mempolicy.c revision 0def08e3acc2c9c934e4671487029aed52202d42
1/*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave     Allocate memory interleaved over a set of nodes,
16 *                with normal fallback if it fails.
17 *                For VMA based allocations this interleaves based on the
18 *                offset into the backing object or offset into the mapping
19 *                for anonymous memory. For process policy an process counter
20 *                is used.
21 *
22 * bind           Only allocate memory on a specific set of nodes,
23 *                no fallback.
24 *                FIXME: memory is allocated starting with the first node
25 *                to the last. It would be better if bind would truly restrict
26 *                the allocation to memory nodes instead
27 *
28 * preferred       Try a specific node first before normal fallback.
29 *                As a special case node -1 here means do the allocation
30 *                on the local CPU. This is normally identical to default,
31 *                but useful to set in a VMA when you have a non default
32 *                process policy.
33 *
34 * default        Allocate on the local node first, or when on a VMA
35 *                use the process policy. This is what Linux always did
36 *		  in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57   fix mmap readahead to honour policy and enable policy for any page cache
58   object
59   statistics for bigpages
60   global policy for page cache? currently it uses process policy. Requires
61   first item above.
62   handle mremap for shared memory (currently ignored for the policy)
63   grows down?
64   make bind policy root only? It can trigger oom much faster and the
65   kernel is not always grateful with that.
66*/
67
68#include <linux/mempolicy.h>
69#include <linux/mm.h>
70#include <linux/highmem.h>
71#include <linux/hugetlb.h>
72#include <linux/kernel.h>
73#include <linux/sched.h>
74#include <linux/nodemask.h>
75#include <linux/cpuset.h>
76#include <linux/slab.h>
77#include <linux/string.h>
78#include <linux/module.h>
79#include <linux/nsproxy.h>
80#include <linux/interrupt.h>
81#include <linux/init.h>
82#include <linux/compat.h>
83#include <linux/swap.h>
84#include <linux/seq_file.h>
85#include <linux/proc_fs.h>
86#include <linux/migrate.h>
87#include <linux/ksm.h>
88#include <linux/rmap.h>
89#include <linux/security.h>
90#include <linux/syscalls.h>
91#include <linux/ctype.h>
92#include <linux/mm_inline.h>
93
94#include <asm/tlbflush.h>
95#include <asm/uaccess.h>
96
97#include "internal.h"
98
99/* Internal flags */
100#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
101#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
102#define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2)		/* Gather statistics */
103
104static struct kmem_cache *policy_cache;
105static struct kmem_cache *sn_cache;
106
107/* Highest zone. An specific allocation for a zone below that is not
108   policied. */
109enum zone_type policy_zone = 0;
110
111/*
112 * run-time system-wide default policy => local allocation
113 */
114struct mempolicy default_policy = {
115	.refcnt = ATOMIC_INIT(1), /* never free it */
116	.mode = MPOL_PREFERRED,
117	.flags = MPOL_F_LOCAL,
118};
119
120static const struct mempolicy_operations {
121	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122	/*
123	 * If read-side task has no lock to protect task->mempolicy, write-side
124	 * task will rebind the task->mempolicy by two step. The first step is
125	 * setting all the newly nodes, and the second step is cleaning all the
126	 * disallowed nodes. In this way, we can avoid finding no node to alloc
127	 * page.
128	 * If we have a lock to protect task->mempolicy in read-side, we do
129	 * rebind directly.
130	 *
131	 * step:
132	 * 	MPOL_REBIND_ONCE - do rebind work at once
133	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
134	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
135	 */
136	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137			enum mpol_rebind_step step);
138} mpol_ops[MPOL_MAX];
139
140/* Check that the nodemask contains at least one populated zone */
141static int is_valid_nodemask(const nodemask_t *nodemask)
142{
143	int nd, k;
144
145	for_each_node_mask(nd, *nodemask) {
146		struct zone *z;
147
148		for (k = 0; k <= policy_zone; k++) {
149			z = &NODE_DATA(nd)->node_zones[k];
150			if (z->present_pages > 0)
151				return 1;
152		}
153	}
154
155	return 0;
156}
157
158static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159{
160	return pol->flags & MPOL_MODE_FLAGS;
161}
162
163static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164				   const nodemask_t *rel)
165{
166	nodemask_t tmp;
167	nodes_fold(tmp, *orig, nodes_weight(*rel));
168	nodes_onto(*ret, tmp, *rel);
169}
170
171static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172{
173	if (nodes_empty(*nodes))
174		return -EINVAL;
175	pol->v.nodes = *nodes;
176	return 0;
177}
178
179static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180{
181	if (!nodes)
182		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
183	else if (nodes_empty(*nodes))
184		return -EINVAL;			/*  no allowed nodes */
185	else
186		pol->v.preferred_node = first_node(*nodes);
187	return 0;
188}
189
190static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191{
192	if (!is_valid_nodemask(nodes))
193		return -EINVAL;
194	pol->v.nodes = *nodes;
195	return 0;
196}
197
198/*
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy.  mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags.  But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
203 *
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy.  May also be called holding the mmap_semaphore for write.
206 */
207static int mpol_set_nodemask(struct mempolicy *pol,
208		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
209{
210	int ret;
211
212	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213	if (pol == NULL)
214		return 0;
215	/* Check N_HIGH_MEMORY */
216	nodes_and(nsc->mask1,
217		  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218
219	VM_BUG_ON(!nodes);
220	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221		nodes = NULL;	/* explicit local allocation */
222	else {
223		if (pol->flags & MPOL_F_RELATIVE_NODES)
224			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225		else
226			nodes_and(nsc->mask2, *nodes, nsc->mask1);
227
228		if (mpol_store_user_nodemask(pol))
229			pol->w.user_nodemask = *nodes;
230		else
231			pol->w.cpuset_mems_allowed =
232						cpuset_current_mems_allowed;
233	}
234
235	if (nodes)
236		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237	else
238		ret = mpol_ops[pol->mode].create(pol, NULL);
239	return ret;
240}
241
242/*
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
245 */
246static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247				  nodemask_t *nodes)
248{
249	struct mempolicy *policy;
250
251	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253
254	if (mode == MPOL_DEFAULT) {
255		if (nodes && !nodes_empty(*nodes))
256			return ERR_PTR(-EINVAL);
257		return NULL;	/* simply delete any existing policy */
258	}
259	VM_BUG_ON(!nodes);
260
261	/*
262	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264	 * All other modes require a valid pointer to a non-empty nodemask.
265	 */
266	if (mode == MPOL_PREFERRED) {
267		if (nodes_empty(*nodes)) {
268			if (((flags & MPOL_F_STATIC_NODES) ||
269			     (flags & MPOL_F_RELATIVE_NODES)))
270				return ERR_PTR(-EINVAL);
271		}
272	} else if (nodes_empty(*nodes))
273		return ERR_PTR(-EINVAL);
274	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275	if (!policy)
276		return ERR_PTR(-ENOMEM);
277	atomic_set(&policy->refcnt, 1);
278	policy->mode = mode;
279	policy->flags = flags;
280
281	return policy;
282}
283
284/* Slow path of a mpol destructor. */
285void __mpol_put(struct mempolicy *p)
286{
287	if (!atomic_dec_and_test(&p->refcnt))
288		return;
289	kmem_cache_free(policy_cache, p);
290}
291
292static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293				enum mpol_rebind_step step)
294{
295}
296
297/*
298 * step:
299 * 	MPOL_REBIND_ONCE  - do rebind work at once
300 * 	MPOL_REBIND_STEP1 - set all the newly nodes
301 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
302 */
303static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304				 enum mpol_rebind_step step)
305{
306	nodemask_t tmp;
307
308	if (pol->flags & MPOL_F_STATIC_NODES)
309		nodes_and(tmp, pol->w.user_nodemask, *nodes);
310	else if (pol->flags & MPOL_F_RELATIVE_NODES)
311		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312	else {
313		/*
314		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315		 * result
316		 */
317		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318			nodes_remap(tmp, pol->v.nodes,
319					pol->w.cpuset_mems_allowed, *nodes);
320			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321		} else if (step == MPOL_REBIND_STEP2) {
322			tmp = pol->w.cpuset_mems_allowed;
323			pol->w.cpuset_mems_allowed = *nodes;
324		} else
325			BUG();
326	}
327
328	if (nodes_empty(tmp))
329		tmp = *nodes;
330
331	if (step == MPOL_REBIND_STEP1)
332		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334		pol->v.nodes = tmp;
335	else
336		BUG();
337
338	if (!node_isset(current->il_next, tmp)) {
339		current->il_next = next_node(current->il_next, tmp);
340		if (current->il_next >= MAX_NUMNODES)
341			current->il_next = first_node(tmp);
342		if (current->il_next >= MAX_NUMNODES)
343			current->il_next = numa_node_id();
344	}
345}
346
347static void mpol_rebind_preferred(struct mempolicy *pol,
348				  const nodemask_t *nodes,
349				  enum mpol_rebind_step step)
350{
351	nodemask_t tmp;
352
353	if (pol->flags & MPOL_F_STATIC_NODES) {
354		int node = first_node(pol->w.user_nodemask);
355
356		if (node_isset(node, *nodes)) {
357			pol->v.preferred_node = node;
358			pol->flags &= ~MPOL_F_LOCAL;
359		} else
360			pol->flags |= MPOL_F_LOCAL;
361	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363		pol->v.preferred_node = first_node(tmp);
364	} else if (!(pol->flags & MPOL_F_LOCAL)) {
365		pol->v.preferred_node = node_remap(pol->v.preferred_node,
366						   pol->w.cpuset_mems_allowed,
367						   *nodes);
368		pol->w.cpuset_mems_allowed = *nodes;
369	}
370}
371
372/*
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
374 *
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
379 * page.
380 * If we have a lock to protect task->mempolicy in read-side, we do
381 * rebind directly.
382 *
383 * step:
384 * 	MPOL_REBIND_ONCE  - do rebind work at once
385 * 	MPOL_REBIND_STEP1 - set all the newly nodes
386 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
387 */
388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389				enum mpol_rebind_step step)
390{
391	if (!pol)
392		return;
393	if (!mpol_store_user_nodemask(pol) && step == 0 &&
394	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395		return;
396
397	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398		return;
399
400	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401		BUG();
402
403	if (step == MPOL_REBIND_STEP1)
404		pol->flags |= MPOL_F_REBINDING;
405	else if (step == MPOL_REBIND_STEP2)
406		pol->flags &= ~MPOL_F_REBINDING;
407	else if (step >= MPOL_REBIND_NSTEP)
408		BUG();
409
410	mpol_ops[pol->mode].rebind(pol, newmask, step);
411}
412
413/*
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
416 *
417 * Called with task's alloc_lock held.
418 */
419
420void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421			enum mpol_rebind_step step)
422{
423	mpol_rebind_policy(tsk->mempolicy, new, step);
424}
425
426/*
427 * Rebind each vma in mm to new nodemask.
428 *
429 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
430 */
431
432void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433{
434	struct vm_area_struct *vma;
435
436	down_write(&mm->mmap_sem);
437	for (vma = mm->mmap; vma; vma = vma->vm_next)
438		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439	up_write(&mm->mmap_sem);
440}
441
442static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443	[MPOL_DEFAULT] = {
444		.rebind = mpol_rebind_default,
445	},
446	[MPOL_INTERLEAVE] = {
447		.create = mpol_new_interleave,
448		.rebind = mpol_rebind_nodemask,
449	},
450	[MPOL_PREFERRED] = {
451		.create = mpol_new_preferred,
452		.rebind = mpol_rebind_preferred,
453	},
454	[MPOL_BIND] = {
455		.create = mpol_new_bind,
456		.rebind = mpol_rebind_nodemask,
457	},
458};
459
460static void gather_stats(struct page *, void *, int pte_dirty);
461static void migrate_page_add(struct page *page, struct list_head *pagelist,
462				unsigned long flags);
463
464/* Scan through pages checking if pages follow certain conditions. */
465static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
466		unsigned long addr, unsigned long end,
467		const nodemask_t *nodes, unsigned long flags,
468		void *private)
469{
470	pte_t *orig_pte;
471	pte_t *pte;
472	spinlock_t *ptl;
473
474	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
475	do {
476		struct page *page;
477		int nid;
478
479		if (!pte_present(*pte))
480			continue;
481		page = vm_normal_page(vma, addr, *pte);
482		if (!page)
483			continue;
484		/*
485		 * vm_normal_page() filters out zero pages, but there might
486		 * still be PageReserved pages to skip, perhaps in a VDSO.
487		 * And we cannot move PageKsm pages sensibly or safely yet.
488		 */
489		if (PageReserved(page) || PageKsm(page))
490			continue;
491		nid = page_to_nid(page);
492		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
493			continue;
494
495		if (flags & MPOL_MF_STATS)
496			gather_stats(page, private, pte_dirty(*pte));
497		else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
498			migrate_page_add(page, private, flags);
499		else
500			break;
501	} while (pte++, addr += PAGE_SIZE, addr != end);
502	pte_unmap_unlock(orig_pte, ptl);
503	return addr != end;
504}
505
506static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
507		unsigned long addr, unsigned long end,
508		const nodemask_t *nodes, unsigned long flags,
509		void *private)
510{
511	pmd_t *pmd;
512	unsigned long next;
513
514	pmd = pmd_offset(pud, addr);
515	do {
516		next = pmd_addr_end(addr, end);
517		if (pmd_none_or_clear_bad(pmd))
518			continue;
519		if (check_pte_range(vma, pmd, addr, next, nodes,
520				    flags, private))
521			return -EIO;
522	} while (pmd++, addr = next, addr != end);
523	return 0;
524}
525
526static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
527		unsigned long addr, unsigned long end,
528		const nodemask_t *nodes, unsigned long flags,
529		void *private)
530{
531	pud_t *pud;
532	unsigned long next;
533
534	pud = pud_offset(pgd, addr);
535	do {
536		next = pud_addr_end(addr, end);
537		if (pud_none_or_clear_bad(pud))
538			continue;
539		if (check_pmd_range(vma, pud, addr, next, nodes,
540				    flags, private))
541			return -EIO;
542	} while (pud++, addr = next, addr != end);
543	return 0;
544}
545
546static inline int check_pgd_range(struct vm_area_struct *vma,
547		unsigned long addr, unsigned long end,
548		const nodemask_t *nodes, unsigned long flags,
549		void *private)
550{
551	pgd_t *pgd;
552	unsigned long next;
553
554	pgd = pgd_offset(vma->vm_mm, addr);
555	do {
556		next = pgd_addr_end(addr, end);
557		if (pgd_none_or_clear_bad(pgd))
558			continue;
559		if (check_pud_range(vma, pgd, addr, next, nodes,
560				    flags, private))
561			return -EIO;
562	} while (pgd++, addr = next, addr != end);
563	return 0;
564}
565
566/*
567 * Check if all pages in a range are on a set of nodes.
568 * If pagelist != NULL then isolate pages from the LRU and
569 * put them on the pagelist.
570 */
571static struct vm_area_struct *
572check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
573		const nodemask_t *nodes, unsigned long flags, void *private)
574{
575	int err;
576	struct vm_area_struct *first, *vma, *prev;
577
578
579	first = find_vma(mm, start);
580	if (!first)
581		return ERR_PTR(-EFAULT);
582	prev = NULL;
583	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
584		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
585			if (!vma->vm_next && vma->vm_end < end)
586				return ERR_PTR(-EFAULT);
587			if (prev && prev->vm_end < vma->vm_start)
588				return ERR_PTR(-EFAULT);
589		}
590		if (!is_vm_hugetlb_page(vma) &&
591		    ((flags & MPOL_MF_STRICT) ||
592		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
593				vma_migratable(vma)))) {
594			unsigned long endvma = vma->vm_end;
595
596			if (endvma > end)
597				endvma = end;
598			if (vma->vm_start > start)
599				start = vma->vm_start;
600			err = check_pgd_range(vma, start, endvma, nodes,
601						flags, private);
602			if (err) {
603				first = ERR_PTR(err);
604				break;
605			}
606		}
607		prev = vma;
608	}
609	return first;
610}
611
612/* Apply policy to a single VMA */
613static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
614{
615	int err = 0;
616	struct mempolicy *old = vma->vm_policy;
617
618	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
619		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
620		 vma->vm_ops, vma->vm_file,
621		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
622
623	if (vma->vm_ops && vma->vm_ops->set_policy)
624		err = vma->vm_ops->set_policy(vma, new);
625	if (!err) {
626		mpol_get(new);
627		vma->vm_policy = new;
628		mpol_put(old);
629	}
630	return err;
631}
632
633/* Step 2: apply policy to a range and do splits. */
634static int mbind_range(struct mm_struct *mm, unsigned long start,
635		       unsigned long end, struct mempolicy *new_pol)
636{
637	struct vm_area_struct *next;
638	struct vm_area_struct *prev;
639	struct vm_area_struct *vma;
640	int err = 0;
641	pgoff_t pgoff;
642	unsigned long vmstart;
643	unsigned long vmend;
644
645	vma = find_vma_prev(mm, start, &prev);
646	if (!vma || vma->vm_start > start)
647		return -EFAULT;
648
649	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
650		next = vma->vm_next;
651		vmstart = max(start, vma->vm_start);
652		vmend   = min(end, vma->vm_end);
653
654		pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
655		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
656				  vma->anon_vma, vma->vm_file, pgoff, new_pol);
657		if (prev) {
658			vma = prev;
659			next = vma->vm_next;
660			continue;
661		}
662		if (vma->vm_start != vmstart) {
663			err = split_vma(vma->vm_mm, vma, vmstart, 1);
664			if (err)
665				goto out;
666		}
667		if (vma->vm_end != vmend) {
668			err = split_vma(vma->vm_mm, vma, vmend, 0);
669			if (err)
670				goto out;
671		}
672		err = policy_vma(vma, new_pol);
673		if (err)
674			goto out;
675	}
676
677 out:
678	return err;
679}
680
681/*
682 * Update task->flags PF_MEMPOLICY bit: set iff non-default
683 * mempolicy.  Allows more rapid checking of this (combined perhaps
684 * with other PF_* flag bits) on memory allocation hot code paths.
685 *
686 * If called from outside this file, the task 'p' should -only- be
687 * a newly forked child not yet visible on the task list, because
688 * manipulating the task flags of a visible task is not safe.
689 *
690 * The above limitation is why this routine has the funny name
691 * mpol_fix_fork_child_flag().
692 *
693 * It is also safe to call this with a task pointer of current,
694 * which the static wrapper mpol_set_task_struct_flag() does,
695 * for use within this file.
696 */
697
698void mpol_fix_fork_child_flag(struct task_struct *p)
699{
700	if (p->mempolicy)
701		p->flags |= PF_MEMPOLICY;
702	else
703		p->flags &= ~PF_MEMPOLICY;
704}
705
706static void mpol_set_task_struct_flag(void)
707{
708	mpol_fix_fork_child_flag(current);
709}
710
711/* Set the process memory policy */
712static long do_set_mempolicy(unsigned short mode, unsigned short flags,
713			     nodemask_t *nodes)
714{
715	struct mempolicy *new, *old;
716	struct mm_struct *mm = current->mm;
717	NODEMASK_SCRATCH(scratch);
718	int ret;
719
720	if (!scratch)
721		return -ENOMEM;
722
723	new = mpol_new(mode, flags, nodes);
724	if (IS_ERR(new)) {
725		ret = PTR_ERR(new);
726		goto out;
727	}
728	/*
729	 * prevent changing our mempolicy while show_numa_maps()
730	 * is using it.
731	 * Note:  do_set_mempolicy() can be called at init time
732	 * with no 'mm'.
733	 */
734	if (mm)
735		down_write(&mm->mmap_sem);
736	task_lock(current);
737	ret = mpol_set_nodemask(new, nodes, scratch);
738	if (ret) {
739		task_unlock(current);
740		if (mm)
741			up_write(&mm->mmap_sem);
742		mpol_put(new);
743		goto out;
744	}
745	old = current->mempolicy;
746	current->mempolicy = new;
747	mpol_set_task_struct_flag();
748	if (new && new->mode == MPOL_INTERLEAVE &&
749	    nodes_weight(new->v.nodes))
750		current->il_next = first_node(new->v.nodes);
751	task_unlock(current);
752	if (mm)
753		up_write(&mm->mmap_sem);
754
755	mpol_put(old);
756	ret = 0;
757out:
758	NODEMASK_SCRATCH_FREE(scratch);
759	return ret;
760}
761
762/*
763 * Return nodemask for policy for get_mempolicy() query
764 *
765 * Called with task's alloc_lock held
766 */
767static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
768{
769	nodes_clear(*nodes);
770	if (p == &default_policy)
771		return;
772
773	switch (p->mode) {
774	case MPOL_BIND:
775		/* Fall through */
776	case MPOL_INTERLEAVE:
777		*nodes = p->v.nodes;
778		break;
779	case MPOL_PREFERRED:
780		if (!(p->flags & MPOL_F_LOCAL))
781			node_set(p->v.preferred_node, *nodes);
782		/* else return empty node mask for local allocation */
783		break;
784	default:
785		BUG();
786	}
787}
788
789static int lookup_node(struct mm_struct *mm, unsigned long addr)
790{
791	struct page *p;
792	int err;
793
794	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
795	if (err >= 0) {
796		err = page_to_nid(p);
797		put_page(p);
798	}
799	return err;
800}
801
802/* Retrieve NUMA policy */
803static long do_get_mempolicy(int *policy, nodemask_t *nmask,
804			     unsigned long addr, unsigned long flags)
805{
806	int err;
807	struct mm_struct *mm = current->mm;
808	struct vm_area_struct *vma = NULL;
809	struct mempolicy *pol = current->mempolicy;
810
811	if (flags &
812		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
813		return -EINVAL;
814
815	if (flags & MPOL_F_MEMS_ALLOWED) {
816		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
817			return -EINVAL;
818		*policy = 0;	/* just so it's initialized */
819		task_lock(current);
820		*nmask  = cpuset_current_mems_allowed;
821		task_unlock(current);
822		return 0;
823	}
824
825	if (flags & MPOL_F_ADDR) {
826		/*
827		 * Do NOT fall back to task policy if the
828		 * vma/shared policy at addr is NULL.  We
829		 * want to return MPOL_DEFAULT in this case.
830		 */
831		down_read(&mm->mmap_sem);
832		vma = find_vma_intersection(mm, addr, addr+1);
833		if (!vma) {
834			up_read(&mm->mmap_sem);
835			return -EFAULT;
836		}
837		if (vma->vm_ops && vma->vm_ops->get_policy)
838			pol = vma->vm_ops->get_policy(vma, addr);
839		else
840			pol = vma->vm_policy;
841	} else if (addr)
842		return -EINVAL;
843
844	if (!pol)
845		pol = &default_policy;	/* indicates default behavior */
846
847	if (flags & MPOL_F_NODE) {
848		if (flags & MPOL_F_ADDR) {
849			err = lookup_node(mm, addr);
850			if (err < 0)
851				goto out;
852			*policy = err;
853		} else if (pol == current->mempolicy &&
854				pol->mode == MPOL_INTERLEAVE) {
855			*policy = current->il_next;
856		} else {
857			err = -EINVAL;
858			goto out;
859		}
860	} else {
861		*policy = pol == &default_policy ? MPOL_DEFAULT :
862						pol->mode;
863		/*
864		 * Internal mempolicy flags must be masked off before exposing
865		 * the policy to userspace.
866		 */
867		*policy |= (pol->flags & MPOL_MODE_FLAGS);
868	}
869
870	if (vma) {
871		up_read(&current->mm->mmap_sem);
872		vma = NULL;
873	}
874
875	err = 0;
876	if (nmask) {
877		if (mpol_store_user_nodemask(pol)) {
878			*nmask = pol->w.user_nodemask;
879		} else {
880			task_lock(current);
881			get_policy_nodemask(pol, nmask);
882			task_unlock(current);
883		}
884	}
885
886 out:
887	mpol_cond_put(pol);
888	if (vma)
889		up_read(&current->mm->mmap_sem);
890	return err;
891}
892
893#ifdef CONFIG_MIGRATION
894/*
895 * page migration
896 */
897static void migrate_page_add(struct page *page, struct list_head *pagelist,
898				unsigned long flags)
899{
900	/*
901	 * Avoid migrating a page that is shared with others.
902	 */
903	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
904		if (!isolate_lru_page(page)) {
905			list_add_tail(&page->lru, pagelist);
906			inc_zone_page_state(page, NR_ISOLATED_ANON +
907					    page_is_file_cache(page));
908		}
909	}
910}
911
912static struct page *new_node_page(struct page *page, unsigned long node, int **x)
913{
914	return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
915}
916
917/*
918 * Migrate pages from one node to a target node.
919 * Returns error or the number of pages not migrated.
920 */
921static int migrate_to_node(struct mm_struct *mm, int source, int dest,
922			   int flags)
923{
924	nodemask_t nmask;
925	LIST_HEAD(pagelist);
926	int err = 0;
927	struct vm_area_struct *vma;
928
929	nodes_clear(nmask);
930	node_set(source, nmask);
931
932	vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
933			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
934	if (IS_ERR(vma))
935		return PTR_ERR(vma);
936
937	if (!list_empty(&pagelist)) {
938		err = migrate_pages(&pagelist, new_node_page, dest, 0);
939		if (err)
940			putback_lru_pages(&pagelist);
941	}
942
943	return err;
944}
945
946/*
947 * Move pages between the two nodesets so as to preserve the physical
948 * layout as much as possible.
949 *
950 * Returns the number of page that could not be moved.
951 */
952int do_migrate_pages(struct mm_struct *mm,
953	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
954{
955	int busy = 0;
956	int err;
957	nodemask_t tmp;
958
959	err = migrate_prep();
960	if (err)
961		return err;
962
963	down_read(&mm->mmap_sem);
964
965	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
966	if (err)
967		goto out;
968
969	/*
970	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
971	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
972	 * bit in 'tmp', and return that <source, dest> pair for migration.
973	 * The pair of nodemasks 'to' and 'from' define the map.
974	 *
975	 * If no pair of bits is found that way, fallback to picking some
976	 * pair of 'source' and 'dest' bits that are not the same.  If the
977	 * 'source' and 'dest' bits are the same, this represents a node
978	 * that will be migrating to itself, so no pages need move.
979	 *
980	 * If no bits are left in 'tmp', or if all remaining bits left
981	 * in 'tmp' correspond to the same bit in 'to', return false
982	 * (nothing left to migrate).
983	 *
984	 * This lets us pick a pair of nodes to migrate between, such that
985	 * if possible the dest node is not already occupied by some other
986	 * source node, minimizing the risk of overloading the memory on a
987	 * node that would happen if we migrated incoming memory to a node
988	 * before migrating outgoing memory source that same node.
989	 *
990	 * A single scan of tmp is sufficient.  As we go, we remember the
991	 * most recent <s, d> pair that moved (s != d).  If we find a pair
992	 * that not only moved, but what's better, moved to an empty slot
993	 * (d is not set in tmp), then we break out then, with that pair.
994	 * Otherwise when we finish scannng from_tmp, we at least have the
995	 * most recent <s, d> pair that moved.  If we get all the way through
996	 * the scan of tmp without finding any node that moved, much less
997	 * moved to an empty node, then there is nothing left worth migrating.
998	 */
999
1000	tmp = *from_nodes;
1001	while (!nodes_empty(tmp)) {
1002		int s,d;
1003		int source = -1;
1004		int dest = 0;
1005
1006		for_each_node_mask(s, tmp) {
1007			d = node_remap(s, *from_nodes, *to_nodes);
1008			if (s == d)
1009				continue;
1010
1011			source = s;	/* Node moved. Memorize */
1012			dest = d;
1013
1014			/* dest not in remaining from nodes? */
1015			if (!node_isset(dest, tmp))
1016				break;
1017		}
1018		if (source == -1)
1019			break;
1020
1021		node_clear(source, tmp);
1022		err = migrate_to_node(mm, source, dest, flags);
1023		if (err > 0)
1024			busy += err;
1025		if (err < 0)
1026			break;
1027	}
1028out:
1029	up_read(&mm->mmap_sem);
1030	if (err < 0)
1031		return err;
1032	return busy;
1033
1034}
1035
1036/*
1037 * Allocate a new page for page migration based on vma policy.
1038 * Start assuming that page is mapped by vma pointed to by @private.
1039 * Search forward from there, if not.  N.B., this assumes that the
1040 * list of pages handed to migrate_pages()--which is how we get here--
1041 * is in virtual address order.
1042 */
1043static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1044{
1045	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1046	unsigned long uninitialized_var(address);
1047
1048	while (vma) {
1049		address = page_address_in_vma(page, vma);
1050		if (address != -EFAULT)
1051			break;
1052		vma = vma->vm_next;
1053	}
1054
1055	/*
1056	 * if !vma, alloc_page_vma() will use task or system default policy
1057	 */
1058	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1059}
1060#else
1061
1062static void migrate_page_add(struct page *page, struct list_head *pagelist,
1063				unsigned long flags)
1064{
1065}
1066
1067int do_migrate_pages(struct mm_struct *mm,
1068	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1069{
1070	return -ENOSYS;
1071}
1072
1073static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1074{
1075	return NULL;
1076}
1077#endif
1078
1079static long do_mbind(unsigned long start, unsigned long len,
1080		     unsigned short mode, unsigned short mode_flags,
1081		     nodemask_t *nmask, unsigned long flags)
1082{
1083	struct vm_area_struct *vma;
1084	struct mm_struct *mm = current->mm;
1085	struct mempolicy *new;
1086	unsigned long end;
1087	int err;
1088	LIST_HEAD(pagelist);
1089
1090	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1091				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1092		return -EINVAL;
1093	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1094		return -EPERM;
1095
1096	if (start & ~PAGE_MASK)
1097		return -EINVAL;
1098
1099	if (mode == MPOL_DEFAULT)
1100		flags &= ~MPOL_MF_STRICT;
1101
1102	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1103	end = start + len;
1104
1105	if (end < start)
1106		return -EINVAL;
1107	if (end == start)
1108		return 0;
1109
1110	new = mpol_new(mode, mode_flags, nmask);
1111	if (IS_ERR(new))
1112		return PTR_ERR(new);
1113
1114	/*
1115	 * If we are using the default policy then operation
1116	 * on discontinuous address spaces is okay after all
1117	 */
1118	if (!new)
1119		flags |= MPOL_MF_DISCONTIG_OK;
1120
1121	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1122		 start, start + len, mode, mode_flags,
1123		 nmask ? nodes_addr(*nmask)[0] : -1);
1124
1125	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1126
1127		err = migrate_prep();
1128		if (err)
1129			goto mpol_out;
1130	}
1131	{
1132		NODEMASK_SCRATCH(scratch);
1133		if (scratch) {
1134			down_write(&mm->mmap_sem);
1135			task_lock(current);
1136			err = mpol_set_nodemask(new, nmask, scratch);
1137			task_unlock(current);
1138			if (err)
1139				up_write(&mm->mmap_sem);
1140		} else
1141			err = -ENOMEM;
1142		NODEMASK_SCRATCH_FREE(scratch);
1143	}
1144	if (err)
1145		goto mpol_out;
1146
1147	vma = check_range(mm, start, end, nmask,
1148			  flags | MPOL_MF_INVERT, &pagelist);
1149
1150	err = PTR_ERR(vma);
1151	if (!IS_ERR(vma)) {
1152		int nr_failed = 0;
1153
1154		err = mbind_range(mm, start, end, new);
1155
1156		if (!list_empty(&pagelist)) {
1157			nr_failed = migrate_pages(&pagelist, new_vma_page,
1158						(unsigned long)vma, 0);
1159			if (nr_failed)
1160				putback_lru_pages(&pagelist);
1161		}
1162
1163		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1164			err = -EIO;
1165	} else
1166		putback_lru_pages(&pagelist);
1167
1168	up_write(&mm->mmap_sem);
1169 mpol_out:
1170	mpol_put(new);
1171	return err;
1172}
1173
1174/*
1175 * User space interface with variable sized bitmaps for nodelists.
1176 */
1177
1178/* Copy a node mask from user space. */
1179static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1180		     unsigned long maxnode)
1181{
1182	unsigned long k;
1183	unsigned long nlongs;
1184	unsigned long endmask;
1185
1186	--maxnode;
1187	nodes_clear(*nodes);
1188	if (maxnode == 0 || !nmask)
1189		return 0;
1190	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1191		return -EINVAL;
1192
1193	nlongs = BITS_TO_LONGS(maxnode);
1194	if ((maxnode % BITS_PER_LONG) == 0)
1195		endmask = ~0UL;
1196	else
1197		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1198
1199	/* When the user specified more nodes than supported just check
1200	   if the non supported part is all zero. */
1201	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1202		if (nlongs > PAGE_SIZE/sizeof(long))
1203			return -EINVAL;
1204		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1205			unsigned long t;
1206			if (get_user(t, nmask + k))
1207				return -EFAULT;
1208			if (k == nlongs - 1) {
1209				if (t & endmask)
1210					return -EINVAL;
1211			} else if (t)
1212				return -EINVAL;
1213		}
1214		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1215		endmask = ~0UL;
1216	}
1217
1218	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1219		return -EFAULT;
1220	nodes_addr(*nodes)[nlongs-1] &= endmask;
1221	return 0;
1222}
1223
1224/* Copy a kernel node mask to user space */
1225static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1226			      nodemask_t *nodes)
1227{
1228	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1229	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1230
1231	if (copy > nbytes) {
1232		if (copy > PAGE_SIZE)
1233			return -EINVAL;
1234		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1235			return -EFAULT;
1236		copy = nbytes;
1237	}
1238	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1239}
1240
1241SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1242		unsigned long, mode, unsigned long __user *, nmask,
1243		unsigned long, maxnode, unsigned, flags)
1244{
1245	nodemask_t nodes;
1246	int err;
1247	unsigned short mode_flags;
1248
1249	mode_flags = mode & MPOL_MODE_FLAGS;
1250	mode &= ~MPOL_MODE_FLAGS;
1251	if (mode >= MPOL_MAX)
1252		return -EINVAL;
1253	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1254	    (mode_flags & MPOL_F_RELATIVE_NODES))
1255		return -EINVAL;
1256	err = get_nodes(&nodes, nmask, maxnode);
1257	if (err)
1258		return err;
1259	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1260}
1261
1262/* Set the process memory policy */
1263SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1264		unsigned long, maxnode)
1265{
1266	int err;
1267	nodemask_t nodes;
1268	unsigned short flags;
1269
1270	flags = mode & MPOL_MODE_FLAGS;
1271	mode &= ~MPOL_MODE_FLAGS;
1272	if ((unsigned int)mode >= MPOL_MAX)
1273		return -EINVAL;
1274	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1275		return -EINVAL;
1276	err = get_nodes(&nodes, nmask, maxnode);
1277	if (err)
1278		return err;
1279	return do_set_mempolicy(mode, flags, &nodes);
1280}
1281
1282SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1283		const unsigned long __user *, old_nodes,
1284		const unsigned long __user *, new_nodes)
1285{
1286	const struct cred *cred = current_cred(), *tcred;
1287	struct mm_struct *mm = NULL;
1288	struct task_struct *task;
1289	nodemask_t task_nodes;
1290	int err;
1291	nodemask_t *old;
1292	nodemask_t *new;
1293	NODEMASK_SCRATCH(scratch);
1294
1295	if (!scratch)
1296		return -ENOMEM;
1297
1298	old = &scratch->mask1;
1299	new = &scratch->mask2;
1300
1301	err = get_nodes(old, old_nodes, maxnode);
1302	if (err)
1303		goto out;
1304
1305	err = get_nodes(new, new_nodes, maxnode);
1306	if (err)
1307		goto out;
1308
1309	/* Find the mm_struct */
1310	read_lock(&tasklist_lock);
1311	task = pid ? find_task_by_vpid(pid) : current;
1312	if (!task) {
1313		read_unlock(&tasklist_lock);
1314		err = -ESRCH;
1315		goto out;
1316	}
1317	mm = get_task_mm(task);
1318	read_unlock(&tasklist_lock);
1319
1320	err = -EINVAL;
1321	if (!mm)
1322		goto out;
1323
1324	/*
1325	 * Check if this process has the right to modify the specified
1326	 * process. The right exists if the process has administrative
1327	 * capabilities, superuser privileges or the same
1328	 * userid as the target process.
1329	 */
1330	rcu_read_lock();
1331	tcred = __task_cred(task);
1332	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1333	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1334	    !capable(CAP_SYS_NICE)) {
1335		rcu_read_unlock();
1336		err = -EPERM;
1337		goto out;
1338	}
1339	rcu_read_unlock();
1340
1341	task_nodes = cpuset_mems_allowed(task);
1342	/* Is the user allowed to access the target nodes? */
1343	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1344		err = -EPERM;
1345		goto out;
1346	}
1347
1348	if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1349		err = -EINVAL;
1350		goto out;
1351	}
1352
1353	err = security_task_movememory(task);
1354	if (err)
1355		goto out;
1356
1357	err = do_migrate_pages(mm, old, new,
1358		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1359out:
1360	if (mm)
1361		mmput(mm);
1362	NODEMASK_SCRATCH_FREE(scratch);
1363
1364	return err;
1365}
1366
1367
1368/* Retrieve NUMA policy */
1369SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1370		unsigned long __user *, nmask, unsigned long, maxnode,
1371		unsigned long, addr, unsigned long, flags)
1372{
1373	int err;
1374	int uninitialized_var(pval);
1375	nodemask_t nodes;
1376
1377	if (nmask != NULL && maxnode < MAX_NUMNODES)
1378		return -EINVAL;
1379
1380	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1381
1382	if (err)
1383		return err;
1384
1385	if (policy && put_user(pval, policy))
1386		return -EFAULT;
1387
1388	if (nmask)
1389		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1390
1391	return err;
1392}
1393
1394#ifdef CONFIG_COMPAT
1395
1396asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1397				     compat_ulong_t __user *nmask,
1398				     compat_ulong_t maxnode,
1399				     compat_ulong_t addr, compat_ulong_t flags)
1400{
1401	long err;
1402	unsigned long __user *nm = NULL;
1403	unsigned long nr_bits, alloc_size;
1404	DECLARE_BITMAP(bm, MAX_NUMNODES);
1405
1406	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1407	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1408
1409	if (nmask)
1410		nm = compat_alloc_user_space(alloc_size);
1411
1412	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1413
1414	if (!err && nmask) {
1415		err = copy_from_user(bm, nm, alloc_size);
1416		/* ensure entire bitmap is zeroed */
1417		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1418		err |= compat_put_bitmap(nmask, bm, nr_bits);
1419	}
1420
1421	return err;
1422}
1423
1424asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1425				     compat_ulong_t maxnode)
1426{
1427	long err = 0;
1428	unsigned long __user *nm = NULL;
1429	unsigned long nr_bits, alloc_size;
1430	DECLARE_BITMAP(bm, MAX_NUMNODES);
1431
1432	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1433	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1434
1435	if (nmask) {
1436		err = compat_get_bitmap(bm, nmask, nr_bits);
1437		nm = compat_alloc_user_space(alloc_size);
1438		err |= copy_to_user(nm, bm, alloc_size);
1439	}
1440
1441	if (err)
1442		return -EFAULT;
1443
1444	return sys_set_mempolicy(mode, nm, nr_bits+1);
1445}
1446
1447asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1448			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1449			     compat_ulong_t maxnode, compat_ulong_t flags)
1450{
1451	long err = 0;
1452	unsigned long __user *nm = NULL;
1453	unsigned long nr_bits, alloc_size;
1454	nodemask_t bm;
1455
1456	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1457	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1458
1459	if (nmask) {
1460		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1461		nm = compat_alloc_user_space(alloc_size);
1462		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1463	}
1464
1465	if (err)
1466		return -EFAULT;
1467
1468	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1469}
1470
1471#endif
1472
1473/*
1474 * get_vma_policy(@task, @vma, @addr)
1475 * @task - task for fallback if vma policy == default
1476 * @vma   - virtual memory area whose policy is sought
1477 * @addr  - address in @vma for shared policy lookup
1478 *
1479 * Returns effective policy for a VMA at specified address.
1480 * Falls back to @task or system default policy, as necessary.
1481 * Current or other task's task mempolicy and non-shared vma policies
1482 * are protected by the task's mmap_sem, which must be held for read by
1483 * the caller.
1484 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1485 * count--added by the get_policy() vm_op, as appropriate--to protect against
1486 * freeing by another task.  It is the caller's responsibility to free the
1487 * extra reference for shared policies.
1488 */
1489static struct mempolicy *get_vma_policy(struct task_struct *task,
1490		struct vm_area_struct *vma, unsigned long addr)
1491{
1492	struct mempolicy *pol = task->mempolicy;
1493
1494	if (vma) {
1495		if (vma->vm_ops && vma->vm_ops->get_policy) {
1496			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1497									addr);
1498			if (vpol)
1499				pol = vpol;
1500		} else if (vma->vm_policy)
1501			pol = vma->vm_policy;
1502	}
1503	if (!pol)
1504		pol = &default_policy;
1505	return pol;
1506}
1507
1508/*
1509 * Return a nodemask representing a mempolicy for filtering nodes for
1510 * page allocation
1511 */
1512static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1513{
1514	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1515	if (unlikely(policy->mode == MPOL_BIND) &&
1516			gfp_zone(gfp) >= policy_zone &&
1517			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1518		return &policy->v.nodes;
1519
1520	return NULL;
1521}
1522
1523/* Return a zonelist indicated by gfp for node representing a mempolicy */
1524static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1525{
1526	int nd = numa_node_id();
1527
1528	switch (policy->mode) {
1529	case MPOL_PREFERRED:
1530		if (!(policy->flags & MPOL_F_LOCAL))
1531			nd = policy->v.preferred_node;
1532		break;
1533	case MPOL_BIND:
1534		/*
1535		 * Normally, MPOL_BIND allocations are node-local within the
1536		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1537		 * current node isn't part of the mask, we use the zonelist for
1538		 * the first node in the mask instead.
1539		 */
1540		if (unlikely(gfp & __GFP_THISNODE) &&
1541				unlikely(!node_isset(nd, policy->v.nodes)))
1542			nd = first_node(policy->v.nodes);
1543		break;
1544	default:
1545		BUG();
1546	}
1547	return node_zonelist(nd, gfp);
1548}
1549
1550/* Do dynamic interleaving for a process */
1551static unsigned interleave_nodes(struct mempolicy *policy)
1552{
1553	unsigned nid, next;
1554	struct task_struct *me = current;
1555
1556	nid = me->il_next;
1557	next = next_node(nid, policy->v.nodes);
1558	if (next >= MAX_NUMNODES)
1559		next = first_node(policy->v.nodes);
1560	if (next < MAX_NUMNODES)
1561		me->il_next = next;
1562	return nid;
1563}
1564
1565/*
1566 * Depending on the memory policy provide a node from which to allocate the
1567 * next slab entry.
1568 * @policy must be protected by freeing by the caller.  If @policy is
1569 * the current task's mempolicy, this protection is implicit, as only the
1570 * task can change it's policy.  The system default policy requires no
1571 * such protection.
1572 */
1573unsigned slab_node(struct mempolicy *policy)
1574{
1575	if (!policy || policy->flags & MPOL_F_LOCAL)
1576		return numa_node_id();
1577
1578	switch (policy->mode) {
1579	case MPOL_PREFERRED:
1580		/*
1581		 * handled MPOL_F_LOCAL above
1582		 */
1583		return policy->v.preferred_node;
1584
1585	case MPOL_INTERLEAVE:
1586		return interleave_nodes(policy);
1587
1588	case MPOL_BIND: {
1589		/*
1590		 * Follow bind policy behavior and start allocation at the
1591		 * first node.
1592		 */
1593		struct zonelist *zonelist;
1594		struct zone *zone;
1595		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1596		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1597		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1598							&policy->v.nodes,
1599							&zone);
1600		return zone->node;
1601	}
1602
1603	default:
1604		BUG();
1605	}
1606}
1607
1608/* Do static interleaving for a VMA with known offset. */
1609static unsigned offset_il_node(struct mempolicy *pol,
1610		struct vm_area_struct *vma, unsigned long off)
1611{
1612	unsigned nnodes = nodes_weight(pol->v.nodes);
1613	unsigned target;
1614	int c;
1615	int nid = -1;
1616
1617	if (!nnodes)
1618		return numa_node_id();
1619	target = (unsigned int)off % nnodes;
1620	c = 0;
1621	do {
1622		nid = next_node(nid, pol->v.nodes);
1623		c++;
1624	} while (c <= target);
1625	return nid;
1626}
1627
1628/* Determine a node number for interleave */
1629static inline unsigned interleave_nid(struct mempolicy *pol,
1630		 struct vm_area_struct *vma, unsigned long addr, int shift)
1631{
1632	if (vma) {
1633		unsigned long off;
1634
1635		/*
1636		 * for small pages, there is no difference between
1637		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1638		 * for huge pages, since vm_pgoff is in units of small
1639		 * pages, we need to shift off the always 0 bits to get
1640		 * a useful offset.
1641		 */
1642		BUG_ON(shift < PAGE_SHIFT);
1643		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1644		off += (addr - vma->vm_start) >> shift;
1645		return offset_il_node(pol, vma, off);
1646	} else
1647		return interleave_nodes(pol);
1648}
1649
1650#ifdef CONFIG_HUGETLBFS
1651/*
1652 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1653 * @vma = virtual memory area whose policy is sought
1654 * @addr = address in @vma for shared policy lookup and interleave policy
1655 * @gfp_flags = for requested zone
1656 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1657 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1658 *
1659 * Returns a zonelist suitable for a huge page allocation and a pointer
1660 * to the struct mempolicy for conditional unref after allocation.
1661 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1662 * @nodemask for filtering the zonelist.
1663 *
1664 * Must be protected by get_mems_allowed()
1665 */
1666struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1667				gfp_t gfp_flags, struct mempolicy **mpol,
1668				nodemask_t **nodemask)
1669{
1670	struct zonelist *zl;
1671
1672	*mpol = get_vma_policy(current, vma, addr);
1673	*nodemask = NULL;	/* assume !MPOL_BIND */
1674
1675	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1676		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1677				huge_page_shift(hstate_vma(vma))), gfp_flags);
1678	} else {
1679		zl = policy_zonelist(gfp_flags, *mpol);
1680		if ((*mpol)->mode == MPOL_BIND)
1681			*nodemask = &(*mpol)->v.nodes;
1682	}
1683	return zl;
1684}
1685
1686/*
1687 * init_nodemask_of_mempolicy
1688 *
1689 * If the current task's mempolicy is "default" [NULL], return 'false'
1690 * to indicate default policy.  Otherwise, extract the policy nodemask
1691 * for 'bind' or 'interleave' policy into the argument nodemask, or
1692 * initialize the argument nodemask to contain the single node for
1693 * 'preferred' or 'local' policy and return 'true' to indicate presence
1694 * of non-default mempolicy.
1695 *
1696 * We don't bother with reference counting the mempolicy [mpol_get/put]
1697 * because the current task is examining it's own mempolicy and a task's
1698 * mempolicy is only ever changed by the task itself.
1699 *
1700 * N.B., it is the caller's responsibility to free a returned nodemask.
1701 */
1702bool init_nodemask_of_mempolicy(nodemask_t *mask)
1703{
1704	struct mempolicy *mempolicy;
1705	int nid;
1706
1707	if (!(mask && current->mempolicy))
1708		return false;
1709
1710	task_lock(current);
1711	mempolicy = current->mempolicy;
1712	switch (mempolicy->mode) {
1713	case MPOL_PREFERRED:
1714		if (mempolicy->flags & MPOL_F_LOCAL)
1715			nid = numa_node_id();
1716		else
1717			nid = mempolicy->v.preferred_node;
1718		init_nodemask_of_node(mask, nid);
1719		break;
1720
1721	case MPOL_BIND:
1722		/* Fall through */
1723	case MPOL_INTERLEAVE:
1724		*mask =  mempolicy->v.nodes;
1725		break;
1726
1727	default:
1728		BUG();
1729	}
1730	task_unlock(current);
1731
1732	return true;
1733}
1734#endif
1735
1736/*
1737 * mempolicy_nodemask_intersects
1738 *
1739 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1740 * policy.  Otherwise, check for intersection between mask and the policy
1741 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1742 * policy, always return true since it may allocate elsewhere on fallback.
1743 *
1744 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1745 */
1746bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1747					const nodemask_t *mask)
1748{
1749	struct mempolicy *mempolicy;
1750	bool ret = true;
1751
1752	if (!mask)
1753		return ret;
1754	task_lock(tsk);
1755	mempolicy = tsk->mempolicy;
1756	if (!mempolicy)
1757		goto out;
1758
1759	switch (mempolicy->mode) {
1760	case MPOL_PREFERRED:
1761		/*
1762		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1763		 * allocate from, they may fallback to other nodes when oom.
1764		 * Thus, it's possible for tsk to have allocated memory from
1765		 * nodes in mask.
1766		 */
1767		break;
1768	case MPOL_BIND:
1769	case MPOL_INTERLEAVE:
1770		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1771		break;
1772	default:
1773		BUG();
1774	}
1775out:
1776	task_unlock(tsk);
1777	return ret;
1778}
1779
1780/* Allocate a page in interleaved policy.
1781   Own path because it needs to do special accounting. */
1782static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1783					unsigned nid)
1784{
1785	struct zonelist *zl;
1786	struct page *page;
1787
1788	zl = node_zonelist(nid, gfp);
1789	page = __alloc_pages(gfp, order, zl);
1790	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1791		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1792	return page;
1793}
1794
1795/**
1796 * 	alloc_page_vma	- Allocate a page for a VMA.
1797 *
1798 * 	@gfp:
1799 *      %GFP_USER    user allocation.
1800 *      %GFP_KERNEL  kernel allocations,
1801 *      %GFP_HIGHMEM highmem/user allocations,
1802 *      %GFP_FS      allocation should not call back into a file system.
1803 *      %GFP_ATOMIC  don't sleep.
1804 *
1805 * 	@vma:  Pointer to VMA or NULL if not available.
1806 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1807 *
1808 * 	This function allocates a page from the kernel page pool and applies
1809 *	a NUMA policy associated with the VMA or the current process.
1810 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1811 *	mm_struct of the VMA to prevent it from going away. Should be used for
1812 *	all allocations for pages that will be mapped into
1813 * 	user space. Returns NULL when no page can be allocated.
1814 *
1815 *	Should be called with the mm_sem of the vma hold.
1816 */
1817struct page *
1818alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1819{
1820	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1821	struct zonelist *zl;
1822	struct page *page;
1823
1824	get_mems_allowed();
1825	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1826		unsigned nid;
1827
1828		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1829		mpol_cond_put(pol);
1830		page = alloc_page_interleave(gfp, 0, nid);
1831		put_mems_allowed();
1832		return page;
1833	}
1834	zl = policy_zonelist(gfp, pol);
1835	if (unlikely(mpol_needs_cond_ref(pol))) {
1836		/*
1837		 * slow path: ref counted shared policy
1838		 */
1839		struct page *page =  __alloc_pages_nodemask(gfp, 0,
1840						zl, policy_nodemask(gfp, pol));
1841		__mpol_put(pol);
1842		put_mems_allowed();
1843		return page;
1844	}
1845	/*
1846	 * fast path:  default or task policy
1847	 */
1848	page = __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1849	put_mems_allowed();
1850	return page;
1851}
1852
1853/**
1854 * 	alloc_pages_current - Allocate pages.
1855 *
1856 *	@gfp:
1857 *		%GFP_USER   user allocation,
1858 *      	%GFP_KERNEL kernel allocation,
1859 *      	%GFP_HIGHMEM highmem allocation,
1860 *      	%GFP_FS     don't call back into a file system.
1861 *      	%GFP_ATOMIC don't sleep.
1862 *	@order: Power of two of allocation size in pages. 0 is a single page.
1863 *
1864 *	Allocate a page from the kernel page pool.  When not in
1865 *	interrupt context and apply the current process NUMA policy.
1866 *	Returns NULL when no page can be allocated.
1867 *
1868 *	Don't call cpuset_update_task_memory_state() unless
1869 *	1) it's ok to take cpuset_sem (can WAIT), and
1870 *	2) allocating for current task (not interrupt).
1871 */
1872struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1873{
1874	struct mempolicy *pol = current->mempolicy;
1875	struct page *page;
1876
1877	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1878		pol = &default_policy;
1879
1880	get_mems_allowed();
1881	/*
1882	 * No reference counting needed for current->mempolicy
1883	 * nor system default_policy
1884	 */
1885	if (pol->mode == MPOL_INTERLEAVE)
1886		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1887	else
1888		page = __alloc_pages_nodemask(gfp, order,
1889			policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1890	put_mems_allowed();
1891	return page;
1892}
1893EXPORT_SYMBOL(alloc_pages_current);
1894
1895/*
1896 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1897 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1898 * with the mems_allowed returned by cpuset_mems_allowed().  This
1899 * keeps mempolicies cpuset relative after its cpuset moves.  See
1900 * further kernel/cpuset.c update_nodemask().
1901 *
1902 * current's mempolicy may be rebinded by the other task(the task that changes
1903 * cpuset's mems), so we needn't do rebind work for current task.
1904 */
1905
1906/* Slow path of a mempolicy duplicate */
1907struct mempolicy *__mpol_dup(struct mempolicy *old)
1908{
1909	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1910
1911	if (!new)
1912		return ERR_PTR(-ENOMEM);
1913
1914	/* task's mempolicy is protected by alloc_lock */
1915	if (old == current->mempolicy) {
1916		task_lock(current);
1917		*new = *old;
1918		task_unlock(current);
1919	} else
1920		*new = *old;
1921
1922	rcu_read_lock();
1923	if (current_cpuset_is_being_rebound()) {
1924		nodemask_t mems = cpuset_mems_allowed(current);
1925		if (new->flags & MPOL_F_REBINDING)
1926			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1927		else
1928			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1929	}
1930	rcu_read_unlock();
1931	atomic_set(&new->refcnt, 1);
1932	return new;
1933}
1934
1935/*
1936 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1937 * eliminate the * MPOL_F_* flags that require conditional ref and
1938 * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
1939 * after return.  Use the returned value.
1940 *
1941 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1942 * policy lookup, even if the policy needs/has extra ref on lookup.
1943 * shmem_readahead needs this.
1944 */
1945struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1946						struct mempolicy *frompol)
1947{
1948	if (!mpol_needs_cond_ref(frompol))
1949		return frompol;
1950
1951	*tompol = *frompol;
1952	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
1953	__mpol_put(frompol);
1954	return tompol;
1955}
1956
1957/* Slow path of a mempolicy comparison */
1958int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1959{
1960	if (!a || !b)
1961		return 0;
1962	if (a->mode != b->mode)
1963		return 0;
1964	if (a->flags != b->flags)
1965		return 0;
1966	if (mpol_store_user_nodemask(a))
1967		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1968			return 0;
1969
1970	switch (a->mode) {
1971	case MPOL_BIND:
1972		/* Fall through */
1973	case MPOL_INTERLEAVE:
1974		return nodes_equal(a->v.nodes, b->v.nodes);
1975	case MPOL_PREFERRED:
1976		return a->v.preferred_node == b->v.preferred_node &&
1977			a->flags == b->flags;
1978	default:
1979		BUG();
1980		return 0;
1981	}
1982}
1983
1984/*
1985 * Shared memory backing store policy support.
1986 *
1987 * Remember policies even when nobody has shared memory mapped.
1988 * The policies are kept in Red-Black tree linked from the inode.
1989 * They are protected by the sp->lock spinlock, which should be held
1990 * for any accesses to the tree.
1991 */
1992
1993/* lookup first element intersecting start-end */
1994/* Caller holds sp->lock */
1995static struct sp_node *
1996sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1997{
1998	struct rb_node *n = sp->root.rb_node;
1999
2000	while (n) {
2001		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2002
2003		if (start >= p->end)
2004			n = n->rb_right;
2005		else if (end <= p->start)
2006			n = n->rb_left;
2007		else
2008			break;
2009	}
2010	if (!n)
2011		return NULL;
2012	for (;;) {
2013		struct sp_node *w = NULL;
2014		struct rb_node *prev = rb_prev(n);
2015		if (!prev)
2016			break;
2017		w = rb_entry(prev, struct sp_node, nd);
2018		if (w->end <= start)
2019			break;
2020		n = prev;
2021	}
2022	return rb_entry(n, struct sp_node, nd);
2023}
2024
2025/* Insert a new shared policy into the list. */
2026/* Caller holds sp->lock */
2027static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2028{
2029	struct rb_node **p = &sp->root.rb_node;
2030	struct rb_node *parent = NULL;
2031	struct sp_node *nd;
2032
2033	while (*p) {
2034		parent = *p;
2035		nd = rb_entry(parent, struct sp_node, nd);
2036		if (new->start < nd->start)
2037			p = &(*p)->rb_left;
2038		else if (new->end > nd->end)
2039			p = &(*p)->rb_right;
2040		else
2041			BUG();
2042	}
2043	rb_link_node(&new->nd, parent, p);
2044	rb_insert_color(&new->nd, &sp->root);
2045	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2046		 new->policy ? new->policy->mode : 0);
2047}
2048
2049/* Find shared policy intersecting idx */
2050struct mempolicy *
2051mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2052{
2053	struct mempolicy *pol = NULL;
2054	struct sp_node *sn;
2055
2056	if (!sp->root.rb_node)
2057		return NULL;
2058	spin_lock(&sp->lock);
2059	sn = sp_lookup(sp, idx, idx+1);
2060	if (sn) {
2061		mpol_get(sn->policy);
2062		pol = sn->policy;
2063	}
2064	spin_unlock(&sp->lock);
2065	return pol;
2066}
2067
2068static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2069{
2070	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2071	rb_erase(&n->nd, &sp->root);
2072	mpol_put(n->policy);
2073	kmem_cache_free(sn_cache, n);
2074}
2075
2076static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2077				struct mempolicy *pol)
2078{
2079	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2080
2081	if (!n)
2082		return NULL;
2083	n->start = start;
2084	n->end = end;
2085	mpol_get(pol);
2086	pol->flags |= MPOL_F_SHARED;	/* for unref */
2087	n->policy = pol;
2088	return n;
2089}
2090
2091/* Replace a policy range. */
2092static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2093				 unsigned long end, struct sp_node *new)
2094{
2095	struct sp_node *n, *new2 = NULL;
2096
2097restart:
2098	spin_lock(&sp->lock);
2099	n = sp_lookup(sp, start, end);
2100	/* Take care of old policies in the same range. */
2101	while (n && n->start < end) {
2102		struct rb_node *next = rb_next(&n->nd);
2103		if (n->start >= start) {
2104			if (n->end <= end)
2105				sp_delete(sp, n);
2106			else
2107				n->start = end;
2108		} else {
2109			/* Old policy spanning whole new range. */
2110			if (n->end > end) {
2111				if (!new2) {
2112					spin_unlock(&sp->lock);
2113					new2 = sp_alloc(end, n->end, n->policy);
2114					if (!new2)
2115						return -ENOMEM;
2116					goto restart;
2117				}
2118				n->end = start;
2119				sp_insert(sp, new2);
2120				new2 = NULL;
2121				break;
2122			} else
2123				n->end = start;
2124		}
2125		if (!next)
2126			break;
2127		n = rb_entry(next, struct sp_node, nd);
2128	}
2129	if (new)
2130		sp_insert(sp, new);
2131	spin_unlock(&sp->lock);
2132	if (new2) {
2133		mpol_put(new2->policy);
2134		kmem_cache_free(sn_cache, new2);
2135	}
2136	return 0;
2137}
2138
2139/**
2140 * mpol_shared_policy_init - initialize shared policy for inode
2141 * @sp: pointer to inode shared policy
2142 * @mpol:  struct mempolicy to install
2143 *
2144 * Install non-NULL @mpol in inode's shared policy rb-tree.
2145 * On entry, the current task has a reference on a non-NULL @mpol.
2146 * This must be released on exit.
2147 * This is called at get_inode() calls and we can use GFP_KERNEL.
2148 */
2149void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2150{
2151	int ret;
2152
2153	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2154	spin_lock_init(&sp->lock);
2155
2156	if (mpol) {
2157		struct vm_area_struct pvma;
2158		struct mempolicy *new;
2159		NODEMASK_SCRATCH(scratch);
2160
2161		if (!scratch)
2162			goto put_mpol;
2163		/* contextualize the tmpfs mount point mempolicy */
2164		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2165		if (IS_ERR(new))
2166			goto free_scratch; /* no valid nodemask intersection */
2167
2168		task_lock(current);
2169		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2170		task_unlock(current);
2171		if (ret)
2172			goto put_new;
2173
2174		/* Create pseudo-vma that contains just the policy */
2175		memset(&pvma, 0, sizeof(struct vm_area_struct));
2176		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2177		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2178
2179put_new:
2180		mpol_put(new);			/* drop initial ref */
2181free_scratch:
2182		NODEMASK_SCRATCH_FREE(scratch);
2183put_mpol:
2184		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2185	}
2186}
2187
2188int mpol_set_shared_policy(struct shared_policy *info,
2189			struct vm_area_struct *vma, struct mempolicy *npol)
2190{
2191	int err;
2192	struct sp_node *new = NULL;
2193	unsigned long sz = vma_pages(vma);
2194
2195	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2196		 vma->vm_pgoff,
2197		 sz, npol ? npol->mode : -1,
2198		 npol ? npol->flags : -1,
2199		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2200
2201	if (npol) {
2202		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2203		if (!new)
2204			return -ENOMEM;
2205	}
2206	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2207	if (err && new)
2208		kmem_cache_free(sn_cache, new);
2209	return err;
2210}
2211
2212/* Free a backing policy store on inode delete. */
2213void mpol_free_shared_policy(struct shared_policy *p)
2214{
2215	struct sp_node *n;
2216	struct rb_node *next;
2217
2218	if (!p->root.rb_node)
2219		return;
2220	spin_lock(&p->lock);
2221	next = rb_first(&p->root);
2222	while (next) {
2223		n = rb_entry(next, struct sp_node, nd);
2224		next = rb_next(&n->nd);
2225		rb_erase(&n->nd, &p->root);
2226		mpol_put(n->policy);
2227		kmem_cache_free(sn_cache, n);
2228	}
2229	spin_unlock(&p->lock);
2230}
2231
2232/* assumes fs == KERNEL_DS */
2233void __init numa_policy_init(void)
2234{
2235	nodemask_t interleave_nodes;
2236	unsigned long largest = 0;
2237	int nid, prefer = 0;
2238
2239	policy_cache = kmem_cache_create("numa_policy",
2240					 sizeof(struct mempolicy),
2241					 0, SLAB_PANIC, NULL);
2242
2243	sn_cache = kmem_cache_create("shared_policy_node",
2244				     sizeof(struct sp_node),
2245				     0, SLAB_PANIC, NULL);
2246
2247	/*
2248	 * Set interleaving policy for system init. Interleaving is only
2249	 * enabled across suitably sized nodes (default is >= 16MB), or
2250	 * fall back to the largest node if they're all smaller.
2251	 */
2252	nodes_clear(interleave_nodes);
2253	for_each_node_state(nid, N_HIGH_MEMORY) {
2254		unsigned long total_pages = node_present_pages(nid);
2255
2256		/* Preserve the largest node */
2257		if (largest < total_pages) {
2258			largest = total_pages;
2259			prefer = nid;
2260		}
2261
2262		/* Interleave this node? */
2263		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2264			node_set(nid, interleave_nodes);
2265	}
2266
2267	/* All too small, use the largest */
2268	if (unlikely(nodes_empty(interleave_nodes)))
2269		node_set(prefer, interleave_nodes);
2270
2271	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2272		printk("numa_policy_init: interleaving failed\n");
2273}
2274
2275/* Reset policy of current process to default */
2276void numa_default_policy(void)
2277{
2278	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2279}
2280
2281/*
2282 * Parse and format mempolicy from/to strings
2283 */
2284
2285/*
2286 * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
2287 * Used only for mpol_parse_str() and mpol_to_str()
2288 */
2289#define MPOL_LOCAL MPOL_MAX
2290static const char * const policy_modes[] =
2291{
2292	[MPOL_DEFAULT]    = "default",
2293	[MPOL_PREFERRED]  = "prefer",
2294	[MPOL_BIND]       = "bind",
2295	[MPOL_INTERLEAVE] = "interleave",
2296	[MPOL_LOCAL]      = "local"
2297};
2298
2299
2300#ifdef CONFIG_TMPFS
2301/**
2302 * mpol_parse_str - parse string to mempolicy
2303 * @str:  string containing mempolicy to parse
2304 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2305 * @no_context:  flag whether to "contextualize" the mempolicy
2306 *
2307 * Format of input:
2308 *	<mode>[=<flags>][:<nodelist>]
2309 *
2310 * if @no_context is true, save the input nodemask in w.user_nodemask in
2311 * the returned mempolicy.  This will be used to "clone" the mempolicy in
2312 * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
2313 * mount option.  Note that if 'static' or 'relative' mode flags were
2314 * specified, the input nodemask will already have been saved.  Saving
2315 * it again is redundant, but safe.
2316 *
2317 * On success, returns 0, else 1
2318 */
2319int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2320{
2321	struct mempolicy *new = NULL;
2322	unsigned short mode;
2323	unsigned short uninitialized_var(mode_flags);
2324	nodemask_t nodes;
2325	char *nodelist = strchr(str, ':');
2326	char *flags = strchr(str, '=');
2327	int err = 1;
2328
2329	if (nodelist) {
2330		/* NUL-terminate mode or flags string */
2331		*nodelist++ = '\0';
2332		if (nodelist_parse(nodelist, nodes))
2333			goto out;
2334		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2335			goto out;
2336	} else
2337		nodes_clear(nodes);
2338
2339	if (flags)
2340		*flags++ = '\0';	/* terminate mode string */
2341
2342	for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2343		if (!strcmp(str, policy_modes[mode])) {
2344			break;
2345		}
2346	}
2347	if (mode > MPOL_LOCAL)
2348		goto out;
2349
2350	switch (mode) {
2351	case MPOL_PREFERRED:
2352		/*
2353		 * Insist on a nodelist of one node only
2354		 */
2355		if (nodelist) {
2356			char *rest = nodelist;
2357			while (isdigit(*rest))
2358				rest++;
2359			if (*rest)
2360				goto out;
2361		}
2362		break;
2363	case MPOL_INTERLEAVE:
2364		/*
2365		 * Default to online nodes with memory if no nodelist
2366		 */
2367		if (!nodelist)
2368			nodes = node_states[N_HIGH_MEMORY];
2369		break;
2370	case MPOL_LOCAL:
2371		/*
2372		 * Don't allow a nodelist;  mpol_new() checks flags
2373		 */
2374		if (nodelist)
2375			goto out;
2376		mode = MPOL_PREFERRED;
2377		break;
2378	case MPOL_DEFAULT:
2379		/*
2380		 * Insist on a empty nodelist
2381		 */
2382		if (!nodelist)
2383			err = 0;
2384		goto out;
2385	case MPOL_BIND:
2386		/*
2387		 * Insist on a nodelist
2388		 */
2389		if (!nodelist)
2390			goto out;
2391	}
2392
2393	mode_flags = 0;
2394	if (flags) {
2395		/*
2396		 * Currently, we only support two mutually exclusive
2397		 * mode flags.
2398		 */
2399		if (!strcmp(flags, "static"))
2400			mode_flags |= MPOL_F_STATIC_NODES;
2401		else if (!strcmp(flags, "relative"))
2402			mode_flags |= MPOL_F_RELATIVE_NODES;
2403		else
2404			goto out;
2405	}
2406
2407	new = mpol_new(mode, mode_flags, &nodes);
2408	if (IS_ERR(new))
2409		goto out;
2410
2411	if (no_context) {
2412		/* save for contextualization */
2413		new->w.user_nodemask = nodes;
2414	} else {
2415		int ret;
2416		NODEMASK_SCRATCH(scratch);
2417		if (scratch) {
2418			task_lock(current);
2419			ret = mpol_set_nodemask(new, &nodes, scratch);
2420			task_unlock(current);
2421		} else
2422			ret = -ENOMEM;
2423		NODEMASK_SCRATCH_FREE(scratch);
2424		if (ret) {
2425			mpol_put(new);
2426			goto out;
2427		}
2428	}
2429	err = 0;
2430
2431out:
2432	/* Restore string for error message */
2433	if (nodelist)
2434		*--nodelist = ':';
2435	if (flags)
2436		*--flags = '=';
2437	if (!err)
2438		*mpol = new;
2439	return err;
2440}
2441#endif /* CONFIG_TMPFS */
2442
2443/**
2444 * mpol_to_str - format a mempolicy structure for printing
2445 * @buffer:  to contain formatted mempolicy string
2446 * @maxlen:  length of @buffer
2447 * @pol:  pointer to mempolicy to be formatted
2448 * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2449 *
2450 * Convert a mempolicy into a string.
2451 * Returns the number of characters in buffer (if positive)
2452 * or an error (negative)
2453 */
2454int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2455{
2456	char *p = buffer;
2457	int l;
2458	nodemask_t nodes;
2459	unsigned short mode;
2460	unsigned short flags = pol ? pol->flags : 0;
2461
2462	/*
2463	 * Sanity check:  room for longest mode, flag and some nodes
2464	 */
2465	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2466
2467	if (!pol || pol == &default_policy)
2468		mode = MPOL_DEFAULT;
2469	else
2470		mode = pol->mode;
2471
2472	switch (mode) {
2473	case MPOL_DEFAULT:
2474		nodes_clear(nodes);
2475		break;
2476
2477	case MPOL_PREFERRED:
2478		nodes_clear(nodes);
2479		if (flags & MPOL_F_LOCAL)
2480			mode = MPOL_LOCAL;	/* pseudo-policy */
2481		else
2482			node_set(pol->v.preferred_node, nodes);
2483		break;
2484
2485	case MPOL_BIND:
2486		/* Fall through */
2487	case MPOL_INTERLEAVE:
2488		if (no_context)
2489			nodes = pol->w.user_nodemask;
2490		else
2491			nodes = pol->v.nodes;
2492		break;
2493
2494	default:
2495		BUG();
2496	}
2497
2498	l = strlen(policy_modes[mode]);
2499	if (buffer + maxlen < p + l + 1)
2500		return -ENOSPC;
2501
2502	strcpy(p, policy_modes[mode]);
2503	p += l;
2504
2505	if (flags & MPOL_MODE_FLAGS) {
2506		if (buffer + maxlen < p + 2)
2507			return -ENOSPC;
2508		*p++ = '=';
2509
2510		/*
2511		 * Currently, the only defined flags are mutually exclusive
2512		 */
2513		if (flags & MPOL_F_STATIC_NODES)
2514			p += snprintf(p, buffer + maxlen - p, "static");
2515		else if (flags & MPOL_F_RELATIVE_NODES)
2516			p += snprintf(p, buffer + maxlen - p, "relative");
2517	}
2518
2519	if (!nodes_empty(nodes)) {
2520		if (buffer + maxlen < p + 2)
2521			return -ENOSPC;
2522		*p++ = ':';
2523	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2524	}
2525	return p - buffer;
2526}
2527
2528struct numa_maps {
2529	unsigned long pages;
2530	unsigned long anon;
2531	unsigned long active;
2532	unsigned long writeback;
2533	unsigned long mapcount_max;
2534	unsigned long dirty;
2535	unsigned long swapcache;
2536	unsigned long node[MAX_NUMNODES];
2537};
2538
2539static void gather_stats(struct page *page, void *private, int pte_dirty)
2540{
2541	struct numa_maps *md = private;
2542	int count = page_mapcount(page);
2543
2544	md->pages++;
2545	if (pte_dirty || PageDirty(page))
2546		md->dirty++;
2547
2548	if (PageSwapCache(page))
2549		md->swapcache++;
2550
2551	if (PageActive(page) || PageUnevictable(page))
2552		md->active++;
2553
2554	if (PageWriteback(page))
2555		md->writeback++;
2556
2557	if (PageAnon(page))
2558		md->anon++;
2559
2560	if (count > md->mapcount_max)
2561		md->mapcount_max = count;
2562
2563	md->node[page_to_nid(page)]++;
2564}
2565
2566#ifdef CONFIG_HUGETLB_PAGE
2567static void check_huge_range(struct vm_area_struct *vma,
2568		unsigned long start, unsigned long end,
2569		struct numa_maps *md)
2570{
2571	unsigned long addr;
2572	struct page *page;
2573	struct hstate *h = hstate_vma(vma);
2574	unsigned long sz = huge_page_size(h);
2575
2576	for (addr = start; addr < end; addr += sz) {
2577		pte_t *ptep = huge_pte_offset(vma->vm_mm,
2578						addr & huge_page_mask(h));
2579		pte_t pte;
2580
2581		if (!ptep)
2582			continue;
2583
2584		pte = *ptep;
2585		if (pte_none(pte))
2586			continue;
2587
2588		page = pte_page(pte);
2589		if (!page)
2590			continue;
2591
2592		gather_stats(page, md, pte_dirty(*ptep));
2593	}
2594}
2595#else
2596static inline void check_huge_range(struct vm_area_struct *vma,
2597		unsigned long start, unsigned long end,
2598		struct numa_maps *md)
2599{
2600}
2601#endif
2602
2603/*
2604 * Display pages allocated per node and memory policy via /proc.
2605 */
2606int show_numa_map(struct seq_file *m, void *v)
2607{
2608	struct proc_maps_private *priv = m->private;
2609	struct vm_area_struct *vma = v;
2610	struct numa_maps *md;
2611	struct file *file = vma->vm_file;
2612	struct mm_struct *mm = vma->vm_mm;
2613	struct mempolicy *pol;
2614	int n;
2615	char buffer[50];
2616
2617	if (!mm)
2618		return 0;
2619
2620	md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2621	if (!md)
2622		return 0;
2623
2624	pol = get_vma_policy(priv->task, vma, vma->vm_start);
2625	mpol_to_str(buffer, sizeof(buffer), pol, 0);
2626	mpol_cond_put(pol);
2627
2628	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2629
2630	if (file) {
2631		seq_printf(m, " file=");
2632		seq_path(m, &file->f_path, "\n\t= ");
2633	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2634		seq_printf(m, " heap");
2635	} else if (vma->vm_start <= mm->start_stack &&
2636			vma->vm_end >= mm->start_stack) {
2637		seq_printf(m, " stack");
2638	}
2639
2640	if (is_vm_hugetlb_page(vma)) {
2641		check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2642		seq_printf(m, " huge");
2643	} else {
2644		check_pgd_range(vma, vma->vm_start, vma->vm_end,
2645			&node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2646	}
2647
2648	if (!md->pages)
2649		goto out;
2650
2651	if (md->anon)
2652		seq_printf(m," anon=%lu",md->anon);
2653
2654	if (md->dirty)
2655		seq_printf(m," dirty=%lu",md->dirty);
2656
2657	if (md->pages != md->anon && md->pages != md->dirty)
2658		seq_printf(m, " mapped=%lu", md->pages);
2659
2660	if (md->mapcount_max > 1)
2661		seq_printf(m, " mapmax=%lu", md->mapcount_max);
2662
2663	if (md->swapcache)
2664		seq_printf(m," swapcache=%lu", md->swapcache);
2665
2666	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2667		seq_printf(m," active=%lu", md->active);
2668
2669	if (md->writeback)
2670		seq_printf(m," writeback=%lu", md->writeback);
2671
2672	for_each_node_state(n, N_HIGH_MEMORY)
2673		if (md->node[n])
2674			seq_printf(m, " N%d=%lu", n, md->node[n]);
2675out:
2676	seq_putc(m, '\n');
2677	kfree(md);
2678
2679	if (m->count < m->size)
2680		m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2681	return 0;
2682}
2683