memory.c revision ee39b37b23da0b6ec53a8ebe90ff41c016f8ae27
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
61#ifndef CONFIG_DISCONTIGMEM
62/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85/*
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none.  Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
89 */
90
91void pgd_clear_bad(pgd_t *pgd)
92{
93	pgd_ERROR(*pgd);
94	pgd_clear(pgd);
95}
96
97void pud_clear_bad(pud_t *pud)
98{
99	pud_ERROR(*pud);
100	pud_clear(pud);
101}
102
103void pmd_clear_bad(pmd_t *pmd)
104{
105	pmd_ERROR(*pmd);
106	pmd_clear(pmd);
107}
108
109/*
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
112 */
113static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114{
115	struct page *page = pmd_page(*pmd);
116	pmd_clear(pmd);
117	pte_free_tlb(tlb, page);
118	dec_page_state(nr_page_table_pages);
119	tlb->mm->nr_ptes--;
120}
121
122static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123				unsigned long addr, unsigned long end,
124				unsigned long floor, unsigned long ceiling)
125{
126	pmd_t *pmd;
127	unsigned long next;
128	unsigned long start;
129
130	start = addr;
131	pmd = pmd_offset(pud, addr);
132	do {
133		next = pmd_addr_end(addr, end);
134		if (pmd_none_or_clear_bad(pmd))
135			continue;
136		free_pte_range(tlb, pmd);
137	} while (pmd++, addr = next, addr != end);
138
139	start &= PUD_MASK;
140	if (start < floor)
141		return;
142	if (ceiling) {
143		ceiling &= PUD_MASK;
144		if (!ceiling)
145			return;
146	}
147	if (end - 1 > ceiling - 1)
148		return;
149
150	pmd = pmd_offset(pud, start);
151	pud_clear(pud);
152	pmd_free_tlb(tlb, pmd);
153}
154
155static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156				unsigned long addr, unsigned long end,
157				unsigned long floor, unsigned long ceiling)
158{
159	pud_t *pud;
160	unsigned long next;
161	unsigned long start;
162
163	start = addr;
164	pud = pud_offset(pgd, addr);
165	do {
166		next = pud_addr_end(addr, end);
167		if (pud_none_or_clear_bad(pud))
168			continue;
169		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
170	} while (pud++, addr = next, addr != end);
171
172	start &= PGDIR_MASK;
173	if (start < floor)
174		return;
175	if (ceiling) {
176		ceiling &= PGDIR_MASK;
177		if (!ceiling)
178			return;
179	}
180	if (end - 1 > ceiling - 1)
181		return;
182
183	pud = pud_offset(pgd, start);
184	pgd_clear(pgd);
185	pud_free_tlb(tlb, pud);
186}
187
188/*
189 * This function frees user-level page tables of a process.
190 *
191 * Must be called with pagetable lock held.
192 */
193static inline void free_pgd_range(struct mmu_gather *tlb,
194			unsigned long addr, unsigned long end,
195			unsigned long floor, unsigned long ceiling)
196{
197	pgd_t *pgd;
198	unsigned long next;
199	unsigned long start;
200
201	/*
202	 * The next few lines have given us lots of grief...
203	 *
204	 * Why are we testing PMD* at this top level?  Because often
205	 * there will be no work to do at all, and we'd prefer not to
206	 * go all the way down to the bottom just to discover that.
207	 *
208	 * Why all these "- 1"s?  Because 0 represents both the bottom
209	 * of the address space and the top of it (using -1 for the
210	 * top wouldn't help much: the masks would do the wrong thing).
211	 * The rule is that addr 0 and floor 0 refer to the bottom of
212	 * the address space, but end 0 and ceiling 0 refer to the top
213	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214	 * that end 0 case should be mythical).
215	 *
216	 * Wherever addr is brought up or ceiling brought down, we must
217	 * be careful to reject "the opposite 0" before it confuses the
218	 * subsequent tests.  But what about where end is brought down
219	 * by PMD_SIZE below? no, end can't go down to 0 there.
220	 *
221	 * Whereas we round start (addr) and ceiling down, by different
222	 * masks at different levels, in order to test whether a table
223	 * now has no other vmas using it, so can be freed, we don't
224	 * bother to round floor or end up - the tests don't need that.
225	 */
226
227	addr &= PMD_MASK;
228	if (addr < floor) {
229		addr += PMD_SIZE;
230		if (!addr)
231			return;
232	}
233	if (ceiling) {
234		ceiling &= PMD_MASK;
235		if (!ceiling)
236			return;
237	}
238	if (end - 1 > ceiling - 1)
239		end -= PMD_SIZE;
240	if (addr > end - 1)
241		return;
242
243	start = addr;
244	pgd = pgd_offset(tlb->mm, addr);
245	do {
246		next = pgd_addr_end(addr, end);
247		if (pgd_none_or_clear_bad(pgd))
248			continue;
249		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
250	} while (pgd++, addr = next, addr != end);
251
252	if (!tlb_is_full_mm(tlb))
253		flush_tlb_pgtables(tlb->mm, start, end);
254}
255
256void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257				unsigned long floor, unsigned long ceiling)
258{
259	while (vma) {
260		struct vm_area_struct *next = vma->vm_next;
261		unsigned long addr = vma->vm_start;
262
263		/* Optimization: gather nearby vmas into a single call down */
264		while (next && next->vm_start <= vma->vm_end + PMD_SIZE) {
265			vma = next;
266			next = vma->vm_next;
267		}
268		free_pgd_range(*tlb, addr, vma->vm_end,
269				floor, next? next->vm_start: ceiling);
270		vma = next;
271	}
272}
273
274pte_t fastcall * pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
275{
276	if (!pmd_present(*pmd)) {
277		struct page *new;
278
279		spin_unlock(&mm->page_table_lock);
280		new = pte_alloc_one(mm, address);
281		spin_lock(&mm->page_table_lock);
282		if (!new)
283			return NULL;
284		/*
285		 * Because we dropped the lock, we should re-check the
286		 * entry, as somebody else could have populated it..
287		 */
288		if (pmd_present(*pmd)) {
289			pte_free(new);
290			goto out;
291		}
292		mm->nr_ptes++;
293		inc_page_state(nr_page_table_pages);
294		pmd_populate(mm, pmd, new);
295	}
296out:
297	return pte_offset_map(pmd, address);
298}
299
300pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
301{
302	if (!pmd_present(*pmd)) {
303		pte_t *new;
304
305		spin_unlock(&mm->page_table_lock);
306		new = pte_alloc_one_kernel(mm, address);
307		spin_lock(&mm->page_table_lock);
308		if (!new)
309			return NULL;
310
311		/*
312		 * Because we dropped the lock, we should re-check the
313		 * entry, as somebody else could have populated it..
314		 */
315		if (pmd_present(*pmd)) {
316			pte_free_kernel(new);
317			goto out;
318		}
319		pmd_populate_kernel(mm, pmd, new);
320	}
321out:
322	return pte_offset_kernel(pmd, address);
323}
324
325/*
326 * copy one vm_area from one task to the other. Assumes the page tables
327 * already present in the new task to be cleared in the whole range
328 * covered by this vma.
329 *
330 * dst->page_table_lock is held on entry and exit,
331 * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
332 */
333
334static inline void
335copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
336		pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
337		unsigned long addr)
338{
339	pte_t pte = *src_pte;
340	struct page *page;
341	unsigned long pfn;
342
343	/* pte contains position in swap or file, so copy. */
344	if (unlikely(!pte_present(pte))) {
345		if (!pte_file(pte)) {
346			swap_duplicate(pte_to_swp_entry(pte));
347			/* make sure dst_mm is on swapoff's mmlist. */
348			if (unlikely(list_empty(&dst_mm->mmlist))) {
349				spin_lock(&mmlist_lock);
350				list_add(&dst_mm->mmlist, &src_mm->mmlist);
351				spin_unlock(&mmlist_lock);
352			}
353		}
354		set_pte_at(dst_mm, addr, dst_pte, pte);
355		return;
356	}
357
358	pfn = pte_pfn(pte);
359	/* the pte points outside of valid memory, the
360	 * mapping is assumed to be good, meaningful
361	 * and not mapped via rmap - duplicate the
362	 * mapping as is.
363	 */
364	page = NULL;
365	if (pfn_valid(pfn))
366		page = pfn_to_page(pfn);
367
368	if (!page || PageReserved(page)) {
369		set_pte_at(dst_mm, addr, dst_pte, pte);
370		return;
371	}
372
373	/*
374	 * If it's a COW mapping, write protect it both
375	 * in the parent and the child
376	 */
377	if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
378		ptep_set_wrprotect(src_mm, addr, src_pte);
379		pte = *src_pte;
380	}
381
382	/*
383	 * If it's a shared mapping, mark it clean in
384	 * the child
385	 */
386	if (vm_flags & VM_SHARED)
387		pte = pte_mkclean(pte);
388	pte = pte_mkold(pte);
389	get_page(page);
390	inc_mm_counter(dst_mm, rss);
391	if (PageAnon(page))
392		inc_mm_counter(dst_mm, anon_rss);
393	set_pte_at(dst_mm, addr, dst_pte, pte);
394	page_dup_rmap(page);
395}
396
397static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
398		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
399		unsigned long addr, unsigned long end)
400{
401	pte_t *src_pte, *dst_pte;
402	unsigned long vm_flags = vma->vm_flags;
403	int progress;
404
405again:
406	dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
407	if (!dst_pte)
408		return -ENOMEM;
409	src_pte = pte_offset_map_nested(src_pmd, addr);
410
411	progress = 0;
412	spin_lock(&src_mm->page_table_lock);
413	do {
414		/*
415		 * We are holding two locks at this point - either of them
416		 * could generate latencies in another task on another CPU.
417		 */
418		if (progress >= 32 && (need_resched() ||
419		    need_lockbreak(&src_mm->page_table_lock) ||
420		    need_lockbreak(&dst_mm->page_table_lock)))
421			break;
422		if (pte_none(*src_pte)) {
423			progress++;
424			continue;
425		}
426		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
427		progress += 8;
428	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
429	spin_unlock(&src_mm->page_table_lock);
430
431	pte_unmap_nested(src_pte - 1);
432	pte_unmap(dst_pte - 1);
433	cond_resched_lock(&dst_mm->page_table_lock);
434	if (addr != end)
435		goto again;
436	return 0;
437}
438
439static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
440		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
441		unsigned long addr, unsigned long end)
442{
443	pmd_t *src_pmd, *dst_pmd;
444	unsigned long next;
445
446	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
447	if (!dst_pmd)
448		return -ENOMEM;
449	src_pmd = pmd_offset(src_pud, addr);
450	do {
451		next = pmd_addr_end(addr, end);
452		if (pmd_none_or_clear_bad(src_pmd))
453			continue;
454		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
455						vma, addr, next))
456			return -ENOMEM;
457	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
458	return 0;
459}
460
461static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
462		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
463		unsigned long addr, unsigned long end)
464{
465	pud_t *src_pud, *dst_pud;
466	unsigned long next;
467
468	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
469	if (!dst_pud)
470		return -ENOMEM;
471	src_pud = pud_offset(src_pgd, addr);
472	do {
473		next = pud_addr_end(addr, end);
474		if (pud_none_or_clear_bad(src_pud))
475			continue;
476		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
477						vma, addr, next))
478			return -ENOMEM;
479	} while (dst_pud++, src_pud++, addr = next, addr != end);
480	return 0;
481}
482
483int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
484		struct vm_area_struct *vma)
485{
486	pgd_t *src_pgd, *dst_pgd;
487	unsigned long next;
488	unsigned long addr = vma->vm_start;
489	unsigned long end = vma->vm_end;
490
491	if (is_vm_hugetlb_page(vma))
492		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
493
494	dst_pgd = pgd_offset(dst_mm, addr);
495	src_pgd = pgd_offset(src_mm, addr);
496	do {
497		next = pgd_addr_end(addr, end);
498		if (pgd_none_or_clear_bad(src_pgd))
499			continue;
500		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
501						vma, addr, next))
502			return -ENOMEM;
503	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
504	return 0;
505}
506
507static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
508				unsigned long addr, unsigned long end,
509				struct zap_details *details)
510{
511	pte_t *pte;
512
513	pte = pte_offset_map(pmd, addr);
514	do {
515		pte_t ptent = *pte;
516		if (pte_none(ptent))
517			continue;
518		if (pte_present(ptent)) {
519			struct page *page = NULL;
520			unsigned long pfn = pte_pfn(ptent);
521			if (pfn_valid(pfn)) {
522				page = pfn_to_page(pfn);
523				if (PageReserved(page))
524					page = NULL;
525			}
526			if (unlikely(details) && page) {
527				/*
528				 * unmap_shared_mapping_pages() wants to
529				 * invalidate cache without truncating:
530				 * unmap shared but keep private pages.
531				 */
532				if (details->check_mapping &&
533				    details->check_mapping != page->mapping)
534					continue;
535				/*
536				 * Each page->index must be checked when
537				 * invalidating or truncating nonlinear.
538				 */
539				if (details->nonlinear_vma &&
540				    (page->index < details->first_index ||
541				     page->index > details->last_index))
542					continue;
543			}
544			ptent = ptep_get_and_clear(tlb->mm, addr, pte);
545			tlb_remove_tlb_entry(tlb, pte, addr);
546			if (unlikely(!page))
547				continue;
548			if (unlikely(details) && details->nonlinear_vma
549			    && linear_page_index(details->nonlinear_vma,
550						addr) != page->index)
551				set_pte_at(tlb->mm, addr, pte,
552					   pgoff_to_pte(page->index));
553			if (pte_dirty(ptent))
554				set_page_dirty(page);
555			if (PageAnon(page))
556				dec_mm_counter(tlb->mm, anon_rss);
557			else if (pte_young(ptent))
558				mark_page_accessed(page);
559			tlb->freed++;
560			page_remove_rmap(page);
561			tlb_remove_page(tlb, page);
562			continue;
563		}
564		/*
565		 * If details->check_mapping, we leave swap entries;
566		 * if details->nonlinear_vma, we leave file entries.
567		 */
568		if (unlikely(details))
569			continue;
570		if (!pte_file(ptent))
571			free_swap_and_cache(pte_to_swp_entry(ptent));
572		pte_clear(tlb->mm, addr, pte);
573	} while (pte++, addr += PAGE_SIZE, addr != end);
574	pte_unmap(pte - 1);
575}
576
577static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
578				unsigned long addr, unsigned long end,
579				struct zap_details *details)
580{
581	pmd_t *pmd;
582	unsigned long next;
583
584	pmd = pmd_offset(pud, addr);
585	do {
586		next = pmd_addr_end(addr, end);
587		if (pmd_none_or_clear_bad(pmd))
588			continue;
589		zap_pte_range(tlb, pmd, addr, next, details);
590	} while (pmd++, addr = next, addr != end);
591}
592
593static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
594				unsigned long addr, unsigned long end,
595				struct zap_details *details)
596{
597	pud_t *pud;
598	unsigned long next;
599
600	pud = pud_offset(pgd, addr);
601	do {
602		next = pud_addr_end(addr, end);
603		if (pud_none_or_clear_bad(pud))
604			continue;
605		zap_pmd_range(tlb, pud, addr, next, details);
606	} while (pud++, addr = next, addr != end);
607}
608
609static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
610				unsigned long addr, unsigned long end,
611				struct zap_details *details)
612{
613	pgd_t *pgd;
614	unsigned long next;
615
616	if (details && !details->check_mapping && !details->nonlinear_vma)
617		details = NULL;
618
619	BUG_ON(addr >= end);
620	tlb_start_vma(tlb, vma);
621	pgd = pgd_offset(vma->vm_mm, addr);
622	do {
623		next = pgd_addr_end(addr, end);
624		if (pgd_none_or_clear_bad(pgd))
625			continue;
626		zap_pud_range(tlb, pgd, addr, next, details);
627	} while (pgd++, addr = next, addr != end);
628	tlb_end_vma(tlb, vma);
629}
630
631#ifdef CONFIG_PREEMPT
632# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
633#else
634/* No preempt: go for improved straight-line efficiency */
635# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
636#endif
637
638/**
639 * unmap_vmas - unmap a range of memory covered by a list of vma's
640 * @tlbp: address of the caller's struct mmu_gather
641 * @mm: the controlling mm_struct
642 * @vma: the starting vma
643 * @start_addr: virtual address at which to start unmapping
644 * @end_addr: virtual address at which to end unmapping
645 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
646 * @details: details of nonlinear truncation or shared cache invalidation
647 *
648 * Returns the end address of the unmapping (restart addr if interrupted).
649 *
650 * Unmap all pages in the vma list.  Called under page_table_lock.
651 *
652 * We aim to not hold page_table_lock for too long (for scheduling latency
653 * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
654 * return the ending mmu_gather to the caller.
655 *
656 * Only addresses between `start' and `end' will be unmapped.
657 *
658 * The VMA list must be sorted in ascending virtual address order.
659 *
660 * unmap_vmas() assumes that the caller will flush the whole unmapped address
661 * range after unmap_vmas() returns.  So the only responsibility here is to
662 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
663 * drops the lock and schedules.
664 */
665unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
666		struct vm_area_struct *vma, unsigned long start_addr,
667		unsigned long end_addr, unsigned long *nr_accounted,
668		struct zap_details *details)
669{
670	unsigned long zap_bytes = ZAP_BLOCK_SIZE;
671	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
672	int tlb_start_valid = 0;
673	unsigned long start = start_addr;
674	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
675	int fullmm = tlb_is_full_mm(*tlbp);
676
677	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
678		unsigned long end;
679
680		start = max(vma->vm_start, start_addr);
681		if (start >= vma->vm_end)
682			continue;
683		end = min(vma->vm_end, end_addr);
684		if (end <= vma->vm_start)
685			continue;
686
687		if (vma->vm_flags & VM_ACCOUNT)
688			*nr_accounted += (end - start) >> PAGE_SHIFT;
689
690		while (start != end) {
691			unsigned long block;
692
693			if (!tlb_start_valid) {
694				tlb_start = start;
695				tlb_start_valid = 1;
696			}
697
698			if (is_vm_hugetlb_page(vma)) {
699				block = end - start;
700				unmap_hugepage_range(vma, start, end);
701			} else {
702				block = min(zap_bytes, end - start);
703				unmap_page_range(*tlbp, vma, start,
704						start + block, details);
705			}
706
707			start += block;
708			zap_bytes -= block;
709			if ((long)zap_bytes > 0)
710				continue;
711
712			tlb_finish_mmu(*tlbp, tlb_start, start);
713
714			if (need_resched() ||
715				need_lockbreak(&mm->page_table_lock) ||
716				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
717				if (i_mmap_lock) {
718					/* must reset count of rss freed */
719					*tlbp = tlb_gather_mmu(mm, fullmm);
720					goto out;
721				}
722				spin_unlock(&mm->page_table_lock);
723				cond_resched();
724				spin_lock(&mm->page_table_lock);
725			}
726
727			*tlbp = tlb_gather_mmu(mm, fullmm);
728			tlb_start_valid = 0;
729			zap_bytes = ZAP_BLOCK_SIZE;
730		}
731	}
732out:
733	return start;	/* which is now the end (or restart) address */
734}
735
736/**
737 * zap_page_range - remove user pages in a given range
738 * @vma: vm_area_struct holding the applicable pages
739 * @address: starting address of pages to zap
740 * @size: number of bytes to zap
741 * @details: details of nonlinear truncation or shared cache invalidation
742 */
743unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
744		unsigned long size, struct zap_details *details)
745{
746	struct mm_struct *mm = vma->vm_mm;
747	struct mmu_gather *tlb;
748	unsigned long end = address + size;
749	unsigned long nr_accounted = 0;
750
751	if (is_vm_hugetlb_page(vma)) {
752		zap_hugepage_range(vma, address, size);
753		return end;
754	}
755
756	lru_add_drain();
757	spin_lock(&mm->page_table_lock);
758	tlb = tlb_gather_mmu(mm, 0);
759	end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
760	tlb_finish_mmu(tlb, address, end);
761	spin_unlock(&mm->page_table_lock);
762	return end;
763}
764
765/*
766 * Do a quick page-table lookup for a single page.
767 * mm->page_table_lock must be held.
768 */
769static struct page *
770__follow_page(struct mm_struct *mm, unsigned long address, int read, int write)
771{
772	pgd_t *pgd;
773	pud_t *pud;
774	pmd_t *pmd;
775	pte_t *ptep, pte;
776	unsigned long pfn;
777	struct page *page;
778
779	page = follow_huge_addr(mm, address, write);
780	if (! IS_ERR(page))
781		return page;
782
783	pgd = pgd_offset(mm, address);
784	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
785		goto out;
786
787	pud = pud_offset(pgd, address);
788	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
789		goto out;
790
791	pmd = pmd_offset(pud, address);
792	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
793		goto out;
794	if (pmd_huge(*pmd))
795		return follow_huge_pmd(mm, address, pmd, write);
796
797	ptep = pte_offset_map(pmd, address);
798	if (!ptep)
799		goto out;
800
801	pte = *ptep;
802	pte_unmap(ptep);
803	if (pte_present(pte)) {
804		if (write && !pte_write(pte))
805			goto out;
806		if (read && !pte_read(pte))
807			goto out;
808		pfn = pte_pfn(pte);
809		if (pfn_valid(pfn)) {
810			page = pfn_to_page(pfn);
811			if (write && !pte_dirty(pte) && !PageDirty(page))
812				set_page_dirty(page);
813			mark_page_accessed(page);
814			return page;
815		}
816	}
817
818out:
819	return NULL;
820}
821
822struct page *
823follow_page(struct mm_struct *mm, unsigned long address, int write)
824{
825	return __follow_page(mm, address, /*read*/0, write);
826}
827
828int
829check_user_page_readable(struct mm_struct *mm, unsigned long address)
830{
831	return __follow_page(mm, address, /*read*/1, /*write*/0) != NULL;
832}
833
834EXPORT_SYMBOL(check_user_page_readable);
835
836/*
837 * Given a physical address, is there a useful struct page pointing to
838 * it?  This may become more complex in the future if we start dealing
839 * with IO-aperture pages for direct-IO.
840 */
841
842static inline struct page *get_page_map(struct page *page)
843{
844	if (!pfn_valid(page_to_pfn(page)))
845		return NULL;
846	return page;
847}
848
849
850static inline int
851untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
852			 unsigned long address)
853{
854	pgd_t *pgd;
855	pud_t *pud;
856	pmd_t *pmd;
857
858	/* Check if the vma is for an anonymous mapping. */
859	if (vma->vm_ops && vma->vm_ops->nopage)
860		return 0;
861
862	/* Check if page directory entry exists. */
863	pgd = pgd_offset(mm, address);
864	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
865		return 1;
866
867	pud = pud_offset(pgd, address);
868	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
869		return 1;
870
871	/* Check if page middle directory entry exists. */
872	pmd = pmd_offset(pud, address);
873	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
874		return 1;
875
876	/* There is a pte slot for 'address' in 'mm'. */
877	return 0;
878}
879
880
881int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
882		unsigned long start, int len, int write, int force,
883		struct page **pages, struct vm_area_struct **vmas)
884{
885	int i;
886	unsigned int flags;
887
888	/*
889	 * Require read or write permissions.
890	 * If 'force' is set, we only require the "MAY" flags.
891	 */
892	flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
893	flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
894	i = 0;
895
896	do {
897		struct vm_area_struct *	vma;
898
899		vma = find_extend_vma(mm, start);
900		if (!vma && in_gate_area(tsk, start)) {
901			unsigned long pg = start & PAGE_MASK;
902			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
903			pgd_t *pgd;
904			pud_t *pud;
905			pmd_t *pmd;
906			pte_t *pte;
907			if (write) /* user gate pages are read-only */
908				return i ? : -EFAULT;
909			if (pg > TASK_SIZE)
910				pgd = pgd_offset_k(pg);
911			else
912				pgd = pgd_offset_gate(mm, pg);
913			BUG_ON(pgd_none(*pgd));
914			pud = pud_offset(pgd, pg);
915			BUG_ON(pud_none(*pud));
916			pmd = pmd_offset(pud, pg);
917			BUG_ON(pmd_none(*pmd));
918			pte = pte_offset_map(pmd, pg);
919			BUG_ON(pte_none(*pte));
920			if (pages) {
921				pages[i] = pte_page(*pte);
922				get_page(pages[i]);
923			}
924			pte_unmap(pte);
925			if (vmas)
926				vmas[i] = gate_vma;
927			i++;
928			start += PAGE_SIZE;
929			len--;
930			continue;
931		}
932
933		if (!vma || (vma->vm_flags & VM_IO)
934				|| !(flags & vma->vm_flags))
935			return i ? : -EFAULT;
936
937		if (is_vm_hugetlb_page(vma)) {
938			i = follow_hugetlb_page(mm, vma, pages, vmas,
939						&start, &len, i);
940			continue;
941		}
942		spin_lock(&mm->page_table_lock);
943		do {
944			struct page *map;
945			int lookup_write = write;
946
947			cond_resched_lock(&mm->page_table_lock);
948			while (!(map = follow_page(mm, start, lookup_write))) {
949				/*
950				 * Shortcut for anonymous pages. We don't want
951				 * to force the creation of pages tables for
952				 * insanly big anonymously mapped areas that
953				 * nobody touched so far. This is important
954				 * for doing a core dump for these mappings.
955				 */
956				if (!lookup_write &&
957				    untouched_anonymous_page(mm,vma,start)) {
958					map = ZERO_PAGE(start);
959					break;
960				}
961				spin_unlock(&mm->page_table_lock);
962				switch (handle_mm_fault(mm,vma,start,write)) {
963				case VM_FAULT_MINOR:
964					tsk->min_flt++;
965					break;
966				case VM_FAULT_MAJOR:
967					tsk->maj_flt++;
968					break;
969				case VM_FAULT_SIGBUS:
970					return i ? i : -EFAULT;
971				case VM_FAULT_OOM:
972					return i ? i : -ENOMEM;
973				default:
974					BUG();
975				}
976				/*
977				 * Now that we have performed a write fault
978				 * and surely no longer have a shared page we
979				 * shouldn't write, we shouldn't ignore an
980				 * unwritable page in the page table if
981				 * we are forcing write access.
982				 */
983				lookup_write = write && !force;
984				spin_lock(&mm->page_table_lock);
985			}
986			if (pages) {
987				pages[i] = get_page_map(map);
988				if (!pages[i]) {
989					spin_unlock(&mm->page_table_lock);
990					while (i--)
991						page_cache_release(pages[i]);
992					i = -EFAULT;
993					goto out;
994				}
995				flush_dcache_page(pages[i]);
996				if (!PageReserved(pages[i]))
997					page_cache_get(pages[i]);
998			}
999			if (vmas)
1000				vmas[i] = vma;
1001			i++;
1002			start += PAGE_SIZE;
1003			len--;
1004		} while(len && start < vma->vm_end);
1005		spin_unlock(&mm->page_table_lock);
1006	} while(len);
1007out:
1008	return i;
1009}
1010
1011EXPORT_SYMBOL(get_user_pages);
1012
1013static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1014			unsigned long addr, unsigned long end, pgprot_t prot)
1015{
1016	pte_t *pte;
1017
1018	pte = pte_alloc_map(mm, pmd, addr);
1019	if (!pte)
1020		return -ENOMEM;
1021	do {
1022		pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
1023		BUG_ON(!pte_none(*pte));
1024		set_pte_at(mm, addr, pte, zero_pte);
1025	} while (pte++, addr += PAGE_SIZE, addr != end);
1026	pte_unmap(pte - 1);
1027	return 0;
1028}
1029
1030static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1031			unsigned long addr, unsigned long end, pgprot_t prot)
1032{
1033	pmd_t *pmd;
1034	unsigned long next;
1035
1036	pmd = pmd_alloc(mm, pud, addr);
1037	if (!pmd)
1038		return -ENOMEM;
1039	do {
1040		next = pmd_addr_end(addr, end);
1041		if (zeromap_pte_range(mm, pmd, addr, next, prot))
1042			return -ENOMEM;
1043	} while (pmd++, addr = next, addr != end);
1044	return 0;
1045}
1046
1047static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1048			unsigned long addr, unsigned long end, pgprot_t prot)
1049{
1050	pud_t *pud;
1051	unsigned long next;
1052
1053	pud = pud_alloc(mm, pgd, addr);
1054	if (!pud)
1055		return -ENOMEM;
1056	do {
1057		next = pud_addr_end(addr, end);
1058		if (zeromap_pmd_range(mm, pud, addr, next, prot))
1059			return -ENOMEM;
1060	} while (pud++, addr = next, addr != end);
1061	return 0;
1062}
1063
1064int zeromap_page_range(struct vm_area_struct *vma,
1065			unsigned long addr, unsigned long size, pgprot_t prot)
1066{
1067	pgd_t *pgd;
1068	unsigned long next;
1069	unsigned long end = addr + size;
1070	struct mm_struct *mm = vma->vm_mm;
1071	int err;
1072
1073	BUG_ON(addr >= end);
1074	pgd = pgd_offset(mm, addr);
1075	flush_cache_range(vma, addr, end);
1076	spin_lock(&mm->page_table_lock);
1077	do {
1078		next = pgd_addr_end(addr, end);
1079		err = zeromap_pud_range(mm, pgd, addr, next, prot);
1080		if (err)
1081			break;
1082	} while (pgd++, addr = next, addr != end);
1083	spin_unlock(&mm->page_table_lock);
1084	return err;
1085}
1086
1087/*
1088 * maps a range of physical memory into the requested pages. the old
1089 * mappings are removed. any references to nonexistent pages results
1090 * in null mappings (currently treated as "copy-on-access")
1091 */
1092static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1093			unsigned long addr, unsigned long end,
1094			unsigned long pfn, pgprot_t prot)
1095{
1096	pte_t *pte;
1097
1098	pte = pte_alloc_map(mm, pmd, addr);
1099	if (!pte)
1100		return -ENOMEM;
1101	do {
1102		BUG_ON(!pte_none(*pte));
1103		if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
1104			set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1105		pfn++;
1106	} while (pte++, addr += PAGE_SIZE, addr != end);
1107	pte_unmap(pte - 1);
1108	return 0;
1109}
1110
1111static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1112			unsigned long addr, unsigned long end,
1113			unsigned long pfn, pgprot_t prot)
1114{
1115	pmd_t *pmd;
1116	unsigned long next;
1117
1118	pfn -= addr >> PAGE_SHIFT;
1119	pmd = pmd_alloc(mm, pud, addr);
1120	if (!pmd)
1121		return -ENOMEM;
1122	do {
1123		next = pmd_addr_end(addr, end);
1124		if (remap_pte_range(mm, pmd, addr, next,
1125				pfn + (addr >> PAGE_SHIFT), prot))
1126			return -ENOMEM;
1127	} while (pmd++, addr = next, addr != end);
1128	return 0;
1129}
1130
1131static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1132			unsigned long addr, unsigned long end,
1133			unsigned long pfn, pgprot_t prot)
1134{
1135	pud_t *pud;
1136	unsigned long next;
1137
1138	pfn -= addr >> PAGE_SHIFT;
1139	pud = pud_alloc(mm, pgd, addr);
1140	if (!pud)
1141		return -ENOMEM;
1142	do {
1143		next = pud_addr_end(addr, end);
1144		if (remap_pmd_range(mm, pud, addr, next,
1145				pfn + (addr >> PAGE_SHIFT), prot))
1146			return -ENOMEM;
1147	} while (pud++, addr = next, addr != end);
1148	return 0;
1149}
1150
1151/*  Note: this is only safe if the mm semaphore is held when called. */
1152int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1153		    unsigned long pfn, unsigned long size, pgprot_t prot)
1154{
1155	pgd_t *pgd;
1156	unsigned long next;
1157	unsigned long end = addr + size;
1158	struct mm_struct *mm = vma->vm_mm;
1159	int err;
1160
1161	/*
1162	 * Physically remapped pages are special. Tell the
1163	 * rest of the world about it:
1164	 *   VM_IO tells people not to look at these pages
1165	 *	(accesses can have side effects).
1166	 *   VM_RESERVED tells swapout not to try to touch
1167	 *	this region.
1168	 */
1169	vma->vm_flags |= VM_IO | VM_RESERVED;
1170
1171	BUG_ON(addr >= end);
1172	pfn -= addr >> PAGE_SHIFT;
1173	pgd = pgd_offset(mm, addr);
1174	flush_cache_range(vma, addr, end);
1175	spin_lock(&mm->page_table_lock);
1176	do {
1177		next = pgd_addr_end(addr, end);
1178		err = remap_pud_range(mm, pgd, addr, next,
1179				pfn + (addr >> PAGE_SHIFT), prot);
1180		if (err)
1181			break;
1182	} while (pgd++, addr = next, addr != end);
1183	spin_unlock(&mm->page_table_lock);
1184	return err;
1185}
1186EXPORT_SYMBOL(remap_pfn_range);
1187
1188/*
1189 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1190 * servicing faults for write access.  In the normal case, do always want
1191 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1192 * that do not have writing enabled, when used by access_process_vm.
1193 */
1194static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1195{
1196	if (likely(vma->vm_flags & VM_WRITE))
1197		pte = pte_mkwrite(pte);
1198	return pte;
1199}
1200
1201/*
1202 * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
1203 */
1204static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address,
1205		pte_t *page_table)
1206{
1207	pte_t entry;
1208
1209	entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
1210			      vma);
1211	ptep_establish(vma, address, page_table, entry);
1212	update_mmu_cache(vma, address, entry);
1213	lazy_mmu_prot_update(entry);
1214}
1215
1216/*
1217 * This routine handles present pages, when users try to write
1218 * to a shared page. It is done by copying the page to a new address
1219 * and decrementing the shared-page counter for the old page.
1220 *
1221 * Goto-purists beware: the only reason for goto's here is that it results
1222 * in better assembly code.. The "default" path will see no jumps at all.
1223 *
1224 * Note that this routine assumes that the protection checks have been
1225 * done by the caller (the low-level page fault routine in most cases).
1226 * Thus we can safely just mark it writable once we've done any necessary
1227 * COW.
1228 *
1229 * We also mark the page dirty at this point even though the page will
1230 * change only once the write actually happens. This avoids a few races,
1231 * and potentially makes it more efficient.
1232 *
1233 * We hold the mm semaphore and the page_table_lock on entry and exit
1234 * with the page_table_lock released.
1235 */
1236static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
1237	unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
1238{
1239	struct page *old_page, *new_page;
1240	unsigned long pfn = pte_pfn(pte);
1241	pte_t entry;
1242
1243	if (unlikely(!pfn_valid(pfn))) {
1244		/*
1245		 * This should really halt the system so it can be debugged or
1246		 * at least the kernel stops what it's doing before it corrupts
1247		 * data, but for the moment just pretend this is OOM.
1248		 */
1249		pte_unmap(page_table);
1250		printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
1251				address);
1252		spin_unlock(&mm->page_table_lock);
1253		return VM_FAULT_OOM;
1254	}
1255	old_page = pfn_to_page(pfn);
1256
1257	if (!TestSetPageLocked(old_page)) {
1258		int reuse = can_share_swap_page(old_page);
1259		unlock_page(old_page);
1260		if (reuse) {
1261			flush_cache_page(vma, address, pfn);
1262			entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
1263					      vma);
1264			ptep_set_access_flags(vma, address, page_table, entry, 1);
1265			update_mmu_cache(vma, address, entry);
1266			lazy_mmu_prot_update(entry);
1267			pte_unmap(page_table);
1268			spin_unlock(&mm->page_table_lock);
1269			return VM_FAULT_MINOR;
1270		}
1271	}
1272	pte_unmap(page_table);
1273
1274	/*
1275	 * Ok, we need to copy. Oh, well..
1276	 */
1277	if (!PageReserved(old_page))
1278		page_cache_get(old_page);
1279	spin_unlock(&mm->page_table_lock);
1280
1281	if (unlikely(anon_vma_prepare(vma)))
1282		goto no_new_page;
1283	if (old_page == ZERO_PAGE(address)) {
1284		new_page = alloc_zeroed_user_highpage(vma, address);
1285		if (!new_page)
1286			goto no_new_page;
1287	} else {
1288		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1289		if (!new_page)
1290			goto no_new_page;
1291		copy_user_highpage(new_page, old_page, address);
1292	}
1293	/*
1294	 * Re-check the pte - we dropped the lock
1295	 */
1296	spin_lock(&mm->page_table_lock);
1297	page_table = pte_offset_map(pmd, address);
1298	if (likely(pte_same(*page_table, pte))) {
1299		if (PageAnon(old_page))
1300			dec_mm_counter(mm, anon_rss);
1301		if (PageReserved(old_page))
1302			inc_mm_counter(mm, rss);
1303		else
1304			page_remove_rmap(old_page);
1305		flush_cache_page(vma, address, pfn);
1306		break_cow(vma, new_page, address, page_table);
1307		lru_cache_add_active(new_page);
1308		page_add_anon_rmap(new_page, vma, address);
1309
1310		/* Free the old page.. */
1311		new_page = old_page;
1312	}
1313	pte_unmap(page_table);
1314	page_cache_release(new_page);
1315	page_cache_release(old_page);
1316	spin_unlock(&mm->page_table_lock);
1317	return VM_FAULT_MINOR;
1318
1319no_new_page:
1320	page_cache_release(old_page);
1321	return VM_FAULT_OOM;
1322}
1323
1324/*
1325 * Helper functions for unmap_mapping_range().
1326 *
1327 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1328 *
1329 * We have to restart searching the prio_tree whenever we drop the lock,
1330 * since the iterator is only valid while the lock is held, and anyway
1331 * a later vma might be split and reinserted earlier while lock dropped.
1332 *
1333 * The list of nonlinear vmas could be handled more efficiently, using
1334 * a placeholder, but handle it in the same way until a need is shown.
1335 * It is important to search the prio_tree before nonlinear list: a vma
1336 * may become nonlinear and be shifted from prio_tree to nonlinear list
1337 * while the lock is dropped; but never shifted from list to prio_tree.
1338 *
1339 * In order to make forward progress despite restarting the search,
1340 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1341 * quickly skip it next time around.  Since the prio_tree search only
1342 * shows us those vmas affected by unmapping the range in question, we
1343 * can't efficiently keep all vmas in step with mapping->truncate_count:
1344 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1345 * mapping->truncate_count and vma->vm_truncate_count are protected by
1346 * i_mmap_lock.
1347 *
1348 * In order to make forward progress despite repeatedly restarting some
1349 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1350 * and restart from that address when we reach that vma again.  It might
1351 * have been split or merged, shrunk or extended, but never shifted: so
1352 * restart_addr remains valid so long as it remains in the vma's range.
1353 * unmap_mapping_range forces truncate_count to leap over page-aligned
1354 * values so we can save vma's restart_addr in its truncate_count field.
1355 */
1356#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1357
1358static void reset_vma_truncate_counts(struct address_space *mapping)
1359{
1360	struct vm_area_struct *vma;
1361	struct prio_tree_iter iter;
1362
1363	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1364		vma->vm_truncate_count = 0;
1365	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1366		vma->vm_truncate_count = 0;
1367}
1368
1369static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1370		unsigned long start_addr, unsigned long end_addr,
1371		struct zap_details *details)
1372{
1373	unsigned long restart_addr;
1374	int need_break;
1375
1376again:
1377	restart_addr = vma->vm_truncate_count;
1378	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1379		start_addr = restart_addr;
1380		if (start_addr >= end_addr) {
1381			/* Top of vma has been split off since last time */
1382			vma->vm_truncate_count = details->truncate_count;
1383			return 0;
1384		}
1385	}
1386
1387	restart_addr = zap_page_range(vma, start_addr,
1388					end_addr - start_addr, details);
1389
1390	/*
1391	 * We cannot rely on the break test in unmap_vmas:
1392	 * on the one hand, we don't want to restart our loop
1393	 * just because that broke out for the page_table_lock;
1394	 * on the other hand, it does no test when vma is small.
1395	 */
1396	need_break = need_resched() ||
1397			need_lockbreak(details->i_mmap_lock);
1398
1399	if (restart_addr >= end_addr) {
1400		/* We have now completed this vma: mark it so */
1401		vma->vm_truncate_count = details->truncate_count;
1402		if (!need_break)
1403			return 0;
1404	} else {
1405		/* Note restart_addr in vma's truncate_count field */
1406		vma->vm_truncate_count = restart_addr;
1407		if (!need_break)
1408			goto again;
1409	}
1410
1411	spin_unlock(details->i_mmap_lock);
1412	cond_resched();
1413	spin_lock(details->i_mmap_lock);
1414	return -EINTR;
1415}
1416
1417static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1418					    struct zap_details *details)
1419{
1420	struct vm_area_struct *vma;
1421	struct prio_tree_iter iter;
1422	pgoff_t vba, vea, zba, zea;
1423
1424restart:
1425	vma_prio_tree_foreach(vma, &iter, root,
1426			details->first_index, details->last_index) {
1427		/* Skip quickly over those we have already dealt with */
1428		if (vma->vm_truncate_count == details->truncate_count)
1429			continue;
1430
1431		vba = vma->vm_pgoff;
1432		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1433		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1434		zba = details->first_index;
1435		if (zba < vba)
1436			zba = vba;
1437		zea = details->last_index;
1438		if (zea > vea)
1439			zea = vea;
1440
1441		if (unmap_mapping_range_vma(vma,
1442			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1443			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1444				details) < 0)
1445			goto restart;
1446	}
1447}
1448
1449static inline void unmap_mapping_range_list(struct list_head *head,
1450					    struct zap_details *details)
1451{
1452	struct vm_area_struct *vma;
1453
1454	/*
1455	 * In nonlinear VMAs there is no correspondence between virtual address
1456	 * offset and file offset.  So we must perform an exhaustive search
1457	 * across *all* the pages in each nonlinear VMA, not just the pages
1458	 * whose virtual address lies outside the file truncation point.
1459	 */
1460restart:
1461	list_for_each_entry(vma, head, shared.vm_set.list) {
1462		/* Skip quickly over those we have already dealt with */
1463		if (vma->vm_truncate_count == details->truncate_count)
1464			continue;
1465		details->nonlinear_vma = vma;
1466		if (unmap_mapping_range_vma(vma, vma->vm_start,
1467					vma->vm_end, details) < 0)
1468			goto restart;
1469	}
1470}
1471
1472/**
1473 * unmap_mapping_range - unmap the portion of all mmaps
1474 * in the specified address_space corresponding to the specified
1475 * page range in the underlying file.
1476 * @address_space: the address space containing mmaps to be unmapped.
1477 * @holebegin: byte in first page to unmap, relative to the start of
1478 * the underlying file.  This will be rounded down to a PAGE_SIZE
1479 * boundary.  Note that this is different from vmtruncate(), which
1480 * must keep the partial page.  In contrast, we must get rid of
1481 * partial pages.
1482 * @holelen: size of prospective hole in bytes.  This will be rounded
1483 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1484 * end of the file.
1485 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1486 * but 0 when invalidating pagecache, don't throw away private data.
1487 */
1488void unmap_mapping_range(struct address_space *mapping,
1489		loff_t const holebegin, loff_t const holelen, int even_cows)
1490{
1491	struct zap_details details;
1492	pgoff_t hba = holebegin >> PAGE_SHIFT;
1493	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1494
1495	/* Check for overflow. */
1496	if (sizeof(holelen) > sizeof(hlen)) {
1497		long long holeend =
1498			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1499		if (holeend & ~(long long)ULONG_MAX)
1500			hlen = ULONG_MAX - hba + 1;
1501	}
1502
1503	details.check_mapping = even_cows? NULL: mapping;
1504	details.nonlinear_vma = NULL;
1505	details.first_index = hba;
1506	details.last_index = hba + hlen - 1;
1507	if (details.last_index < details.first_index)
1508		details.last_index = ULONG_MAX;
1509	details.i_mmap_lock = &mapping->i_mmap_lock;
1510
1511	spin_lock(&mapping->i_mmap_lock);
1512
1513	/* serialize i_size write against truncate_count write */
1514	smp_wmb();
1515	/* Protect against page faults, and endless unmapping loops */
1516	mapping->truncate_count++;
1517	/*
1518	 * For archs where spin_lock has inclusive semantics like ia64
1519	 * this smp_mb() will prevent to read pagetable contents
1520	 * before the truncate_count increment is visible to
1521	 * other cpus.
1522	 */
1523	smp_mb();
1524	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1525		if (mapping->truncate_count == 0)
1526			reset_vma_truncate_counts(mapping);
1527		mapping->truncate_count++;
1528	}
1529	details.truncate_count = mapping->truncate_count;
1530
1531	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1532		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1533	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1534		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1535	spin_unlock(&mapping->i_mmap_lock);
1536}
1537EXPORT_SYMBOL(unmap_mapping_range);
1538
1539/*
1540 * Handle all mappings that got truncated by a "truncate()"
1541 * system call.
1542 *
1543 * NOTE! We have to be ready to update the memory sharing
1544 * between the file and the memory map for a potential last
1545 * incomplete page.  Ugly, but necessary.
1546 */
1547int vmtruncate(struct inode * inode, loff_t offset)
1548{
1549	struct address_space *mapping = inode->i_mapping;
1550	unsigned long limit;
1551
1552	if (inode->i_size < offset)
1553		goto do_expand;
1554	/*
1555	 * truncation of in-use swapfiles is disallowed - it would cause
1556	 * subsequent swapout to scribble on the now-freed blocks.
1557	 */
1558	if (IS_SWAPFILE(inode))
1559		goto out_busy;
1560	i_size_write(inode, offset);
1561	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1562	truncate_inode_pages(mapping, offset);
1563	goto out_truncate;
1564
1565do_expand:
1566	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1567	if (limit != RLIM_INFINITY && offset > limit)
1568		goto out_sig;
1569	if (offset > inode->i_sb->s_maxbytes)
1570		goto out_big;
1571	i_size_write(inode, offset);
1572
1573out_truncate:
1574	if (inode->i_op && inode->i_op->truncate)
1575		inode->i_op->truncate(inode);
1576	return 0;
1577out_sig:
1578	send_sig(SIGXFSZ, current, 0);
1579out_big:
1580	return -EFBIG;
1581out_busy:
1582	return -ETXTBSY;
1583}
1584
1585EXPORT_SYMBOL(vmtruncate);
1586
1587/*
1588 * Primitive swap readahead code. We simply read an aligned block of
1589 * (1 << page_cluster) entries in the swap area. This method is chosen
1590 * because it doesn't cost us any seek time.  We also make sure to queue
1591 * the 'original' request together with the readahead ones...
1592 *
1593 * This has been extended to use the NUMA policies from the mm triggering
1594 * the readahead.
1595 *
1596 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1597 */
1598void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1599{
1600#ifdef CONFIG_NUMA
1601	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1602#endif
1603	int i, num;
1604	struct page *new_page;
1605	unsigned long offset;
1606
1607	/*
1608	 * Get the number of handles we should do readahead io to.
1609	 */
1610	num = valid_swaphandles(entry, &offset);
1611	for (i = 0; i < num; offset++, i++) {
1612		/* Ok, do the async read-ahead now */
1613		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1614							   offset), vma, addr);
1615		if (!new_page)
1616			break;
1617		page_cache_release(new_page);
1618#ifdef CONFIG_NUMA
1619		/*
1620		 * Find the next applicable VMA for the NUMA policy.
1621		 */
1622		addr += PAGE_SIZE;
1623		if (addr == 0)
1624			vma = NULL;
1625		if (vma) {
1626			if (addr >= vma->vm_end) {
1627				vma = next_vma;
1628				next_vma = vma ? vma->vm_next : NULL;
1629			}
1630			if (vma && addr < vma->vm_start)
1631				vma = NULL;
1632		} else {
1633			if (next_vma && addr >= next_vma->vm_start) {
1634				vma = next_vma;
1635				next_vma = vma->vm_next;
1636			}
1637		}
1638#endif
1639	}
1640	lru_add_drain();	/* Push any new pages onto the LRU now */
1641}
1642
1643/*
1644 * We hold the mm semaphore and the page_table_lock on entry and
1645 * should release the pagetable lock on exit..
1646 */
1647static int do_swap_page(struct mm_struct * mm,
1648	struct vm_area_struct * vma, unsigned long address,
1649	pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
1650{
1651	struct page *page;
1652	swp_entry_t entry = pte_to_swp_entry(orig_pte);
1653	pte_t pte;
1654	int ret = VM_FAULT_MINOR;
1655
1656	pte_unmap(page_table);
1657	spin_unlock(&mm->page_table_lock);
1658	page = lookup_swap_cache(entry);
1659	if (!page) {
1660 		swapin_readahead(entry, address, vma);
1661 		page = read_swap_cache_async(entry, vma, address);
1662		if (!page) {
1663			/*
1664			 * Back out if somebody else faulted in this pte while
1665			 * we released the page table lock.
1666			 */
1667			spin_lock(&mm->page_table_lock);
1668			page_table = pte_offset_map(pmd, address);
1669			if (likely(pte_same(*page_table, orig_pte)))
1670				ret = VM_FAULT_OOM;
1671			else
1672				ret = VM_FAULT_MINOR;
1673			pte_unmap(page_table);
1674			spin_unlock(&mm->page_table_lock);
1675			goto out;
1676		}
1677
1678		/* Had to read the page from swap area: Major fault */
1679		ret = VM_FAULT_MAJOR;
1680		inc_page_state(pgmajfault);
1681		grab_swap_token();
1682	}
1683
1684	mark_page_accessed(page);
1685	lock_page(page);
1686
1687	/*
1688	 * Back out if somebody else faulted in this pte while we
1689	 * released the page table lock.
1690	 */
1691	spin_lock(&mm->page_table_lock);
1692	page_table = pte_offset_map(pmd, address);
1693	if (unlikely(!pte_same(*page_table, orig_pte))) {
1694		pte_unmap(page_table);
1695		spin_unlock(&mm->page_table_lock);
1696		unlock_page(page);
1697		page_cache_release(page);
1698		ret = VM_FAULT_MINOR;
1699		goto out;
1700	}
1701
1702	/* The page isn't present yet, go ahead with the fault. */
1703
1704	swap_free(entry);
1705	if (vm_swap_full())
1706		remove_exclusive_swap_page(page);
1707
1708	inc_mm_counter(mm, rss);
1709	pte = mk_pte(page, vma->vm_page_prot);
1710	if (write_access && can_share_swap_page(page)) {
1711		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1712		write_access = 0;
1713	}
1714	unlock_page(page);
1715
1716	flush_icache_page(vma, page);
1717	set_pte_at(mm, address, page_table, pte);
1718	page_add_anon_rmap(page, vma, address);
1719
1720	if (write_access) {
1721		if (do_wp_page(mm, vma, address,
1722				page_table, pmd, pte) == VM_FAULT_OOM)
1723			ret = VM_FAULT_OOM;
1724		goto out;
1725	}
1726
1727	/* No need to invalidate - it was non-present before */
1728	update_mmu_cache(vma, address, pte);
1729	lazy_mmu_prot_update(pte);
1730	pte_unmap(page_table);
1731	spin_unlock(&mm->page_table_lock);
1732out:
1733	return ret;
1734}
1735
1736/*
1737 * We are called with the MM semaphore and page_table_lock
1738 * spinlock held to protect against concurrent faults in
1739 * multithreaded programs.
1740 */
1741static int
1742do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1743		pte_t *page_table, pmd_t *pmd, int write_access,
1744		unsigned long addr)
1745{
1746	pte_t entry;
1747	struct page * page = ZERO_PAGE(addr);
1748
1749	/* Read-only mapping of ZERO_PAGE. */
1750	entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
1751
1752	/* ..except if it's a write access */
1753	if (write_access) {
1754		/* Allocate our own private page. */
1755		pte_unmap(page_table);
1756		spin_unlock(&mm->page_table_lock);
1757
1758		if (unlikely(anon_vma_prepare(vma)))
1759			goto no_mem;
1760		page = alloc_zeroed_user_highpage(vma, addr);
1761		if (!page)
1762			goto no_mem;
1763
1764		spin_lock(&mm->page_table_lock);
1765		page_table = pte_offset_map(pmd, addr);
1766
1767		if (!pte_none(*page_table)) {
1768			pte_unmap(page_table);
1769			page_cache_release(page);
1770			spin_unlock(&mm->page_table_lock);
1771			goto out;
1772		}
1773		inc_mm_counter(mm, rss);
1774		entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
1775							 vma->vm_page_prot)),
1776				      vma);
1777		lru_cache_add_active(page);
1778		SetPageReferenced(page);
1779		page_add_anon_rmap(page, vma, addr);
1780	}
1781
1782	set_pte_at(mm, addr, page_table, entry);
1783	pte_unmap(page_table);
1784
1785	/* No need to invalidate - it was non-present before */
1786	update_mmu_cache(vma, addr, entry);
1787	lazy_mmu_prot_update(entry);
1788	spin_unlock(&mm->page_table_lock);
1789out:
1790	return VM_FAULT_MINOR;
1791no_mem:
1792	return VM_FAULT_OOM;
1793}
1794
1795/*
1796 * do_no_page() tries to create a new page mapping. It aggressively
1797 * tries to share with existing pages, but makes a separate copy if
1798 * the "write_access" parameter is true in order to avoid the next
1799 * page fault.
1800 *
1801 * As this is called only for pages that do not currently exist, we
1802 * do not need to flush old virtual caches or the TLB.
1803 *
1804 * This is called with the MM semaphore held and the page table
1805 * spinlock held. Exit with the spinlock released.
1806 */
1807static int
1808do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1809	unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
1810{
1811	struct page * new_page;
1812	struct address_space *mapping = NULL;
1813	pte_t entry;
1814	unsigned int sequence = 0;
1815	int ret = VM_FAULT_MINOR;
1816	int anon = 0;
1817
1818	if (!vma->vm_ops || !vma->vm_ops->nopage)
1819		return do_anonymous_page(mm, vma, page_table,
1820					pmd, write_access, address);
1821	pte_unmap(page_table);
1822	spin_unlock(&mm->page_table_lock);
1823
1824	if (vma->vm_file) {
1825		mapping = vma->vm_file->f_mapping;
1826		sequence = mapping->truncate_count;
1827		smp_rmb(); /* serializes i_size against truncate_count */
1828	}
1829retry:
1830	cond_resched();
1831	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1832	/*
1833	 * No smp_rmb is needed here as long as there's a full
1834	 * spin_lock/unlock sequence inside the ->nopage callback
1835	 * (for the pagecache lookup) that acts as an implicit
1836	 * smp_mb() and prevents the i_size read to happen
1837	 * after the next truncate_count read.
1838	 */
1839
1840	/* no page was available -- either SIGBUS or OOM */
1841	if (new_page == NOPAGE_SIGBUS)
1842		return VM_FAULT_SIGBUS;
1843	if (new_page == NOPAGE_OOM)
1844		return VM_FAULT_OOM;
1845
1846	/*
1847	 * Should we do an early C-O-W break?
1848	 */
1849	if (write_access && !(vma->vm_flags & VM_SHARED)) {
1850		struct page *page;
1851
1852		if (unlikely(anon_vma_prepare(vma)))
1853			goto oom;
1854		page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1855		if (!page)
1856			goto oom;
1857		copy_user_highpage(page, new_page, address);
1858		page_cache_release(new_page);
1859		new_page = page;
1860		anon = 1;
1861	}
1862
1863	spin_lock(&mm->page_table_lock);
1864	/*
1865	 * For a file-backed vma, someone could have truncated or otherwise
1866	 * invalidated this page.  If unmap_mapping_range got called,
1867	 * retry getting the page.
1868	 */
1869	if (mapping && unlikely(sequence != mapping->truncate_count)) {
1870		sequence = mapping->truncate_count;
1871		spin_unlock(&mm->page_table_lock);
1872		page_cache_release(new_page);
1873		goto retry;
1874	}
1875	page_table = pte_offset_map(pmd, address);
1876
1877	/*
1878	 * This silly early PAGE_DIRTY setting removes a race
1879	 * due to the bad i386 page protection. But it's valid
1880	 * for other architectures too.
1881	 *
1882	 * Note that if write_access is true, we either now have
1883	 * an exclusive copy of the page, or this is a shared mapping,
1884	 * so we can make it writable and dirty to avoid having to
1885	 * handle that later.
1886	 */
1887	/* Only go through if we didn't race with anybody else... */
1888	if (pte_none(*page_table)) {
1889		if (!PageReserved(new_page))
1890			inc_mm_counter(mm, rss);
1891
1892		flush_icache_page(vma, new_page);
1893		entry = mk_pte(new_page, vma->vm_page_prot);
1894		if (write_access)
1895			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1896		set_pte_at(mm, address, page_table, entry);
1897		if (anon) {
1898			lru_cache_add_active(new_page);
1899			page_add_anon_rmap(new_page, vma, address);
1900		} else
1901			page_add_file_rmap(new_page);
1902		pte_unmap(page_table);
1903	} else {
1904		/* One of our sibling threads was faster, back out. */
1905		pte_unmap(page_table);
1906		page_cache_release(new_page);
1907		spin_unlock(&mm->page_table_lock);
1908		goto out;
1909	}
1910
1911	/* no need to invalidate: a not-present page shouldn't be cached */
1912	update_mmu_cache(vma, address, entry);
1913	lazy_mmu_prot_update(entry);
1914	spin_unlock(&mm->page_table_lock);
1915out:
1916	return ret;
1917oom:
1918	page_cache_release(new_page);
1919	ret = VM_FAULT_OOM;
1920	goto out;
1921}
1922
1923/*
1924 * Fault of a previously existing named mapping. Repopulate the pte
1925 * from the encoded file_pte if possible. This enables swappable
1926 * nonlinear vmas.
1927 */
1928static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
1929	unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
1930{
1931	unsigned long pgoff;
1932	int err;
1933
1934	BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
1935	/*
1936	 * Fall back to the linear mapping if the fs does not support
1937	 * ->populate:
1938	 */
1939	if (!vma->vm_ops || !vma->vm_ops->populate ||
1940			(write_access && !(vma->vm_flags & VM_SHARED))) {
1941		pte_clear(mm, address, pte);
1942		return do_no_page(mm, vma, address, write_access, pte, pmd);
1943	}
1944
1945	pgoff = pte_to_pgoff(*pte);
1946
1947	pte_unmap(pte);
1948	spin_unlock(&mm->page_table_lock);
1949
1950	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
1951	if (err == -ENOMEM)
1952		return VM_FAULT_OOM;
1953	if (err)
1954		return VM_FAULT_SIGBUS;
1955	return VM_FAULT_MAJOR;
1956}
1957
1958/*
1959 * These routines also need to handle stuff like marking pages dirty
1960 * and/or accessed for architectures that don't do it in hardware (most
1961 * RISC architectures).  The early dirtying is also good on the i386.
1962 *
1963 * There is also a hook called "update_mmu_cache()" that architectures
1964 * with external mmu caches can use to update those (ie the Sparc or
1965 * PowerPC hashed page tables that act as extended TLBs).
1966 *
1967 * Note the "page_table_lock". It is to protect against kswapd removing
1968 * pages from under us. Note that kswapd only ever _removes_ pages, never
1969 * adds them. As such, once we have noticed that the page is not present,
1970 * we can drop the lock early.
1971 *
1972 * The adding of pages is protected by the MM semaphore (which we hold),
1973 * so we don't need to worry about a page being suddenly been added into
1974 * our VM.
1975 *
1976 * We enter with the pagetable spinlock held, we are supposed to
1977 * release it when done.
1978 */
1979static inline int handle_pte_fault(struct mm_struct *mm,
1980	struct vm_area_struct * vma, unsigned long address,
1981	int write_access, pte_t *pte, pmd_t *pmd)
1982{
1983	pte_t entry;
1984
1985	entry = *pte;
1986	if (!pte_present(entry)) {
1987		/*
1988		 * If it truly wasn't present, we know that kswapd
1989		 * and the PTE updates will not touch it later. So
1990		 * drop the lock.
1991		 */
1992		if (pte_none(entry))
1993			return do_no_page(mm, vma, address, write_access, pte, pmd);
1994		if (pte_file(entry))
1995			return do_file_page(mm, vma, address, write_access, pte, pmd);
1996		return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
1997	}
1998
1999	if (write_access) {
2000		if (!pte_write(entry))
2001			return do_wp_page(mm, vma, address, pte, pmd, entry);
2002
2003		entry = pte_mkdirty(entry);
2004	}
2005	entry = pte_mkyoung(entry);
2006	ptep_set_access_flags(vma, address, pte, entry, write_access);
2007	update_mmu_cache(vma, address, entry);
2008	lazy_mmu_prot_update(entry);
2009	pte_unmap(pte);
2010	spin_unlock(&mm->page_table_lock);
2011	return VM_FAULT_MINOR;
2012}
2013
2014/*
2015 * By the time we get here, we already hold the mm semaphore
2016 */
2017int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
2018		unsigned long address, int write_access)
2019{
2020	pgd_t *pgd;
2021	pud_t *pud;
2022	pmd_t *pmd;
2023	pte_t *pte;
2024
2025	__set_current_state(TASK_RUNNING);
2026
2027	inc_page_state(pgfault);
2028
2029	if (is_vm_hugetlb_page(vma))
2030		return VM_FAULT_SIGBUS;	/* mapping truncation does this. */
2031
2032	/*
2033	 * We need the page table lock to synchronize with kswapd
2034	 * and the SMP-safe atomic PTE updates.
2035	 */
2036	pgd = pgd_offset(mm, address);
2037	spin_lock(&mm->page_table_lock);
2038
2039	pud = pud_alloc(mm, pgd, address);
2040	if (!pud)
2041		goto oom;
2042
2043	pmd = pmd_alloc(mm, pud, address);
2044	if (!pmd)
2045		goto oom;
2046
2047	pte = pte_alloc_map(mm, pmd, address);
2048	if (!pte)
2049		goto oom;
2050
2051	return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
2052
2053 oom:
2054	spin_unlock(&mm->page_table_lock);
2055	return VM_FAULT_OOM;
2056}
2057
2058#ifndef __PAGETABLE_PUD_FOLDED
2059/*
2060 * Allocate page upper directory.
2061 *
2062 * We've already handled the fast-path in-line, and we own the
2063 * page table lock.
2064 */
2065pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2066{
2067	pud_t *new;
2068
2069	spin_unlock(&mm->page_table_lock);
2070	new = pud_alloc_one(mm, address);
2071	spin_lock(&mm->page_table_lock);
2072	if (!new)
2073		return NULL;
2074
2075	/*
2076	 * Because we dropped the lock, we should re-check the
2077	 * entry, as somebody else could have populated it..
2078	 */
2079	if (pgd_present(*pgd)) {
2080		pud_free(new);
2081		goto out;
2082	}
2083	pgd_populate(mm, pgd, new);
2084 out:
2085	return pud_offset(pgd, address);
2086}
2087#endif /* __PAGETABLE_PUD_FOLDED */
2088
2089#ifndef __PAGETABLE_PMD_FOLDED
2090/*
2091 * Allocate page middle directory.
2092 *
2093 * We've already handled the fast-path in-line, and we own the
2094 * page table lock.
2095 */
2096pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2097{
2098	pmd_t *new;
2099
2100	spin_unlock(&mm->page_table_lock);
2101	new = pmd_alloc_one(mm, address);
2102	spin_lock(&mm->page_table_lock);
2103	if (!new)
2104		return NULL;
2105
2106	/*
2107	 * Because we dropped the lock, we should re-check the
2108	 * entry, as somebody else could have populated it..
2109	 */
2110#ifndef __ARCH_HAS_4LEVEL_HACK
2111	if (pud_present(*pud)) {
2112		pmd_free(new);
2113		goto out;
2114	}
2115	pud_populate(mm, pud, new);
2116#else
2117	if (pgd_present(*pud)) {
2118		pmd_free(new);
2119		goto out;
2120	}
2121	pgd_populate(mm, pud, new);
2122#endif /* __ARCH_HAS_4LEVEL_HACK */
2123
2124 out:
2125	return pmd_offset(pud, address);
2126}
2127#endif /* __PAGETABLE_PMD_FOLDED */
2128
2129int make_pages_present(unsigned long addr, unsigned long end)
2130{
2131	int ret, len, write;
2132	struct vm_area_struct * vma;
2133
2134	vma = find_vma(current->mm, addr);
2135	if (!vma)
2136		return -1;
2137	write = (vma->vm_flags & VM_WRITE) != 0;
2138	if (addr >= end)
2139		BUG();
2140	if (end > vma->vm_end)
2141		BUG();
2142	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2143	ret = get_user_pages(current, current->mm, addr,
2144			len, write, 0, NULL, NULL);
2145	if (ret < 0)
2146		return ret;
2147	return ret == len ? 0 : -1;
2148}
2149
2150/*
2151 * Map a vmalloc()-space virtual address to the physical page.
2152 */
2153struct page * vmalloc_to_page(void * vmalloc_addr)
2154{
2155	unsigned long addr = (unsigned long) vmalloc_addr;
2156	struct page *page = NULL;
2157	pgd_t *pgd = pgd_offset_k(addr);
2158	pud_t *pud;
2159	pmd_t *pmd;
2160	pte_t *ptep, pte;
2161
2162	if (!pgd_none(*pgd)) {
2163		pud = pud_offset(pgd, addr);
2164		if (!pud_none(*pud)) {
2165			pmd = pmd_offset(pud, addr);
2166			if (!pmd_none(*pmd)) {
2167				ptep = pte_offset_map(pmd, addr);
2168				pte = *ptep;
2169				if (pte_present(pte))
2170					page = pte_page(pte);
2171				pte_unmap(ptep);
2172			}
2173		}
2174	}
2175	return page;
2176}
2177
2178EXPORT_SYMBOL(vmalloc_to_page);
2179
2180/*
2181 * Map a vmalloc()-space virtual address to the physical page frame number.
2182 */
2183unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2184{
2185	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2186}
2187
2188EXPORT_SYMBOL(vmalloc_to_pfn);
2189
2190/*
2191 * update_mem_hiwater
2192 *	- update per process rss and vm high water data
2193 */
2194void update_mem_hiwater(struct task_struct *tsk)
2195{
2196	if (tsk->mm) {
2197		unsigned long rss = get_mm_counter(tsk->mm, rss);
2198
2199		if (tsk->mm->hiwater_rss < rss)
2200			tsk->mm->hiwater_rss = rss;
2201		if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2202			tsk->mm->hiwater_vm = tsk->mm->total_vm;
2203	}
2204}
2205
2206#if !defined(__HAVE_ARCH_GATE_AREA)
2207
2208#if defined(AT_SYSINFO_EHDR)
2209struct vm_area_struct gate_vma;
2210
2211static int __init gate_vma_init(void)
2212{
2213	gate_vma.vm_mm = NULL;
2214	gate_vma.vm_start = FIXADDR_USER_START;
2215	gate_vma.vm_end = FIXADDR_USER_END;
2216	gate_vma.vm_page_prot = PAGE_READONLY;
2217	gate_vma.vm_flags = 0;
2218	return 0;
2219}
2220__initcall(gate_vma_init);
2221#endif
2222
2223struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2224{
2225#ifdef AT_SYSINFO_EHDR
2226	return &gate_vma;
2227#else
2228	return NULL;
2229#endif
2230}
2231
2232int in_gate_area_no_task(unsigned long addr)
2233{
2234#ifdef AT_SYSINFO_EHDR
2235	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2236		return 1;
2237#endif
2238	return 0;
2239}
2240
2241#endif	/* __HAVE_ARCH_GATE_AREA */
2242