old_page);
1617			if (!pte_same(*page_table, orig_pte))
1618				goto unlock;
1619
1620			page_mkwrite = 1;
1621		}
1622		dirty_page = old_page;
1623		get_page(dirty_page);
1624		reuse = 1;
1625	}
1626
1627	if (reuse) {
1628		flush_cache_page(vma, address, pte_pfn(orig_pte));
1629		entry = pte_mkyoung(orig_pte);
1630		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1631		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1632			update_mmu_cache(vma, address, entry);
1633		ret |= VM_FAULT_WRITE;
1634		goto unlock;
1635	}
1636
1637	/*
1638	 * Ok, we need to copy. Oh, well..
1639	 */
1640	page_cache_get(old_page);
1641gotten:
1642	pte_unmap_unlock(page_table, ptl);
1643
1644	if (unlikely(anon_vma_prepare(vma)))
1645		goto oom;
1646	VM_BUG_ON(old_page == ZERO_PAGE(0));
1647	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1648	if (!new_page)
1649		goto oom;
1650	cow_user_page(new_page, old_page, address, vma);
1651	__SetPageUptodate(new_page);
1652
1653	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1654		goto oom_free_new;
1655
1656	/*
1657	 * Re-check the pte - we dropped the lock
1658	 */
1659	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1660	if (likely(pte_same(*page_table, orig_pte))) {
1661		if (old_page) {
1662			page_remove_rmap(old_page, vma);
1663			if (!PageAnon(old_page)) {
1664				dec_mm_counter(mm, file_rss);
1665				inc_mm_counter(mm, anon_rss);
1666			}
1667		} else
1668			inc_mm_counter(mm, anon_rss);
1669		flush_cache_page(vma, address, pte_pfn(orig_pte));
1670		entry = mk_pte(new_page, vma->vm_page_prot);
1671		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1672		/*
1673		 * Clear the pte entry and flush it first, before updating the
1674		 * pte with the new entry. This will avoid a race condition
1675		 * seen in the presence of one thread doing SMC and another
1676		 * thread doing COW.
1677		 */
1678		ptep_clear_flush(vma, address, page_table);
1679		set_pte_at(mm, address, page_table, entry);
1680		update_mmu_cache(vma, address, entry);
1681		lru_cache_add_active(new_page);
1682		page_add_new_anon_rmap(new_page, vma, address);
1683
1684		/* Free the old page.. */
1685		new_page = old_page;
1686		ret |= VM_FAULT_WRITE;
1687	} else
1688		mem_cgroup_uncharge_page(new_page);
1689
1690	if (new_page)
1691		page_cache_release(new_page);
1692	if (old_page)
1693		page_cache_release(old_page);
1694unlock:
1695	pte_unmap_unlock(page_table, ptl);
1696	if (dirty_page) {
1697		if (vma->vm_file)
1698			file_update_time(vma->vm_file);
1699
1700		/*
1701		 * Yes, Virginia, this is actually required to prevent a race
1702		 * with clear_page_dirty_for_io() from clearing the page dirty
1703		 * bit after it clear all dirty ptes, but before a racing
1704		 * do_wp_page installs a dirty pte.
1705		 *
1706		 * do_no_page is protected similarly.
1707		 */
1708		wait_on_page_locked(dirty_page);
1709		set_page_dirty_balance(dirty_page, page_mkwrite);
1710		put_page(dirty_page);
1711	}
1712	return ret;
1713oom_free_new:
1714	__free_page(new_page);
1715oom:
1716	if (old_page)
1717		page_cache_release(old_page);
1718	return VM_FAULT_OOM;
1719
1720unwritable_page:
1721	page_cache_release(old_page);
1722	return VM_FAULT_SIGBUS;
1723}
1724
1725/*
1726 * Helper functions for unmap_mapping_range().
1727 *
1728 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1729 *
1730 * We have to restart searching the prio_tree whenever we drop the lock,
1731 * since the iterator is only valid while the lock is held, and anyway
1732 * a later vma might be split and reinserted earlier while lock dropped.
1733 *
1734 * The list of nonlinear vmas could be handled more efficiently, using
1735 * a placeholder, but handle it in the same way until a need is shown.
1736 * It is important to search the prio_tree before nonlinear list: a vma
1737 * may become nonlinear and be shifted from prio_tree to nonlinear list
1738 * while the lock is dropped; but never shifted from list to prio_tree.
1739 *
1740 * In order to make forward progress despite restarting the search,
1741 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1742 * quickly skip it next time around.  Since the prio_tree search only
1743 * shows us those vmas affected by unmapping the range in question, we
1744 * can't efficiently keep all vmas in step with mapping->truncate_count:
1745 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1746 * mapping->truncate_count and vma->vm_truncate_count are protected by
1747 * i_mmap_lock.
1748 *
1749 * In order to make forward progress despite repeatedly restarting some
1750 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1751 * and restart from that address when we reach that vma again.  It might
1752 * have been split or merged, shrunk or extended, but never shifted: so
1753 * restart_addr remains valid so long as it remains in the vma's range.
1754 * unmap_mapping_range forces truncate_count to leap over page-aligned
1755 * values so we can save vma's restart_addr in its truncate_count field.
1756 */
1757#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1758
1759static void reset_vma_truncate_counts(struct address_space *mapping)
1760{
1761	struct vm_area_struct *vma;
1762	struct prio_tree_iter iter;
1763
1764	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1765		vma->vm_truncate_count = 0;
1766	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1767		vma->vm_truncate_count = 0;
1768}
1769
1770static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1771		unsigned long start_addr, unsigned long end_addr,
1772		struct zap_details *details)
1773{
1774	unsigned long restart_addr;
1775	int need_break;
1776
1777	/*
1778	 * files that support invalidating or truncating portions of the
1779	 * file from under mmaped areas must have their ->fault function
1780	 * return a locked page (and set VM_FAULT_LOCKED in the return).
1781	 * This provides synchronisation against concurrent unmapping here.
1782	 */
1783
1784again:
1785	restart_addr = vma->vm_truncate_count;
1786	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1787		start_addr = restart_addr;
1788		if (start_addr >= end_addr) {
1789			/* Top of vma has been split off since last time */
1790			vma->vm_truncate_count = details->truncate_count;
1791			return 0;
1792		}
1793	}
1794
1795	restart_addr = zap_page_range(vma, start_addr,
1796					end_addr - start_addr, details);
1797	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1798
1799	if (restart_addr >= end_addr) {
1800		/* We have now completed this vma: mark it so */
1801		vma->vm_truncate_count = details->truncate_count;
1802		if (!need_break)
1803			return 0;
1804	} else {
1805		/* Note restart_addr in vma's truncate_count field */
1806		vma->vm_truncate_count = restart_addr;
1807		if (!need_break)
1808			goto again;
1809	}
1810
1811	spin_unlock(details->i_mmap_lock);
1812	cond_resched();
1813	spin_lock(details->i_mmap_lock);
1814	return -EINTR;
1815}
1816
1817static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1818					    struct zap_details *details)
1819{
1820	struct vm_area_struct *vma;
1821	struct prio_tree_iter iter;
1822	pgoff_t vba, vea, zba, zea;
1823
1824restart:
1825	vma_prio_tree_foreach(vma, &iter, root,
1826			details->first_index, details->last_index) {
1827		/* Skip quickly over those we have already dealt with */
1828		if (vma->vm_truncate_count == details->truncate_count)
1829			continue;
1830
1831		vba = vma->vm_pgoff;
1832		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1833		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1834		zba = details->first_index;
1835		if (zba < vba)
1836			zba = vba;
1837		zea = details->last_index;
1838		if (zea > vea)
1839			zea = vea;
1840
1841		if (unmap_mapping_range_vma(vma,
1842			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1843			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1844				details) < 0)
1845			goto restart;
1846	}
1847}
1848
1849static inline void unmap_mapping_range_list(struct list_head *head,
1850					    struct zap_details *details)
1851{
1852	struct vm_area_struct *vma;
1853
1854	/*
1855	 * In nonlinear VMAs there is no correspondence between virtual address
1856	 * offset and file offset.  So we must perform an exhaustive search
1857	 * across *all* the pages in each nonlinear VMA, not just the pages
1858	 * whose virtual address lies outside the file truncation point.
1859	 */
1860restart:
1861	list_for_each_entry(vma, head, shared.vm_set.list) {
1862		/* Skip quickly over those we have already dealt with */
1863		if (vma->vm_truncate_count == details->truncate_count)
1864			continue;
1865		details->nonlinear_vma = vma;
1866		if (unmap_mapping_range_vma(vma, vma->vm_start,
1867					vma->vm_end, details) < 0)
1868			goto restart;
1869	}
1870}
1871
1872/**
1873 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1874 * @mapping: the address space containing mmaps to be unmapped.
1875 * @holebegin: byte in first page to unmap, relative to the start of
1876 * the underlying file.  This will be rounded down to a PAGE_SIZE
1877 * boundary.  Note that this is different from vmtruncate(), which
1878 * must keep the partial page.  In contrast, we must get rid of
1879 * partial pages.
1880 * @holelen: size of prospective hole in bytes.  This will be rounded
1881 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1882 * end of the file.
1883 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1884 * but 0 when invalidating pagecache, don't throw away private data.
1885 */
1886void unmap_mapping_range(struct address_space *mapping,
1887		loff_t const holebegin, loff_t const holelen, int even_cows)
1888{
1889	struct zap_details details;
1890	pgoff_t hba = holebegin >> PAGE_SHIFT;
1891	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1892
1893	/* Check for overflow. */
1894	if (sizeof(holelen) > sizeof(hlen)) {
1895		long long holeend =
1896			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1897		if (holeend & ~(long long)ULONG_MAX)
1898			hlen = ULONG_MAX - hba + 1;
1899	}
1900
1901	details.check_mapping = even_cows? NULL: mapping;
1902	details.nonlinear_vma = NULL;
1903	details.first_index = hba;
1904	details.last_index = hba + hlen - 1;
1905	if (details.last_index < details.first_index)
1906		details.last_index = ULONG_MAX;
1907	details.i_mmap_lock = &mapping->i_mmap_lock;
1908
1909	spin_lock(&mapping->i_mmap_lock);
1910
1911	/* Protect against endless unmapping loops */
1912	mapping->truncate_count++;
1913	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1914		if (mapping->truncate_count == 0)
1915			reset_vma_truncate_counts(mapping);
1916		mapping->truncate_count++;
1917	}
1918	details.truncate_count = mapping->truncate_count;
1919
1920	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1921		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1922	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1923		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1924	spin_unlock(&mapping->i_mmap_lock);
1925}
1926EXPORT_SYMBOL(unmap_mapping_range);
1927
1928/**
1929 * vmtruncate - unmap mappings "freed" by truncate() syscall
1930 * @inode: inode of the file used
1931 * @offset: file offset to start truncating
1932 *
1933 * NOTE! We have to be ready to update the memory sharing
1934 * between the file and the memory map for a potential last
1935 * incomplete page.  Ugly, but necessary.
1936 */
1937int vmtruncate(struct inode * inode, loff_t offset)
1938{
1939	if (inode->i_size < offset) {
1940		unsigned long limit;
1941
1942		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1943		if (limit != RLIM_INFINITY && offset > limit)
1944			goto out_sig;
1945		if (offset > inode->i_sb->s_maxbytes)
1946			goto out_big;
1947		i_size_write(inode, offset);
1948	} else {
1949		struct address_space *mapping = inode->i_mapping;
1950
1951		/*
1952		 * truncation of in-use swapfiles is disallowed - it would
1953		 * cause subsequent swapout to scribble on the now-freed
1954		 * blocks.
1955		 */
1956		if (IS_SWAPFILE(inode))
1957			return -ETXTBSY;
1958		i_size_write(inode, offset);
1959
1960		/*
1961		 * unmap_mapping_range is called twice, first simply for
1962		 * efficiency so that truncate_inode_pages does fewer
1963		 * single-page unmaps.  However after this first call, and
1964		 * before truncate_inode_pages finishes, it is possible for
1965		 * private pages to be COWed, which remain after
1966		 * truncate_inode_pages finishes, hence the second
1967		 * unmap_mapping_range call must be made for correctness.
1968		 */
1969		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1970		truncate_inode_pages(mapping, offset);
1971		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1972	}
1973
1974	if (inode->i_op && inode->i_op->truncate)
1975		inode->i_op->truncate(inode);
1976	return 0;
1977
1978out_sig:
1979	send_sig(SIGXFSZ, current, 0);
1980out_big:
1981	return -EFBIG;
1982}
1983EXPORT_SYMBOL(vmtruncate);
1984
1985int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1986{
1987	struct address_space *mapping = inode->i_mapping;
1988
1989	/*
1990	 * If the underlying filesystem is not going to provide
1991	 * a way to truncate a range of blocks (punch a hole) -
1992	 * we should return failure right now.
1993	 */
1994	if (!inode->i_op || !inode->i_op->truncate_range)
1995		return -ENOSYS;
1996
1997	mutex_lock(&inode->i_mutex);
1998	down_write(&inode->i_alloc_sem);
1999	unmap_mapping_range(mapping, offset, (end - offset), 1);
2000	truncate_inode_pages_range(mapping, offset, end);
2001	unmap_mapping_range(mapping, offset, (end - offset), 1);
2002	inode->i_op->truncate_range(inode, offset, end);
2003	up_write(&inode->i_alloc_sem);
2004	mutex_unlock(&inode->i_mutex);
2005
2006	return 0;
2007}
2008
2009/*
2010 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2011 * but allow concurrent faults), and pte mapped but not yet locked.
2012 * We return with mmap_sem still held, but pte unmapped and unlocked.
2013 */
2014static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2015		unsigned long address, pte_t *page_table, pmd_t *pmd,
2016		int write_access, pte_t orig_pte)
2017{
2018	spinlock_t *ptl;
2019	struct page *page;
2020	swp_entry_t entry;
2021	pte_t pte;
2022	int ret = 0;
2023
2024	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2025		goto out;
2026
2027	entry = pte_to_swp_entry(orig_pte);
2028	if (is_migration_entry(entry)) {
2029		migration_entry_wait(mm, pmd, address);
2030		goto out;
2031	}
2032	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2033	page = lookup_swap_cache(entry);
2034	if (!page) {
2035		grab_swap_token(); /* Contend for token _before_ read-in */
2036		page = swapin_readahead(entry,
2037					GFP_HIGHUSER_MOVABLE, vma, address);
2038		if (!page) {
2039			/*
2040			 * Back out if somebody else faulted in this pte
2041			 * while we released the pte lock.
2042			 */
2043			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2044			if (likely(pte_same(*page_table, orig_pte)))
2045				ret = VM_FAULT_OOM;
2046			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2047			goto unlock;
2048		}
2049
2050		/* Had to read the page from swap area: Major fault */
2051		ret = VM_FAULT_MAJOR;
2052		count_vm_event(PGMAJFAULT);
2053	}
2054
2055	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2056		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2057		ret = VM_FAULT_OOM;
2058		goto out;
2059	}
2060
2061	mark_page_accessed(page);
2062	lock_page(page);
2063	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2064
2065	/*
2066	 * Back out if somebody else already faulted in this pte.
2067	 */
2068	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2069	if (unlikely(!pte_same(*page_table, orig_pte)))
2070		goto out_nomap;
2071
2072	if (unlikely(!PageUptodate(page))) {
2073		ret = VM_FAULT_SIGBUS;
2074		goto out_nomap;
2075	}
2076
2077	/* The page isn't present yet, go ahead with the fault. */
2078
2079	inc_mm_counter(mm, anon_rss);
2080	pte = mk_pte(page, vma->vm_page_prot);
2081	if (write_access && can_share_swap_page(page)) {
2082		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2083		write_access = 0;
2084	}
2085
2086	flush_icache_page(vma, page);
2087	set_pte_at(mm, address, page_table, pte);
2088	page_add_anon_rmap(page, vma, address);
2089
2090	swap_free(entry);
2091	if (vm_swap_full())
2092		remove_exclusive_swap_page(page);
2093	unlock_page(page);
2094
2095	if (write_access) {
2096		/* XXX: We could OR the do_wp_page code with this one? */
2097		if (do_wp_page(mm, vma, address,
2098				page_table, pmd, ptl, pte) & VM_FAULT_OOM) {
2099			mem_cgroup_uncharge_page(page);
2100			ret = VM_FAULT_OOM;
2101		}
2102		goto out;
2103	}
2104
2105	/* No need to invalidate - it was non-present before */
2106	update_mmu_cache(vma, address, pte);
2107unlock:
2108	pte_unmap_unlock(page_table, ptl);
2109out:
2110	return ret;
2111out_nomap:
2112	mem_cgroup_uncharge_page(page);
2113	pte_unmap_unlock(page_table, ptl);
2114	unlock_page(page);
2115	page_cache_release(page);
2116	return ret;
2117}
2118
2119/*
2120 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2121 * but allow concurrent faults), and pte mapped but not yet locked.
2122 * We return with mmap_sem still held, but pte unmapped and unlocked.
2123 */
2124static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2125		unsigned long address, pte_t *page_table, pmd_t *pmd,
2126		int write_access)
2127{
2128	struct page *page;
2129	spinlock_t *ptl;
2130	pte_t entry;
2131
2132	/* Allocate our own private page. */
2133	pte_unmap(page_table);
2134
2135	if (unlikely(anon_vma_prepare(vma)))
2136		goto oom;
2137	page = alloc_zeroed_user_highpage_movable(vma, address);
2138	if (!page)
2139		goto oom;
2140	__SetPageUptodate(page);
2141
2142	if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2143		goto oom_free_page;
2144
2145	entry = mk_pte(page, vma->vm_page_prot);
2146	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2147
2148	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2149	if (!pte_none(*page_table))
2150		goto release;
2151	inc_mm_counter(mm, anon_rss);
2152	lru_cache_add_active(page);
2153	page_add_new_anon_rmap(page, vma, address);
2154	set_pte_at(mm, address, page_table, entry);
2155
2156	/* No need to invalidate - it was non-present before */
2157	update_mmu_cache(vma, address, entry);
2158unlock:
2159	pte_unmap_unlock(page_table, ptl);
2160	return 0;
2161release:
2162	mem_cgroup_uncharge_page(page);
2163	page_cache_release(page);
2164	goto unlock;
2165oom_free_page:
2166	__free_page(page);
2167oom:
2168	return VM_FAULT_OOM;
2169}
2170
2171/*
2172 * __do_fault() tries to create a new page mapping. It aggressively
2173 * tries to share with existing pages, but makes a separate copy if
2174 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2175 * the next page fault.
2176 *
2177 * As this is called only for pages that do not currently exist, we
2178 * do not need to flush old virtual caches or the TLB.
2179 *
2180 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2181 * but allow concurrent faults), and pte neither mapped nor locked.
2182 * We return with mmap_sem still held, but pte unmapped and unlocked.
2183 */
2184static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2185		unsigned long address, pmd_t *pmd,
2186		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2187{
2188	pte_t *page_table;
2189	spinlock_t *ptl;
2190	struct page *page;
2191	pte_t entry;
2192	int anon = 0;
2193	struct page *dirty_page = NULL;
2194	struct vm_fault vmf;
2195	int ret;
2196	int page_mkwrite = 0;
2197
2198	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2199	vmf.pgoff = pgoff;
2200	vmf.flags = flags;
2201	vmf.page = NULL;
2202
2203	BUG_ON(vma->vm_flags & VM_PFNMAP);
2204
2205	if (likely(vma->vm_ops->fault)) {
2206		ret = vma->vm_ops->fault(vma, &vmf);
2207		if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2208			return ret;
2209	} else {
2210		/* Legacy ->nopage path */
2211		ret = 0;
2212		vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2213		/* no page was available -- either SIGBUS or OOM */
2214		if (unlikely(vmf.page == NOPAGE_SIGBUS))
2215			return VM_FAULT_SIGBUS;
2216		else if (unlikely(vmf.page == NOPAGE_OOM))
2217			return VM_FAULT_OOM;
2218	}
2219
2220	/*
2221	 * For consistency in subsequent calls, make the faulted page always
2222	 * locked.
2223	 */
2224	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2225		lock_page(vmf.page);
2226	else
2227		VM_BUG_ON(!PageLocked(vmf.page));
2228
2229	/*
2230	 * Should we do an early C-O-W break?
2231	 */
2232	page = vmf.page;
2233	if (flags & FAULT_FLAG_WRITE) {
2234		if (!(vma->vm_flags & VM_SHARED)) {
2235			anon = 1;
2236			if (unlikely(anon_vma_prepare(vma))) {
2237				ret = VM_FAULT_OOM;
2238				goto out;
2239			}
2240			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2241						vma, address);
2242			if (!page) {
2243				ret = VM_FAULT_OOM;
2244				goto out;
2245			}
2246			copy_user_highpage(page, vmf.page, address, vma);
2247			__SetPageUptodate(page);
2248		} else {
2249			/*
2250			 * If the page will be shareable, see if the backing
2251			 * address space wants to know that the page is about
2252			 * to become writable
2253			 */
2254			if (vma->vm_ops->page_mkwrite) {
2255				unlock_page(page);
2256				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2257					ret = VM_FAULT_SIGBUS;
2258					anon = 1; /* no anon but release vmf.page */
2259					goto out_unlocked;
2260				}
2261				lock_page(page);
2262				/*
2263				 * XXX: this is not quite right (racy vs
2264				 * invalidate) to unlock and relock the page
2265				 * like this, however a better fix requires
2266				 * reworking page_mkwrite locking API, which
2267				 * is better done later.
2268				 */
2269				if (!page->mapping) {
2270					ret = 0;
2271					anon = 1; /* no anon but release vmf.page */
2272					goto out;
2273				}
2274				page_mkwrite = 1;
2275			}
2276		}
2277
2278	}
2279
2280	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2281		ret = VM_FAULT_OOM;
2282		goto out;
2283	}
2284
2285	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2286
2287	/*
2288	 * This silly early PAGE_DIRTY setting removes a race
2289	 * due to the bad i386 page protection. But it's valid
2290	 * for other architectures too.
2291	 *
2292	 * Note that if write_access is true, we either now have
2293	 * an exclusive copy of the page, or this is a shared mapping,
2294	 * so we can make it writable and dirty to avoid having to
2295	 * handle that later.
2296	 */
2297	/* Only go through if we didn't race with anybody else... */
2298	if (likely(pte_same(*page_table, orig_pte))) {
2299		flush_icache_page(vma, page);
2300		entry = mk_pte(page, vma->vm_page_prot);
2301		if (flags & FAULT_FLAG_WRITE)
2302			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2303		set_pte_at(mm, address, page_table, entry);
2304		if (anon) {
2305                        inc_mm_counter(mm, anon_rss);
2306                        lru_cache_add_active(page);
2307                        page_add_new_anon_rmap(page, vma, address);
2308		} else {
2309			inc_mm_counter(mm, file_rss);
2310			page_add_file_rmap(page);
2311			if (flags & FAULT_FLAG_WRITE) {
2312				dirty_page = page;
2313				get_page(dirty_page);
2314			}
2315		}
2316
2317		/* no need to invalidate: a not-present page won't be cached */
2318		update_mmu_cache(vma, address, entry);
2319	} else {
2320		mem_cgroup_uncharge_page(page);
2321		if (anon)
2322			page_cache_release(page);
2323		else
2324			anon = 1; /* no anon but release faulted_page */
2325	}
2326
2327	pte_unmap_unlock(page_table, ptl);
2328
2329out:
2330	unlock_page(vmf.page);
2331out_unlocked:
2332	if (anon)
2333		page_cache_release(vmf.page);
2334	else if (dirty_page) {
2335		if (vma->vm_file)
2336			file_update_time(vma->vm_file);
2337
2338		set_page_dirty_balance(dirty_page, page_mkwrite);
2339		put_page(dirty_page);
2340	}
2341
2342	return ret;
2343}
2344
2345static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2346		unsigned long address, pte_t *page_table, pmd_t *pmd,
2347		int write_access, pte_t orig_pte)
2348{
2349	pgoff_t pgoff = (((address & PAGE_MASK)
2350			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2351	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2352
2353	pte_unmap(page_table);
2354	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2355}
2356
2357
2358/*
2359 * do_no_pfn() tries to create a new page mapping for a page without
2360 * a struct_page backing it
2361 *
2362 * As this is called only for pages that do not currently exist, we
2363 * do not need to flush old virtual caches or the TLB.
2364 *
2365 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2366 * but allow concurrent faults), and pte mapped but not yet locked.
2367 * We return with mmap_sem still held, but pte unmapped and unlocked.
2368 *
2369 * It is expected that the ->nopfn handler always returns the same pfn
2370 * for a given virtual mapping.
2371 *
2372 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2373 */
2374static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2375		     unsigned long address, pte_t *page_table, pmd_t *pmd,
2376		     int write_access)
2377{
2378	spinlock_t *ptl;
2379	pte_t entry;
2380	unsigned long pfn;
2381
2382	pte_unmap(page_table);
2383	BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2384	BUG_ON(is_cow_mapping(vma->vm_flags));
2385
2386	pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2387	if (unlikely(pfn == NOPFN_OOM))
2388		return VM_FAULT_OOM;
2389	else if (unlikely(pfn == NOPFN_SIGBUS))
2390		return VM_FAULT_SIGBUS;
2391	else if (unlikely(pfn == NOPFN_REFAULT))
2392		return 0;
2393
2394	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2395
2396	/* Only go through if we didn't race with anybody else... */
2397	if (pte_none(*page_table)) {
2398		entry = pfn_pte(pfn, vma->vm_page_prot);
2399		if (write_access)
2400			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2401		set_pte_at(mm, address, page_table, entry);
2402	}
2403	pte_unmap_unlock(page_table, ptl);
2404	return 0;
2405}
2406
2407/*
2408 * Fault of a previously existing named mapping. Repopulate the pte
2409 * from the encoded file_pte if possible. This enables swappable
2410 * nonlinear vmas.
2411 *
2412 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2413 * but allow concurrent faults), and pte mapped but not yet locked.
2414 * We return with mmap_sem still held, but pte unmapped and unlocked.
2415 */
2416static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2417		unsigned long address, pte_t *page_table, pmd_t *pmd,
2418		int write_access, pte_t orig_pte)
2419{
2420	unsigned int flags = FAULT_FLAG_NONLINEAR |
2421				(write_access ? FAULT_FLAG_WRITE : 0);
2422	pgoff_t pgoff;
2423
2424	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2425		return 0;
2426
2427	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2428			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2429		/*
2430		 * Page table corrupted: show pte and kill process.
2431		 */
2432		print_bad_pte(vma, orig_pte, address);
2433		return VM_FAULT_OOM;
2434	}
2435
2436	pgoff = pte_to_pgoff(orig_pte);
2437	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2438}
2439
2440/*
2441 * These routines also need to handle stuff like marking pages dirty
2442 * and/or accessed for architectures that don't do it in hardware (most
2443 * RISC architectures).  The early dirtying is also good on the i386.
2444 *
2445 * There is also a hook called "update_mmu_cache()" that architectures
2446 * with external mmu caches can use to update those (ie the Sparc or
2447 * PowerPC hashed page tables that act as extended TLBs).
2448 *
2449 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2450 * but allow concurrent faults), and pte mapped but not yet locked.
2451 * We return with mmap_sem still held, but pte unmapped and unlocked.
2452 */
2453static inline int handle_pte_fault(struct mm_struct *mm,
2454		struct vm_area_struct *vma, unsigned long address,
2455		pte_t *pte, pmd_t *pmd, int write_access)
2456{
2457	pte_t entry;
2458	spinlock_t *ptl;
2459
2460	entry = *pte;
2461	if (!pte_present(entry)) {
2462		if (pte_none(entry)) {
2463			if (vma->vm_ops) {
2464				if (vma->vm_ops->fault || vma->vm_ops->nopage)
2465					return do_linear_fault(mm, vma, address,
2466						pte, pmd, write_access, entry);
2467				if (unlikely(vma->vm_ops->nopfn))
2468					return do_no_pfn(mm, vma, address, pte,
2469							 pmd, write_access);
2470			}
2471			return do_anonymous_page(mm, vma, address,
2472						 pte, pmd, write_access);
2473		}
2474		if (pte_file(entry))
2475			return do_nonlinear_fault(mm, vma, address,
2476					pte, pmd, write_access, entry);
2477		return do_swap_page(mm, vma, address,
2478					pte, pmd, write_access, entry);
2479	}
2480
2481	ptl = pte_lockptr(mm, pmd);
2482	spin_lock(ptl);
2483	if (unlikely(!pte_same(*pte, entry)))
2484		goto unlock;
2485	if (write_access) {
2486		if (!pte_write(entry))
2487			return do_wp_page(mm, vma, address,
2488					pte, pmd, ptl, entry);
2489		entry = pte_mkdirty(entry);
2490	}
2491	entry = pte_mkyoung(entry);
2492	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2493		update_mmu_cache(vma, address, entry);
2494	} else {
2495		/*
2496		 * This is needed only for protection faults but the arch code
2497		 * is not yet telling us if this is a protection fault or not.
2498		 * This still avoids useless tlb flushes for .text page faults
2499		 * with threads.
2500		 */
2501		if (write_access)
2502			flush_tlb_page(vma, address);
2503	}
2504unlock:
2505	pte_unmap_unlock(pte, ptl);
2506	return 0;
2507}
2508
2509/*
2510 * By the time we get here, we already hold the mm semaphore
2511 */
2512int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2513		unsigned long address, int write_access)
2514{
2515	pgd_t *pgd;
2516	pud_t *pud;
2517	pmd_t *pmd;
2518	pte_t *pte;
2519
2520	__set_current_state(TASK_RUNNING);
2521
2522	count_vm_event(PGFAULT);
2523
2524	if (unlikely(is_vm_hugetlb_page(vma)))
2525		return hugetlb_fault(mm, vma, address, write_access);
2526
2527	pgd = pgd_offset(mm, address);
2528	pud = pud_alloc(mm, pgd, address);
2529	if (!pud)
2530		return VM_FAULT_OOM;
2531	pmd = pmd_alloc(mm, pud, address);
2532	if (!pmd)
2533		return VM_FAULT_OOM;
2534	pte = pte_alloc_map(mm, pmd, address);
2535	if (!pte)
2536		return VM_FAULT_OOM;
2537
2538	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2539}
2540
2541#ifndef __PAGETABLE_PUD_FOLDED
2542/*
2543 * Allocate page upper directory.
2544 * We've already handled the fast-path in-line.
2545 */
2546int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2547{
2548	pud_t *new = pud_alloc_one(mm, address);
2549	if (!new)
2550		return -ENOMEM;
2551
2552	spin_lock(&mm->page_table_lock);
2553	if (pgd_present(*pgd))		/* Another has populated it */
2554		pud_free(mm, new);
2555	else
2556		pgd_populate(mm, pgd, new);
2557	spin_unlock(&mm->page_table_lock);
2558	return 0;
2559}
2560#endif /* __PAGETABLE_PUD_FOLDED */
2561
2562#ifndef __PAGETABLE_PMD_FOLDED
2563/*
2564 * Allocate page middle directory.
2565 * We've already handled the fast-path in-line.
2566 */
2567int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2568{
2569	pmd_t *new = pmd_alloc_one(mm, address);
2570	if (!new)
2571		return -ENOMEM;
2572
2573	spin_lock(&mm->page_table_lock);
2574#ifndef __ARCH_HAS_4LEVEL_HACK
2575	if (pud_present(*pud))		/* Another has populated it */
2576		pmd_free(mm, new);
2577	else
2578		pud_populate(mm, pud, new);
2579#else
2580	if (pgd_present(*pud))		/* Another has populated it */
2581		pmd_free(mm, new);
2582	else
2583		pgd_populate(mm, pud, new);
2584#endif /* __ARCH_HAS_4LEVEL_HACK */
2585	spin_unlock(&mm->page_table_lock);
2586	return 0;
2587}
2588#endif /* __PAGETABLE_PMD_FOLDED */
2589
2590int make_pages_present(unsigned long addr, unsigned long end)
2591{
2592	int ret, len, write;
2593	struct vm_area_struct * vma;
2594
2595	vma = find_vma(current->mm, addr);
2596	if (!vma)
2597		return -1;
2598	write = (vma->vm_flags & VM_WRITE) != 0;
2599	BUG_ON(addr >= end);
2600	BUG_ON(end > vma->vm_end);
2601	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2602	ret = get_user_pages(current, current->mm, addr,
2603			len, write, 0, NULL, NULL);
2604	if (ret < 0)
2605		return ret;
2606	return ret == len ? 0 : -1;
2607}
2608
2609#if !defined(__HAVE_ARCH_GATE_AREA)
2610
2611#if defined(AT_SYSINFO_EHDR)
2612static struct vm_area_struct gate_vma;
2613
2614static int __init gate_vma_init(void)
2615{
2616	gate_vma.vm_mm = NULL;
2617	gate_vma.vm_start = FIXADDR_USER_START;
2618	gate_vma.vm_end = FIXADDR_USER_END;
2619	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2620	gate_vma.vm_page_prot = __P101;
2621	/*
2622	 * Make sure the vDSO gets into every core dump.
2623	 * Dumping its contents makes post-mortem fully interpretable later
2624	 * without matching up the same kernel and hardware config to see
2625	 * what PC values meant.
2626	 */
2627	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2628	return 0;
2629}
2630__initcall(gate_vma_init);
2631#endif
2632
2633struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2634{
2635#ifdef AT_SYSINFO_EHDR
2636	return &gate_vma;
2637#else
2638	return NULL;
2639#endif
2640}
2641
2642int in_gate_area_no_task(unsigned long addr)
2643{
2644#ifdef AT_SYSINFO_EHDR
2645	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2646		return 1;
2647#endif
2648	return 0;
2649}
2650
2651#endif	/* __HAVE_ARCH_GATE_AREA */
2652
2653/*
2654 * Access another process' address space.
2655 * Source/target buffer must be kernel space,
2656 * Do not walk the page table directly, use get_user_pages
2657 */
2658int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2659{
2660	struct mm_struct *mm;
2661	struct vm_area_struct *vma;
2662	struct page *page;
2663	void *old_buf = buf;
2664
2665	mm = get_task_mm(tsk);
2666	if (!mm)
2667		return 0;
2668
2669	down_read(&mm->mmap_sem);
2670	/* ignore errors, just check how much was successfully transferred */
2671	while (len) {
2672		int bytes, ret, offset;
2673		void *maddr;
2674
2675		ret = get_user_pages(tsk, mm, addr, 1,
2676				write, 1, &page, &vma);
2677		if (ret <= 0)
2678			break;
2679
2680		bytes = len;
2681		offset = addr & (PAGE_SIZE-1);
2682		if (bytes > PAGE_SIZE-offset)
2683			bytes = PAGE_SIZE-offset;
2684
2685		maddr = kmap(page);
2686		if (write) {
2687			copy_to_user_page(vma, page, addr,
2688					  maddr + offset, buf, bytes);
2689			set_page_dirty_lock(page);
2690		} else {
2691			copy_from_user_page(vma, page, addr,
2692					    buf, maddr + offset, bytes);
2693		}
2694		kunmap(page);
2695		page_cache_release(page);
2696		len -= bytes;
2697		buf += bytes;
2698		addr += bytes;
2699	}
2700	up_read(&mm->mmap_sem);
2701	mmput(mm);
2702
2703	return buf - old_buf;
2704}
2705
2706/*
2707 * Print the name of a VMA.
2708 */
2709void print_vma_addr(char *prefix, unsigned long ip)
2710{
2711	struct mm_struct *mm = current->mm;
2712	struct vm_area_struct *vma;
2713
2714	/*
2715	 * Do not print if we are in atomic
2716	 * contexts (in exception stacks, etc.):
2717	 */
2718	if (preempt_count())
2719		return;
2720
2721	down_read(&mm->mmap_sem);
2722	vma = find_vma(mm, ip);
2723	if (vma && vma->vm_file) {
2724		struct file *f = vma->vm_file;
2725		char *buf = (char *)__get_free_page(GFP_KERNEL);
2726		if (buf) {
2727			char *p, *s;
2728
2729			p = d_path(f->f_dentry, f->f_vfsmnt, buf, PAGE_SIZE);
2730			if (IS_ERR(p))
2731				p = "?";
2732			s = strrchr(p, '/');
2733			if (s)
2734				p = s+1;
2735			printk("%s%s[%lx+%lx]", prefix, p,
2736					vma->vm_start,
2737					vma->vm_end - vma->vm_start);
2738			free_page((unsigned long)buf);
2739		}
2740	}
2741	up_read(&current->mm->mmap_sem);
2742}
2743