mempolicy.c revision 3e1f064562fcff7bf3856bc1d00dfa84d4f121cc
1/*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave     Allocate memory interleaved over a set of nodes,
16 *                with normal fallback if it fails.
17 *                For VMA based allocations this interleaves based on the
18 *                offset into the backing object or offset into the mapping
19 *                for anonymous memory. For process policy an process counter
20 *                is used.
21 *
22 * bind           Only allocate memory on a specific set of nodes,
23 *                no fallback.
24 *                FIXME: memory is allocated starting with the first node
25 *                to the last. It would be better if bind would truly restrict
26 *                the allocation to memory nodes instead
27 *
28 * preferred       Try a specific node first before normal fallback.
29 *                As a special case node -1 here means do the allocation
30 *                on the local CPU. This is normally identical to default,
31 *                but useful to set in a VMA when you have a non default
32 *                process policy.
33 *
34 * default        Allocate on the local node first, or when on a VMA
35 *                use the process policy. This is what Linux always did
36 *		  in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57   fix mmap readahead to honour policy and enable policy for any page cache
58   object
59   statistics for bigpages
60   global policy for page cache? currently it uses process policy. Requires
61   first item above.
62   handle mremap for shared memory (currently ignored for the policy)
63   grows down?
64   make bind policy root only? It can trigger oom much faster and the
65   kernel is not always grateful with that.
66*/
67
68#include <linux/mempolicy.h>
69#include <linux/mm.h>
70#include <linux/highmem.h>
71#include <linux/hugetlb.h>
72#include <linux/kernel.h>
73#include <linux/sched.h>
74#include <linux/nodemask.h>
75#include <linux/cpuset.h>
76#include <linux/gfp.h>
77#include <linux/slab.h>
78#include <linux/string.h>
79#include <linux/module.h>
80#include <linux/nsproxy.h>
81#include <linux/interrupt.h>
82#include <linux/init.h>
83#include <linux/compat.h>
84#include <linux/swap.h>
85#include <linux/seq_file.h>
86#include <linux/proc_fs.h>
87#include <linux/migrate.h>
88#include <linux/rmap.h>
89#include <linux/security.h>
90#include <linux/syscalls.h>
91
92#include <asm/tlbflush.h>
93#include <asm/uaccess.h>
94
95/* Internal flags */
96#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
97#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
98#define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2)		/* Gather statistics */
99
100static struct kmem_cache *policy_cache;
101static struct kmem_cache *sn_cache;
102
103/* Highest zone. An specific allocation for a zone below that is not
104   policied. */
105enum zone_type policy_zone = 0;
106
107struct mempolicy default_policy = {
108	.refcnt = ATOMIC_INIT(1), /* never free it */
109	.policy = MPOL_DEFAULT,
110};
111
112static const struct mempolicy_operations {
113	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
114	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
115} mpol_ops[MPOL_MAX];
116
117/* Check that the nodemask contains at least one populated zone */
118static int is_valid_nodemask(const nodemask_t *nodemask)
119{
120	int nd, k;
121
122	/* Check that there is something useful in this mask */
123	k = policy_zone;
124
125	for_each_node_mask(nd, *nodemask) {
126		struct zone *z;
127
128		for (k = 0; k <= policy_zone; k++) {
129			z = &NODE_DATA(nd)->node_zones[k];
130			if (z->present_pages > 0)
131				return 1;
132		}
133	}
134
135	return 0;
136}
137
138static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
139{
140	return pol->flags & (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES);
141}
142
143static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
144				   const nodemask_t *rel)
145{
146	nodemask_t tmp;
147	nodes_fold(tmp, *orig, nodes_weight(*rel));
148	nodes_onto(*ret, tmp, *rel);
149}
150
151static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
152{
153	if (nodes_empty(*nodes))
154		return -EINVAL;
155	pol->v.nodes = *nodes;
156	return 0;
157}
158
159static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
160{
161	if (!nodes)
162		pol->v.preferred_node = -1;	/* local allocation */
163	else if (nodes_empty(*nodes))
164		return -EINVAL;			/*  no allowed nodes */
165	else
166		pol->v.preferred_node = first_node(*nodes);
167	return 0;
168}
169
170static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
171{
172	if (!is_valid_nodemask(nodes))
173		return -EINVAL;
174	pol->v.nodes = *nodes;
175	return 0;
176}
177
178/* Create a new policy */
179static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
180				  nodemask_t *nodes)
181{
182	struct mempolicy *policy;
183	nodemask_t cpuset_context_nmask;
184	int ret;
185
186	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
187		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
188
189	if (mode == MPOL_DEFAULT) {
190		if (nodes && !nodes_empty(*nodes))
191			return ERR_PTR(-EINVAL);
192		return NULL;
193	}
194	VM_BUG_ON(!nodes);
195
196	/*
197	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
198	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
199	 * All other modes require a valid pointer to a non-empty nodemask.
200	 */
201	if (mode == MPOL_PREFERRED) {
202		if (nodes_empty(*nodes)) {
203			if (((flags & MPOL_F_STATIC_NODES) ||
204			     (flags & MPOL_F_RELATIVE_NODES)))
205				return ERR_PTR(-EINVAL);
206			nodes = NULL;	/* flag local alloc */
207		}
208	} else if (nodes_empty(*nodes))
209		return ERR_PTR(-EINVAL);
210	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
211	if (!policy)
212		return ERR_PTR(-ENOMEM);
213	atomic_set(&policy->refcnt, 1);
214	policy->policy = mode;
215	policy->flags = flags;
216
217	if (nodes) {
218		/*
219		 * cpuset related setup doesn't apply to local allocation
220		 */
221		cpuset_update_task_memory_state();
222		if (flags & MPOL_F_RELATIVE_NODES)
223			mpol_relative_nodemask(&cpuset_context_nmask, nodes,
224					       &cpuset_current_mems_allowed);
225		else
226			nodes_and(cpuset_context_nmask, *nodes,
227				  cpuset_current_mems_allowed);
228		if (mpol_store_user_nodemask(policy))
229			policy->w.user_nodemask = *nodes;
230		else
231			policy->w.cpuset_mems_allowed =
232						cpuset_mems_allowed(current);
233	}
234
235	ret = mpol_ops[mode].create(policy,
236				nodes ? &cpuset_context_nmask : NULL);
237	if (ret < 0) {
238		kmem_cache_free(policy_cache, policy);
239		return ERR_PTR(ret);
240	}
241	return policy;
242}
243
244static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
245{
246}
247
248static void mpol_rebind_nodemask(struct mempolicy *pol,
249				 const nodemask_t *nodes)
250{
251	nodemask_t tmp;
252
253	if (pol->flags & MPOL_F_STATIC_NODES)
254		nodes_and(tmp, pol->w.user_nodemask, *nodes);
255	else if (pol->flags & MPOL_F_RELATIVE_NODES)
256		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
257	else {
258		nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
259			    *nodes);
260		pol->w.cpuset_mems_allowed = *nodes;
261	}
262
263	pol->v.nodes = tmp;
264	if (!node_isset(current->il_next, tmp)) {
265		current->il_next = next_node(current->il_next, tmp);
266		if (current->il_next >= MAX_NUMNODES)
267			current->il_next = first_node(tmp);
268		if (current->il_next >= MAX_NUMNODES)
269			current->il_next = numa_node_id();
270	}
271}
272
273static void mpol_rebind_preferred(struct mempolicy *pol,
274				  const nodemask_t *nodes)
275{
276	nodemask_t tmp;
277
278	if (pol->flags & MPOL_F_STATIC_NODES) {
279		int node = first_node(pol->w.user_nodemask);
280
281		if (node_isset(node, *nodes))
282			pol->v.preferred_node = node;
283		else
284			pol->v.preferred_node = -1;
285	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
286		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
287		pol->v.preferred_node = first_node(tmp);
288	} else if (pol->v.preferred_node != -1) {
289		pol->v.preferred_node = node_remap(pol->v.preferred_node,
290						   pol->w.cpuset_mems_allowed,
291						   *nodes);
292		pol->w.cpuset_mems_allowed = *nodes;
293	}
294}
295
296/* Migrate a policy to a different set of nodes */
297static void mpol_rebind_policy(struct mempolicy *pol,
298			       const nodemask_t *newmask)
299{
300	if (!pol)
301		return;
302	if (!mpol_store_user_nodemask(pol) &&
303	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
304		return;
305	mpol_ops[pol->policy].rebind(pol, newmask);
306}
307
308/*
309 * Wrapper for mpol_rebind_policy() that just requires task
310 * pointer, and updates task mempolicy.
311 */
312
313void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
314{
315	mpol_rebind_policy(tsk->mempolicy, new);
316}
317
318/*
319 * Rebind each vma in mm to new nodemask.
320 *
321 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
322 */
323
324void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
325{
326	struct vm_area_struct *vma;
327
328	down_write(&mm->mmap_sem);
329	for (vma = mm->mmap; vma; vma = vma->vm_next)
330		mpol_rebind_policy(vma->vm_policy, new);
331	up_write(&mm->mmap_sem);
332}
333
334static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
335	[MPOL_DEFAULT] = {
336		.rebind = mpol_rebind_default,
337	},
338	[MPOL_INTERLEAVE] = {
339		.create = mpol_new_interleave,
340		.rebind = mpol_rebind_nodemask,
341	},
342	[MPOL_PREFERRED] = {
343		.create = mpol_new_preferred,
344		.rebind = mpol_rebind_preferred,
345	},
346	[MPOL_BIND] = {
347		.create = mpol_new_bind,
348		.rebind = mpol_rebind_nodemask,
349	},
350};
351
352static void gather_stats(struct page *, void *, int pte_dirty);
353static void migrate_page_add(struct page *page, struct list_head *pagelist,
354				unsigned long flags);
355
356/* Scan through pages checking if pages follow certain conditions. */
357static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
358		unsigned long addr, unsigned long end,
359		const nodemask_t *nodes, unsigned long flags,
360		void *private)
361{
362	pte_t *orig_pte;
363	pte_t *pte;
364	spinlock_t *ptl;
365
366	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
367	do {
368		struct page *page;
369		int nid;
370
371		if (!pte_present(*pte))
372			continue;
373		page = vm_normal_page(vma, addr, *pte);
374		if (!page)
375			continue;
376		/*
377		 * The check for PageReserved here is important to avoid
378		 * handling zero pages and other pages that may have been
379		 * marked special by the system.
380		 *
381		 * If the PageReserved would not be checked here then f.e.
382		 * the location of the zero page could have an influence
383		 * on MPOL_MF_STRICT, zero pages would be counted for
384		 * the per node stats, and there would be useless attempts
385		 * to put zero pages on the migration list.
386		 */
387		if (PageReserved(page))
388			continue;
389		nid = page_to_nid(page);
390		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
391			continue;
392
393		if (flags & MPOL_MF_STATS)
394			gather_stats(page, private, pte_dirty(*pte));
395		else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
396			migrate_page_add(page, private, flags);
397		else
398			break;
399	} while (pte++, addr += PAGE_SIZE, addr != end);
400	pte_unmap_unlock(orig_pte, ptl);
401	return addr != end;
402}
403
404static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
405		unsigned long addr, unsigned long end,
406		const nodemask_t *nodes, unsigned long flags,
407		void *private)
408{
409	pmd_t *pmd;
410	unsigned long next;
411
412	pmd = pmd_offset(pud, addr);
413	do {
414		next = pmd_addr_end(addr, end);
415		if (pmd_none_or_clear_bad(pmd))
416			continue;
417		if (check_pte_range(vma, pmd, addr, next, nodes,
418				    flags, private))
419			return -EIO;
420	} while (pmd++, addr = next, addr != end);
421	return 0;
422}
423
424static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
425		unsigned long addr, unsigned long end,
426		const nodemask_t *nodes, unsigned long flags,
427		void *private)
428{
429	pud_t *pud;
430	unsigned long next;
431
432	pud = pud_offset(pgd, addr);
433	do {
434		next = pud_addr_end(addr, end);
435		if (pud_none_or_clear_bad(pud))
436			continue;
437		if (check_pmd_range(vma, pud, addr, next, nodes,
438				    flags, private))
439			return -EIO;
440	} while (pud++, addr = next, addr != end);
441	return 0;
442}
443
444static inline int check_pgd_range(struct vm_area_struct *vma,
445		unsigned long addr, unsigned long end,
446		const nodemask_t *nodes, unsigned long flags,
447		void *private)
448{
449	pgd_t *pgd;
450	unsigned long next;
451
452	pgd = pgd_offset(vma->vm_mm, addr);
453	do {
454		next = pgd_addr_end(addr, end);
455		if (pgd_none_or_clear_bad(pgd))
456			continue;
457		if (check_pud_range(vma, pgd, addr, next, nodes,
458				    flags, private))
459			return -EIO;
460	} while (pgd++, addr = next, addr != end);
461	return 0;
462}
463
464/*
465 * Check if all pages in a range are on a set of nodes.
466 * If pagelist != NULL then isolate pages from the LRU and
467 * put them on the pagelist.
468 */
469static struct vm_area_struct *
470check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
471		const nodemask_t *nodes, unsigned long flags, void *private)
472{
473	int err;
474	struct vm_area_struct *first, *vma, *prev;
475
476	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
477
478		err = migrate_prep();
479		if (err)
480			return ERR_PTR(err);
481	}
482
483	first = find_vma(mm, start);
484	if (!first)
485		return ERR_PTR(-EFAULT);
486	prev = NULL;
487	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
488		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
489			if (!vma->vm_next && vma->vm_end < end)
490				return ERR_PTR(-EFAULT);
491			if (prev && prev->vm_end < vma->vm_start)
492				return ERR_PTR(-EFAULT);
493		}
494		if (!is_vm_hugetlb_page(vma) &&
495		    ((flags & MPOL_MF_STRICT) ||
496		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
497				vma_migratable(vma)))) {
498			unsigned long endvma = vma->vm_end;
499
500			if (endvma > end)
501				endvma = end;
502			if (vma->vm_start > start)
503				start = vma->vm_start;
504			err = check_pgd_range(vma, start, endvma, nodes,
505						flags, private);
506			if (err) {
507				first = ERR_PTR(err);
508				break;
509			}
510		}
511		prev = vma;
512	}
513	return first;
514}
515
516/* Apply policy to a single VMA */
517static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
518{
519	int err = 0;
520	struct mempolicy *old = vma->vm_policy;
521
522	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
523		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
524		 vma->vm_ops, vma->vm_file,
525		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
526
527	if (vma->vm_ops && vma->vm_ops->set_policy)
528		err = vma->vm_ops->set_policy(vma, new);
529	if (!err) {
530		mpol_get(new);
531		vma->vm_policy = new;
532		mpol_free(old);
533	}
534	return err;
535}
536
537/* Step 2: apply policy to a range and do splits. */
538static int mbind_range(struct vm_area_struct *vma, unsigned long start,
539		       unsigned long end, struct mempolicy *new)
540{
541	struct vm_area_struct *next;
542	int err;
543
544	err = 0;
545	for (; vma && vma->vm_start < end; vma = next) {
546		next = vma->vm_next;
547		if (vma->vm_start < start)
548			err = split_vma(vma->vm_mm, vma, start, 1);
549		if (!err && vma->vm_end > end)
550			err = split_vma(vma->vm_mm, vma, end, 0);
551		if (!err)
552			err = policy_vma(vma, new);
553		if (err)
554			break;
555	}
556	return err;
557}
558
559/*
560 * Update task->flags PF_MEMPOLICY bit: set iff non-default
561 * mempolicy.  Allows more rapid checking of this (combined perhaps
562 * with other PF_* flag bits) on memory allocation hot code paths.
563 *
564 * If called from outside this file, the task 'p' should -only- be
565 * a newly forked child not yet visible on the task list, because
566 * manipulating the task flags of a visible task is not safe.
567 *
568 * The above limitation is why this routine has the funny name
569 * mpol_fix_fork_child_flag().
570 *
571 * It is also safe to call this with a task pointer of current,
572 * which the static wrapper mpol_set_task_struct_flag() does,
573 * for use within this file.
574 */
575
576void mpol_fix_fork_child_flag(struct task_struct *p)
577{
578	if (p->mempolicy)
579		p->flags |= PF_MEMPOLICY;
580	else
581		p->flags &= ~PF_MEMPOLICY;
582}
583
584static void mpol_set_task_struct_flag(void)
585{
586	mpol_fix_fork_child_flag(current);
587}
588
589/* Set the process memory policy */
590static long do_set_mempolicy(unsigned short mode, unsigned short flags,
591			     nodemask_t *nodes)
592{
593	struct mempolicy *new;
594
595	new = mpol_new(mode, flags, nodes);
596	if (IS_ERR(new))
597		return PTR_ERR(new);
598	mpol_free(current->mempolicy);
599	current->mempolicy = new;
600	mpol_set_task_struct_flag();
601	if (new && new->policy == MPOL_INTERLEAVE &&
602	    nodes_weight(new->v.nodes))
603		current->il_next = first_node(new->v.nodes);
604	return 0;
605}
606
607/* Fill a zone bitmap for a policy */
608static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
609{
610	nodes_clear(*nodes);
611	switch (p->policy) {
612	case MPOL_DEFAULT:
613		break;
614	case MPOL_BIND:
615		/* Fall through */
616	case MPOL_INTERLEAVE:
617		*nodes = p->v.nodes;
618		break;
619	case MPOL_PREFERRED:
620		/* or use current node instead of memory_map? */
621		if (p->v.preferred_node < 0)
622			*nodes = node_states[N_HIGH_MEMORY];
623		else
624			node_set(p->v.preferred_node, *nodes);
625		break;
626	default:
627		BUG();
628	}
629}
630
631static int lookup_node(struct mm_struct *mm, unsigned long addr)
632{
633	struct page *p;
634	int err;
635
636	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
637	if (err >= 0) {
638		err = page_to_nid(p);
639		put_page(p);
640	}
641	return err;
642}
643
644/* Retrieve NUMA policy */
645static long do_get_mempolicy(int *policy, nodemask_t *nmask,
646			     unsigned long addr, unsigned long flags)
647{
648	int err;
649	struct mm_struct *mm = current->mm;
650	struct vm_area_struct *vma = NULL;
651	struct mempolicy *pol = current->mempolicy;
652
653	cpuset_update_task_memory_state();
654	if (flags &
655		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
656		return -EINVAL;
657
658	if (flags & MPOL_F_MEMS_ALLOWED) {
659		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
660			return -EINVAL;
661		*policy = 0;	/* just so it's initialized */
662		*nmask  = cpuset_current_mems_allowed;
663		return 0;
664	}
665
666	if (flags & MPOL_F_ADDR) {
667		down_read(&mm->mmap_sem);
668		vma = find_vma_intersection(mm, addr, addr+1);
669		if (!vma) {
670			up_read(&mm->mmap_sem);
671			return -EFAULT;
672		}
673		if (vma->vm_ops && vma->vm_ops->get_policy)
674			pol = vma->vm_ops->get_policy(vma, addr);
675		else
676			pol = vma->vm_policy;
677	} else if (addr)
678		return -EINVAL;
679
680	if (!pol)
681		pol = &default_policy;
682
683	if (flags & MPOL_F_NODE) {
684		if (flags & MPOL_F_ADDR) {
685			err = lookup_node(mm, addr);
686			if (err < 0)
687				goto out;
688			*policy = err;
689		} else if (pol == current->mempolicy &&
690				pol->policy == MPOL_INTERLEAVE) {
691			*policy = current->il_next;
692		} else {
693			err = -EINVAL;
694			goto out;
695		}
696	} else
697		*policy = pol->policy | pol->flags;
698
699	if (vma) {
700		up_read(&current->mm->mmap_sem);
701		vma = NULL;
702	}
703
704	err = 0;
705	if (nmask)
706		get_zonemask(pol, nmask);
707
708 out:
709	if (vma)
710		up_read(&current->mm->mmap_sem);
711	return err;
712}
713
714#ifdef CONFIG_MIGRATION
715/*
716 * page migration
717 */
718static void migrate_page_add(struct page *page, struct list_head *pagelist,
719				unsigned long flags)
720{
721	/*
722	 * Avoid migrating a page that is shared with others.
723	 */
724	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
725		isolate_lru_page(page, pagelist);
726}
727
728static struct page *new_node_page(struct page *page, unsigned long node, int **x)
729{
730	return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
731}
732
733/*
734 * Migrate pages from one node to a target node.
735 * Returns error or the number of pages not migrated.
736 */
737static int migrate_to_node(struct mm_struct *mm, int source, int dest,
738			   int flags)
739{
740	nodemask_t nmask;
741	LIST_HEAD(pagelist);
742	int err = 0;
743
744	nodes_clear(nmask);
745	node_set(source, nmask);
746
747	check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
748			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
749
750	if (!list_empty(&pagelist))
751		err = migrate_pages(&pagelist, new_node_page, dest);
752
753	return err;
754}
755
756/*
757 * Move pages between the two nodesets so as to preserve the physical
758 * layout as much as possible.
759 *
760 * Returns the number of page that could not be moved.
761 */
762int do_migrate_pages(struct mm_struct *mm,
763	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
764{
765	LIST_HEAD(pagelist);
766	int busy = 0;
767	int err = 0;
768	nodemask_t tmp;
769
770  	down_read(&mm->mmap_sem);
771
772	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
773	if (err)
774		goto out;
775
776/*
777 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
778 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
779 * bit in 'tmp', and return that <source, dest> pair for migration.
780 * The pair of nodemasks 'to' and 'from' define the map.
781 *
782 * If no pair of bits is found that way, fallback to picking some
783 * pair of 'source' and 'dest' bits that are not the same.  If the
784 * 'source' and 'dest' bits are the same, this represents a node
785 * that will be migrating to itself, so no pages need move.
786 *
787 * If no bits are left in 'tmp', or if all remaining bits left
788 * in 'tmp' correspond to the same bit in 'to', return false
789 * (nothing left to migrate).
790 *
791 * This lets us pick a pair of nodes to migrate between, such that
792 * if possible the dest node is not already occupied by some other
793 * source node, minimizing the risk of overloading the memory on a
794 * node that would happen if we migrated incoming memory to a node
795 * before migrating outgoing memory source that same node.
796 *
797 * A single scan of tmp is sufficient.  As we go, we remember the
798 * most recent <s, d> pair that moved (s != d).  If we find a pair
799 * that not only moved, but what's better, moved to an empty slot
800 * (d is not set in tmp), then we break out then, with that pair.
801 * Otherwise when we finish scannng from_tmp, we at least have the
802 * most recent <s, d> pair that moved.  If we get all the way through
803 * the scan of tmp without finding any node that moved, much less
804 * moved to an empty node, then there is nothing left worth migrating.
805 */
806
807	tmp = *from_nodes;
808	while (!nodes_empty(tmp)) {
809		int s,d;
810		int source = -1;
811		int dest = 0;
812
813		for_each_node_mask(s, tmp) {
814			d = node_remap(s, *from_nodes, *to_nodes);
815			if (s == d)
816				continue;
817
818			source = s;	/* Node moved. Memorize */
819			dest = d;
820
821			/* dest not in remaining from nodes? */
822			if (!node_isset(dest, tmp))
823				break;
824		}
825		if (source == -1)
826			break;
827
828		node_clear(source, tmp);
829		err = migrate_to_node(mm, source, dest, flags);
830		if (err > 0)
831			busy += err;
832		if (err < 0)
833			break;
834	}
835out:
836	up_read(&mm->mmap_sem);
837	if (err < 0)
838		return err;
839	return busy;
840
841}
842
843/*
844 * Allocate a new page for page migration based on vma policy.
845 * Start assuming that page is mapped by vma pointed to by @private.
846 * Search forward from there, if not.  N.B., this assumes that the
847 * list of pages handed to migrate_pages()--which is how we get here--
848 * is in virtual address order.
849 */
850static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
851{
852	struct vm_area_struct *vma = (struct vm_area_struct *)private;
853	unsigned long uninitialized_var(address);
854
855	while (vma) {
856		address = page_address_in_vma(page, vma);
857		if (address != -EFAULT)
858			break;
859		vma = vma->vm_next;
860	}
861
862	/*
863	 * if !vma, alloc_page_vma() will use task or system default policy
864	 */
865	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
866}
867#else
868
869static void migrate_page_add(struct page *page, struct list_head *pagelist,
870				unsigned long flags)
871{
872}
873
874int do_migrate_pages(struct mm_struct *mm,
875	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
876{
877	return -ENOSYS;
878}
879
880static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
881{
882	return NULL;
883}
884#endif
885
886static long do_mbind(unsigned long start, unsigned long len,
887		     unsigned short mode, unsigned short mode_flags,
888		     nodemask_t *nmask, unsigned long flags)
889{
890	struct vm_area_struct *vma;
891	struct mm_struct *mm = current->mm;
892	struct mempolicy *new;
893	unsigned long end;
894	int err;
895	LIST_HEAD(pagelist);
896
897	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
898				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
899		return -EINVAL;
900	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
901		return -EPERM;
902
903	if (start & ~PAGE_MASK)
904		return -EINVAL;
905
906	if (mode == MPOL_DEFAULT)
907		flags &= ~MPOL_MF_STRICT;
908
909	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
910	end = start + len;
911
912	if (end < start)
913		return -EINVAL;
914	if (end == start)
915		return 0;
916
917	new = mpol_new(mode, mode_flags, nmask);
918	if (IS_ERR(new))
919		return PTR_ERR(new);
920
921	/*
922	 * If we are using the default policy then operation
923	 * on discontinuous address spaces is okay after all
924	 */
925	if (!new)
926		flags |= MPOL_MF_DISCONTIG_OK;
927
928	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
929		 start, start + len, mode, mode_flags,
930		 nmask ? nodes_addr(*nmask)[0] : -1);
931
932	down_write(&mm->mmap_sem);
933	vma = check_range(mm, start, end, nmask,
934			  flags | MPOL_MF_INVERT, &pagelist);
935
936	err = PTR_ERR(vma);
937	if (!IS_ERR(vma)) {
938		int nr_failed = 0;
939
940		err = mbind_range(vma, start, end, new);
941
942		if (!list_empty(&pagelist))
943			nr_failed = migrate_pages(&pagelist, new_vma_page,
944						(unsigned long)vma);
945
946		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
947			err = -EIO;
948	}
949
950	up_write(&mm->mmap_sem);
951	mpol_free(new);
952	return err;
953}
954
955/*
956 * User space interface with variable sized bitmaps for nodelists.
957 */
958
959/* Copy a node mask from user space. */
960static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
961		     unsigned long maxnode)
962{
963	unsigned long k;
964	unsigned long nlongs;
965	unsigned long endmask;
966
967	--maxnode;
968	nodes_clear(*nodes);
969	if (maxnode == 0 || !nmask)
970		return 0;
971	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
972		return -EINVAL;
973
974	nlongs = BITS_TO_LONGS(maxnode);
975	if ((maxnode % BITS_PER_LONG) == 0)
976		endmask = ~0UL;
977	else
978		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
979
980	/* When the user specified more nodes than supported just check
981	   if the non supported part is all zero. */
982	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
983		if (nlongs > PAGE_SIZE/sizeof(long))
984			return -EINVAL;
985		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
986			unsigned long t;
987			if (get_user(t, nmask + k))
988				return -EFAULT;
989			if (k == nlongs - 1) {
990				if (t & endmask)
991					return -EINVAL;
992			} else if (t)
993				return -EINVAL;
994		}
995		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
996		endmask = ~0UL;
997	}
998
999	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1000		return -EFAULT;
1001	nodes_addr(*nodes)[nlongs-1] &= endmask;
1002	return 0;
1003}
1004
1005/* Copy a kernel node mask to user space */
1006static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1007			      nodemask_t *nodes)
1008{
1009	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1010	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1011
1012	if (copy > nbytes) {
1013		if (copy > PAGE_SIZE)
1014			return -EINVAL;
1015		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1016			return -EFAULT;
1017		copy = nbytes;
1018	}
1019	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1020}
1021
1022asmlinkage long sys_mbind(unsigned long start, unsigned long len,
1023			unsigned long mode,
1024			unsigned long __user *nmask, unsigned long maxnode,
1025			unsigned flags)
1026{
1027	nodemask_t nodes;
1028	int err;
1029	unsigned short mode_flags;
1030
1031	mode_flags = mode & MPOL_MODE_FLAGS;
1032	mode &= ~MPOL_MODE_FLAGS;
1033	if (mode >= MPOL_MAX)
1034		return -EINVAL;
1035	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1036	    (mode_flags & MPOL_F_RELATIVE_NODES))
1037		return -EINVAL;
1038	err = get_nodes(&nodes, nmask, maxnode);
1039	if (err)
1040		return err;
1041	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1042}
1043
1044/* Set the process memory policy */
1045asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
1046		unsigned long maxnode)
1047{
1048	int err;
1049	nodemask_t nodes;
1050	unsigned short flags;
1051
1052	flags = mode & MPOL_MODE_FLAGS;
1053	mode &= ~MPOL_MODE_FLAGS;
1054	if ((unsigned int)mode >= MPOL_MAX)
1055		return -EINVAL;
1056	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1057		return -EINVAL;
1058	err = get_nodes(&nodes, nmask, maxnode);
1059	if (err)
1060		return err;
1061	return do_set_mempolicy(mode, flags, &nodes);
1062}
1063
1064asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
1065		const unsigned long __user *old_nodes,
1066		const unsigned long __user *new_nodes)
1067{
1068	struct mm_struct *mm;
1069	struct task_struct *task;
1070	nodemask_t old;
1071	nodemask_t new;
1072	nodemask_t task_nodes;
1073	int err;
1074
1075	err = get_nodes(&old, old_nodes, maxnode);
1076	if (err)
1077		return err;
1078
1079	err = get_nodes(&new, new_nodes, maxnode);
1080	if (err)
1081		return err;
1082
1083	/* Find the mm_struct */
1084	read_lock(&tasklist_lock);
1085	task = pid ? find_task_by_vpid(pid) : current;
1086	if (!task) {
1087		read_unlock(&tasklist_lock);
1088		return -ESRCH;
1089	}
1090	mm = get_task_mm(task);
1091	read_unlock(&tasklist_lock);
1092
1093	if (!mm)
1094		return -EINVAL;
1095
1096	/*
1097	 * Check if this process has the right to modify the specified
1098	 * process. The right exists if the process has administrative
1099	 * capabilities, superuser privileges or the same
1100	 * userid as the target process.
1101	 */
1102	if ((current->euid != task->suid) && (current->euid != task->uid) &&
1103	    (current->uid != task->suid) && (current->uid != task->uid) &&
1104	    !capable(CAP_SYS_NICE)) {
1105		err = -EPERM;
1106		goto out;
1107	}
1108
1109	task_nodes = cpuset_mems_allowed(task);
1110	/* Is the user allowed to access the target nodes? */
1111	if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1112		err = -EPERM;
1113		goto out;
1114	}
1115
1116	if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1117		err = -EINVAL;
1118		goto out;
1119	}
1120
1121	err = security_task_movememory(task);
1122	if (err)
1123		goto out;
1124
1125	err = do_migrate_pages(mm, &old, &new,
1126		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1127out:
1128	mmput(mm);
1129	return err;
1130}
1131
1132
1133/* Retrieve NUMA policy */
1134asmlinkage long sys_get_mempolicy(int __user *policy,
1135				unsigned long __user *nmask,
1136				unsigned long maxnode,
1137				unsigned long addr, unsigned long flags)
1138{
1139	int err;
1140	int uninitialized_var(pval);
1141	nodemask_t nodes;
1142
1143	if (nmask != NULL && maxnode < MAX_NUMNODES)
1144		return -EINVAL;
1145
1146	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1147
1148	if (err)
1149		return err;
1150
1151	if (policy && put_user(pval, policy))
1152		return -EFAULT;
1153
1154	if (nmask)
1155		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1156
1157	return err;
1158}
1159
1160#ifdef CONFIG_COMPAT
1161
1162asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1163				     compat_ulong_t __user *nmask,
1164				     compat_ulong_t maxnode,
1165				     compat_ulong_t addr, compat_ulong_t flags)
1166{
1167	long err;
1168	unsigned long __user *nm = NULL;
1169	unsigned long nr_bits, alloc_size;
1170	DECLARE_BITMAP(bm, MAX_NUMNODES);
1171
1172	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1173	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1174
1175	if (nmask)
1176		nm = compat_alloc_user_space(alloc_size);
1177
1178	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1179
1180	if (!err && nmask) {
1181		err = copy_from_user(bm, nm, alloc_size);
1182		/* ensure entire bitmap is zeroed */
1183		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1184		err |= compat_put_bitmap(nmask, bm, nr_bits);
1185	}
1186
1187	return err;
1188}
1189
1190asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1191				     compat_ulong_t maxnode)
1192{
1193	long err = 0;
1194	unsigned long __user *nm = NULL;
1195	unsigned long nr_bits, alloc_size;
1196	DECLARE_BITMAP(bm, MAX_NUMNODES);
1197
1198	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1199	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1200
1201	if (nmask) {
1202		err = compat_get_bitmap(bm, nmask, nr_bits);
1203		nm = compat_alloc_user_space(alloc_size);
1204		err |= copy_to_user(nm, bm, alloc_size);
1205	}
1206
1207	if (err)
1208		return -EFAULT;
1209
1210	return sys_set_mempolicy(mode, nm, nr_bits+1);
1211}
1212
1213asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1214			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1215			     compat_ulong_t maxnode, compat_ulong_t flags)
1216{
1217	long err = 0;
1218	unsigned long __user *nm = NULL;
1219	unsigned long nr_bits, alloc_size;
1220	nodemask_t bm;
1221
1222	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1223	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1224
1225	if (nmask) {
1226		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1227		nm = compat_alloc_user_space(alloc_size);
1228		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1229	}
1230
1231	if (err)
1232		return -EFAULT;
1233
1234	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1235}
1236
1237#endif
1238
1239/*
1240 * get_vma_policy(@task, @vma, @addr)
1241 * @task - task for fallback if vma policy == default
1242 * @vma   - virtual memory area whose policy is sought
1243 * @addr  - address in @vma for shared policy lookup
1244 *
1245 * Returns effective policy for a VMA at specified address.
1246 * Falls back to @task or system default policy, as necessary.
1247 * Returned policy has extra reference count if shared, vma,
1248 * or some other task's policy [show_numa_maps() can pass
1249 * @task != current].  It is the caller's responsibility to
1250 * free the reference in these cases.
1251 */
1252static struct mempolicy * get_vma_policy(struct task_struct *task,
1253		struct vm_area_struct *vma, unsigned long addr)
1254{
1255	struct mempolicy *pol = task->mempolicy;
1256	int shared_pol = 0;
1257
1258	if (vma) {
1259		if (vma->vm_ops && vma->vm_ops->get_policy) {
1260			pol = vma->vm_ops->get_policy(vma, addr);
1261			shared_pol = 1;	/* if pol non-NULL, add ref below */
1262		} else if (vma->vm_policy &&
1263				vma->vm_policy->policy != MPOL_DEFAULT)
1264			pol = vma->vm_policy;
1265	}
1266	if (!pol)
1267		pol = &default_policy;
1268	else if (!shared_pol && pol != current->mempolicy)
1269		mpol_get(pol);	/* vma or other task's policy */
1270	return pol;
1271}
1272
1273/* Return a nodemask representing a mempolicy */
1274static nodemask_t *nodemask_policy(gfp_t gfp, struct mempolicy *policy)
1275{
1276	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1277	if (unlikely(policy->policy == MPOL_BIND) &&
1278			gfp_zone(gfp) >= policy_zone &&
1279			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1280		return &policy->v.nodes;
1281
1282	return NULL;
1283}
1284
1285/* Return a zonelist representing a mempolicy */
1286static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
1287{
1288	int nd;
1289
1290	switch (policy->policy) {
1291	case MPOL_PREFERRED:
1292		nd = policy->v.preferred_node;
1293		if (nd < 0)
1294			nd = numa_node_id();
1295		break;
1296	case MPOL_BIND:
1297		/*
1298		 * Normally, MPOL_BIND allocations node-local are node-local
1299		 * within the allowed nodemask. However, if __GFP_THISNODE is
1300		 * set and the current node is part of the mask, we use the
1301		 * the zonelist for the first node in the mask instead.
1302		 */
1303		nd = numa_node_id();
1304		if (unlikely(gfp & __GFP_THISNODE) &&
1305				unlikely(!node_isset(nd, policy->v.nodes)))
1306			nd = first_node(policy->v.nodes);
1307		break;
1308	case MPOL_INTERLEAVE: /* should not happen */
1309	case MPOL_DEFAULT:
1310		nd = numa_node_id();
1311		break;
1312	default:
1313		nd = 0;
1314		BUG();
1315	}
1316	return node_zonelist(nd, gfp);
1317}
1318
1319/* Do dynamic interleaving for a process */
1320static unsigned interleave_nodes(struct mempolicy *policy)
1321{
1322	unsigned nid, next;
1323	struct task_struct *me = current;
1324
1325	nid = me->il_next;
1326	next = next_node(nid, policy->v.nodes);
1327	if (next >= MAX_NUMNODES)
1328		next = first_node(policy->v.nodes);
1329	if (next < MAX_NUMNODES)
1330		me->il_next = next;
1331	return nid;
1332}
1333
1334/*
1335 * Depending on the memory policy provide a node from which to allocate the
1336 * next slab entry.
1337 */
1338unsigned slab_node(struct mempolicy *policy)
1339{
1340	unsigned short pol = policy ? policy->policy : MPOL_DEFAULT;
1341
1342	switch (pol) {
1343	case MPOL_INTERLEAVE:
1344		return interleave_nodes(policy);
1345
1346	case MPOL_BIND: {
1347		/*
1348		 * Follow bind policy behavior and start allocation at the
1349		 * first node.
1350		 */
1351		struct zonelist *zonelist;
1352		struct zone *zone;
1353		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1354		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1355		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1356							&policy->v.nodes,
1357							&zone);
1358		return zone->node;
1359	}
1360
1361	case MPOL_PREFERRED:
1362		if (policy->v.preferred_node >= 0)
1363			return policy->v.preferred_node;
1364		/* Fall through */
1365
1366	default:
1367		return numa_node_id();
1368	}
1369}
1370
1371/* Do static interleaving for a VMA with known offset. */
1372static unsigned offset_il_node(struct mempolicy *pol,
1373		struct vm_area_struct *vma, unsigned long off)
1374{
1375	unsigned nnodes = nodes_weight(pol->v.nodes);
1376	unsigned target;
1377	int c;
1378	int nid = -1;
1379
1380	if (!nnodes)
1381		return numa_node_id();
1382	target = (unsigned int)off % nnodes;
1383	c = 0;
1384	do {
1385		nid = next_node(nid, pol->v.nodes);
1386		c++;
1387	} while (c <= target);
1388	return nid;
1389}
1390
1391/* Determine a node number for interleave */
1392static inline unsigned interleave_nid(struct mempolicy *pol,
1393		 struct vm_area_struct *vma, unsigned long addr, int shift)
1394{
1395	if (vma) {
1396		unsigned long off;
1397
1398		/*
1399		 * for small pages, there is no difference between
1400		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1401		 * for huge pages, since vm_pgoff is in units of small
1402		 * pages, we need to shift off the always 0 bits to get
1403		 * a useful offset.
1404		 */
1405		BUG_ON(shift < PAGE_SHIFT);
1406		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1407		off += (addr - vma->vm_start) >> shift;
1408		return offset_il_node(pol, vma, off);
1409	} else
1410		return interleave_nodes(pol);
1411}
1412
1413#ifdef CONFIG_HUGETLBFS
1414/*
1415 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1416 * @vma = virtual memory area whose policy is sought
1417 * @addr = address in @vma for shared policy lookup and interleave policy
1418 * @gfp_flags = for requested zone
1419 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1420 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1421 *
1422 * Returns a zonelist suitable for a huge page allocation.
1423 * If the effective policy is 'BIND, returns pointer to local node's zonelist,
1424 * and a pointer to the mempolicy's @nodemask for filtering the zonelist.
1425 * If it is also a policy for which get_vma_policy() returns an extra
1426 * reference, we must hold that reference until after the allocation.
1427 * In that case, return policy via @mpol so hugetlb allocation can drop
1428 * the reference. For non-'BIND referenced policies, we can/do drop the
1429 * reference here, so the caller doesn't need to know about the special case
1430 * for default and current task policy.
1431 */
1432struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1433				gfp_t gfp_flags, struct mempolicy **mpol,
1434				nodemask_t **nodemask)
1435{
1436	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1437	struct zonelist *zl;
1438
1439	*mpol = NULL;		/* probably no unref needed */
1440	*nodemask = NULL;	/* assume !MPOL_BIND */
1441	if (pol->policy == MPOL_BIND) {
1442			*nodemask = &pol->v.nodes;
1443	} else if (pol->policy == MPOL_INTERLEAVE) {
1444		unsigned nid;
1445
1446		nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1447		if (unlikely(pol != &default_policy &&
1448				pol != current->mempolicy))
1449			__mpol_free(pol);	/* finished with pol */
1450		return node_zonelist(nid, gfp_flags);
1451	}
1452
1453	zl = zonelist_policy(GFP_HIGHUSER, pol);
1454	if (unlikely(pol != &default_policy && pol != current->mempolicy)) {
1455		if (pol->policy != MPOL_BIND)
1456			__mpol_free(pol);	/* finished with pol */
1457		else
1458			*mpol = pol;	/* unref needed after allocation */
1459	}
1460	return zl;
1461}
1462#endif
1463
1464/* Allocate a page in interleaved policy.
1465   Own path because it needs to do special accounting. */
1466static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1467					unsigned nid)
1468{
1469	struct zonelist *zl;
1470	struct page *page;
1471
1472	zl = node_zonelist(nid, gfp);
1473	page = __alloc_pages(gfp, order, zl);
1474	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1475		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1476	return page;
1477}
1478
1479/**
1480 * 	alloc_page_vma	- Allocate a page for a VMA.
1481 *
1482 * 	@gfp:
1483 *      %GFP_USER    user allocation.
1484 *      %GFP_KERNEL  kernel allocations,
1485 *      %GFP_HIGHMEM highmem/user allocations,
1486 *      %GFP_FS      allocation should not call back into a file system.
1487 *      %GFP_ATOMIC  don't sleep.
1488 *
1489 * 	@vma:  Pointer to VMA or NULL if not available.
1490 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1491 *
1492 * 	This function allocates a page from the kernel page pool and applies
1493 *	a NUMA policy associated with the VMA or the current process.
1494 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1495 *	mm_struct of the VMA to prevent it from going away. Should be used for
1496 *	all allocations for pages that will be mapped into
1497 * 	user space. Returns NULL when no page can be allocated.
1498 *
1499 *	Should be called with the mm_sem of the vma hold.
1500 */
1501struct page *
1502alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1503{
1504	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1505	struct zonelist *zl;
1506
1507	cpuset_update_task_memory_state();
1508
1509	if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1510		unsigned nid;
1511
1512		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1513		if (unlikely(pol != &default_policy &&
1514				pol != current->mempolicy))
1515			__mpol_free(pol);	/* finished with pol */
1516		return alloc_page_interleave(gfp, 0, nid);
1517	}
1518	zl = zonelist_policy(gfp, pol);
1519	if (pol != &default_policy && pol != current->mempolicy) {
1520		/*
1521		 * slow path: ref counted policy -- shared or vma
1522		 */
1523		struct page *page =  __alloc_pages_nodemask(gfp, 0,
1524						zl, nodemask_policy(gfp, pol));
1525		__mpol_free(pol);
1526		return page;
1527	}
1528	/*
1529	 * fast path:  default or task policy
1530	 */
1531	return __alloc_pages_nodemask(gfp, 0, zl, nodemask_policy(gfp, pol));
1532}
1533
1534/**
1535 * 	alloc_pages_current - Allocate pages.
1536 *
1537 *	@gfp:
1538 *		%GFP_USER   user allocation,
1539 *      	%GFP_KERNEL kernel allocation,
1540 *      	%GFP_HIGHMEM highmem allocation,
1541 *      	%GFP_FS     don't call back into a file system.
1542 *      	%GFP_ATOMIC don't sleep.
1543 *	@order: Power of two of allocation size in pages. 0 is a single page.
1544 *
1545 *	Allocate a page from the kernel page pool.  When not in
1546 *	interrupt context and apply the current process NUMA policy.
1547 *	Returns NULL when no page can be allocated.
1548 *
1549 *	Don't call cpuset_update_task_memory_state() unless
1550 *	1) it's ok to take cpuset_sem (can WAIT), and
1551 *	2) allocating for current task (not interrupt).
1552 */
1553struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1554{
1555	struct mempolicy *pol = current->mempolicy;
1556
1557	if ((gfp & __GFP_WAIT) && !in_interrupt())
1558		cpuset_update_task_memory_state();
1559	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1560		pol = &default_policy;
1561	if (pol->policy == MPOL_INTERLEAVE)
1562		return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1563	return __alloc_pages_nodemask(gfp, order,
1564			zonelist_policy(gfp, pol), nodemask_policy(gfp, pol));
1565}
1566EXPORT_SYMBOL(alloc_pages_current);
1567
1568/*
1569 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1570 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1571 * with the mems_allowed returned by cpuset_mems_allowed().  This
1572 * keeps mempolicies cpuset relative after its cpuset moves.  See
1573 * further kernel/cpuset.c update_nodemask().
1574 */
1575
1576/* Slow path of a mempolicy copy */
1577struct mempolicy *__mpol_copy(struct mempolicy *old)
1578{
1579	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1580
1581	if (!new)
1582		return ERR_PTR(-ENOMEM);
1583	if (current_cpuset_is_being_rebound()) {
1584		nodemask_t mems = cpuset_mems_allowed(current);
1585		mpol_rebind_policy(old, &mems);
1586	}
1587	*new = *old;
1588	atomic_set(&new->refcnt, 1);
1589	return new;
1590}
1591
1592static int mpol_match_intent(const struct mempolicy *a,
1593			     const struct mempolicy *b)
1594{
1595	if (a->flags != b->flags)
1596		return 0;
1597	if (!mpol_store_user_nodemask(a))
1598		return 1;
1599	return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
1600}
1601
1602/* Slow path of a mempolicy comparison */
1603int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1604{
1605	if (!a || !b)
1606		return 0;
1607	if (a->policy != b->policy)
1608		return 0;
1609	if (a->policy != MPOL_DEFAULT && !mpol_match_intent(a, b))
1610		return 0;
1611	switch (a->policy) {
1612	case MPOL_DEFAULT:
1613		return 1;
1614	case MPOL_BIND:
1615		/* Fall through */
1616	case MPOL_INTERLEAVE:
1617		return nodes_equal(a->v.nodes, b->v.nodes);
1618	case MPOL_PREFERRED:
1619		return a->v.preferred_node == b->v.preferred_node;
1620	default:
1621		BUG();
1622		return 0;
1623	}
1624}
1625
1626/* Slow path of a mpol destructor. */
1627void __mpol_free(struct mempolicy *p)
1628{
1629	if (!atomic_dec_and_test(&p->refcnt))
1630		return;
1631	p->policy = MPOL_DEFAULT;
1632	kmem_cache_free(policy_cache, p);
1633}
1634
1635/*
1636 * Shared memory backing store policy support.
1637 *
1638 * Remember policies even when nobody has shared memory mapped.
1639 * The policies are kept in Red-Black tree linked from the inode.
1640 * They are protected by the sp->lock spinlock, which should be held
1641 * for any accesses to the tree.
1642 */
1643
1644/* lookup first element intersecting start-end */
1645/* Caller holds sp->lock */
1646static struct sp_node *
1647sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1648{
1649	struct rb_node *n = sp->root.rb_node;
1650
1651	while (n) {
1652		struct sp_node *p = rb_entry(n, struct sp_node, nd);
1653
1654		if (start >= p->end)
1655			n = n->rb_right;
1656		else if (end <= p->start)
1657			n = n->rb_left;
1658		else
1659			break;
1660	}
1661	if (!n)
1662		return NULL;
1663	for (;;) {
1664		struct sp_node *w = NULL;
1665		struct rb_node *prev = rb_prev(n);
1666		if (!prev)
1667			break;
1668		w = rb_entry(prev, struct sp_node, nd);
1669		if (w->end <= start)
1670			break;
1671		n = prev;
1672	}
1673	return rb_entry(n, struct sp_node, nd);
1674}
1675
1676/* Insert a new shared policy into the list. */
1677/* Caller holds sp->lock */
1678static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1679{
1680	struct rb_node **p = &sp->root.rb_node;
1681	struct rb_node *parent = NULL;
1682	struct sp_node *nd;
1683
1684	while (*p) {
1685		parent = *p;
1686		nd = rb_entry(parent, struct sp_node, nd);
1687		if (new->start < nd->start)
1688			p = &(*p)->rb_left;
1689		else if (new->end > nd->end)
1690			p = &(*p)->rb_right;
1691		else
1692			BUG();
1693	}
1694	rb_link_node(&new->nd, parent, p);
1695	rb_insert_color(&new->nd, &sp->root);
1696	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1697		 new->policy ? new->policy->policy : 0);
1698}
1699
1700/* Find shared policy intersecting idx */
1701struct mempolicy *
1702mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1703{
1704	struct mempolicy *pol = NULL;
1705	struct sp_node *sn;
1706
1707	if (!sp->root.rb_node)
1708		return NULL;
1709	spin_lock(&sp->lock);
1710	sn = sp_lookup(sp, idx, idx+1);
1711	if (sn) {
1712		mpol_get(sn->policy);
1713		pol = sn->policy;
1714	}
1715	spin_unlock(&sp->lock);
1716	return pol;
1717}
1718
1719static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1720{
1721	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1722	rb_erase(&n->nd, &sp->root);
1723	mpol_free(n->policy);
1724	kmem_cache_free(sn_cache, n);
1725}
1726
1727static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1728				struct mempolicy *pol)
1729{
1730	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1731
1732	if (!n)
1733		return NULL;
1734	n->start = start;
1735	n->end = end;
1736	mpol_get(pol);
1737	n->policy = pol;
1738	return n;
1739}
1740
1741/* Replace a policy range. */
1742static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1743				 unsigned long end, struct sp_node *new)
1744{
1745	struct sp_node *n, *new2 = NULL;
1746
1747restart:
1748	spin_lock(&sp->lock);
1749	n = sp_lookup(sp, start, end);
1750	/* Take care of old policies in the same range. */
1751	while (n && n->start < end) {
1752		struct rb_node *next = rb_next(&n->nd);
1753		if (n->start >= start) {
1754			if (n->end <= end)
1755				sp_delete(sp, n);
1756			else
1757				n->start = end;
1758		} else {
1759			/* Old policy spanning whole new range. */
1760			if (n->end > end) {
1761				if (!new2) {
1762					spin_unlock(&sp->lock);
1763					new2 = sp_alloc(end, n->end, n->policy);
1764					if (!new2)
1765						return -ENOMEM;
1766					goto restart;
1767				}
1768				n->end = start;
1769				sp_insert(sp, new2);
1770				new2 = NULL;
1771				break;
1772			} else
1773				n->end = start;
1774		}
1775		if (!next)
1776			break;
1777		n = rb_entry(next, struct sp_node, nd);
1778	}
1779	if (new)
1780		sp_insert(sp, new);
1781	spin_unlock(&sp->lock);
1782	if (new2) {
1783		mpol_free(new2->policy);
1784		kmem_cache_free(sn_cache, new2);
1785	}
1786	return 0;
1787}
1788
1789void mpol_shared_policy_init(struct shared_policy *info, unsigned short policy,
1790			unsigned short flags, nodemask_t *policy_nodes)
1791{
1792	info->root = RB_ROOT;
1793	spin_lock_init(&info->lock);
1794
1795	if (policy != MPOL_DEFAULT) {
1796		struct mempolicy *newpol;
1797
1798		/* Falls back to MPOL_DEFAULT on any error */
1799		newpol = mpol_new(policy, flags, policy_nodes);
1800		if (!IS_ERR(newpol)) {
1801			/* Create pseudo-vma that contains just the policy */
1802			struct vm_area_struct pvma;
1803
1804			memset(&pvma, 0, sizeof(struct vm_area_struct));
1805			/* Policy covers entire file */
1806			pvma.vm_end = TASK_SIZE;
1807			mpol_set_shared_policy(info, &pvma, newpol);
1808			mpol_free(newpol);
1809		}
1810	}
1811}
1812
1813int mpol_set_shared_policy(struct shared_policy *info,
1814			struct vm_area_struct *vma, struct mempolicy *npol)
1815{
1816	int err;
1817	struct sp_node *new = NULL;
1818	unsigned long sz = vma_pages(vma);
1819
1820	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
1821		 vma->vm_pgoff,
1822		 sz, npol ? npol->policy : -1,
1823		 npol ? npol->flags : -1,
1824		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1825
1826	if (npol) {
1827		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1828		if (!new)
1829			return -ENOMEM;
1830	}
1831	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1832	if (err && new)
1833		kmem_cache_free(sn_cache, new);
1834	return err;
1835}
1836
1837/* Free a backing policy store on inode delete. */
1838void mpol_free_shared_policy(struct shared_policy *p)
1839{
1840	struct sp_node *n;
1841	struct rb_node *next;
1842
1843	if (!p->root.rb_node)
1844		return;
1845	spin_lock(&p->lock);
1846	next = rb_first(&p->root);
1847	while (next) {
1848		n = rb_entry(next, struct sp_node, nd);
1849		next = rb_next(&n->nd);
1850		rb_erase(&n->nd, &p->root);
1851		mpol_free(n->policy);
1852		kmem_cache_free(sn_cache, n);
1853	}
1854	spin_unlock(&p->lock);
1855}
1856
1857/* assumes fs == KERNEL_DS */
1858void __init numa_policy_init(void)
1859{
1860	nodemask_t interleave_nodes;
1861	unsigned long largest = 0;
1862	int nid, prefer = 0;
1863
1864	policy_cache = kmem_cache_create("numa_policy",
1865					 sizeof(struct mempolicy),
1866					 0, SLAB_PANIC, NULL);
1867
1868	sn_cache = kmem_cache_create("shared_policy_node",
1869				     sizeof(struct sp_node),
1870				     0, SLAB_PANIC, NULL);
1871
1872	/*
1873	 * Set interleaving policy for system init. Interleaving is only
1874	 * enabled across suitably sized nodes (default is >= 16MB), or
1875	 * fall back to the largest node if they're all smaller.
1876	 */
1877	nodes_clear(interleave_nodes);
1878	for_each_node_state(nid, N_HIGH_MEMORY) {
1879		unsigned long total_pages = node_present_pages(nid);
1880
1881		/* Preserve the largest node */
1882		if (largest < total_pages) {
1883			largest = total_pages;
1884			prefer = nid;
1885		}
1886
1887		/* Interleave this node? */
1888		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
1889			node_set(nid, interleave_nodes);
1890	}
1891
1892	/* All too small, use the largest */
1893	if (unlikely(nodes_empty(interleave_nodes)))
1894		node_set(prefer, interleave_nodes);
1895
1896	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
1897		printk("numa_policy_init: interleaving failed\n");
1898}
1899
1900/* Reset policy of current process to default */
1901void numa_default_policy(void)
1902{
1903	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
1904}
1905
1906/*
1907 * Display pages allocated per node and memory policy via /proc.
1908 */
1909static const char * const policy_types[] =
1910	{ "default", "prefer", "bind", "interleave" };
1911
1912/*
1913 * Convert a mempolicy into a string.
1914 * Returns the number of characters in buffer (if positive)
1915 * or an error (negative)
1916 */
1917static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1918{
1919	char *p = buffer;
1920	int l;
1921	nodemask_t nodes;
1922	unsigned short mode = pol ? pol->policy : MPOL_DEFAULT;
1923	unsigned short flags = pol ? pol->flags : 0;
1924
1925	switch (mode) {
1926	case MPOL_DEFAULT:
1927		nodes_clear(nodes);
1928		break;
1929
1930	case MPOL_PREFERRED:
1931		nodes_clear(nodes);
1932		node_set(pol->v.preferred_node, nodes);
1933		break;
1934
1935	case MPOL_BIND:
1936		/* Fall through */
1937	case MPOL_INTERLEAVE:
1938		nodes = pol->v.nodes;
1939		break;
1940
1941	default:
1942		BUG();
1943		return -EFAULT;
1944	}
1945
1946	l = strlen(policy_types[mode]);
1947 	if (buffer + maxlen < p + l + 1)
1948 		return -ENOSPC;
1949
1950	strcpy(p, policy_types[mode]);
1951	p += l;
1952
1953	if (flags) {
1954		int need_bar = 0;
1955
1956		if (buffer + maxlen < p + 2)
1957			return -ENOSPC;
1958		*p++ = '=';
1959
1960		if (flags & MPOL_F_STATIC_NODES)
1961			p += sprintf(p, "%sstatic", need_bar++ ? "|" : "");
1962		if (flags & MPOL_F_RELATIVE_NODES)
1963			p += sprintf(p, "%srelative", need_bar++ ? "|" : "");
1964	}
1965
1966	if (!nodes_empty(nodes)) {
1967		if (buffer + maxlen < p + 2)
1968			return -ENOSPC;
1969		*p++ = '=';
1970	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1971	}
1972	return p - buffer;
1973}
1974
1975struct numa_maps {
1976	unsigned long pages;
1977	unsigned long anon;
1978	unsigned long active;
1979	unsigned long writeback;
1980	unsigned long mapcount_max;
1981	unsigned long dirty;
1982	unsigned long swapcache;
1983	unsigned long node[MAX_NUMNODES];
1984};
1985
1986static void gather_stats(struct page *page, void *private, int pte_dirty)
1987{
1988	struct numa_maps *md = private;
1989	int count = page_mapcount(page);
1990
1991	md->pages++;
1992	if (pte_dirty || PageDirty(page))
1993		md->dirty++;
1994
1995	if (PageSwapCache(page))
1996		md->swapcache++;
1997
1998	if (PageActive(page))
1999		md->active++;
2000
2001	if (PageWriteback(page))
2002		md->writeback++;
2003
2004	if (PageAnon(page))
2005		md->anon++;
2006
2007	if (count > md->mapcount_max)
2008		md->mapcount_max = count;
2009
2010	md->node[page_to_nid(page)]++;
2011}
2012
2013#ifdef CONFIG_HUGETLB_PAGE
2014static void check_huge_range(struct vm_area_struct *vma,
2015		unsigned long start, unsigned long end,
2016		struct numa_maps *md)
2017{
2018	unsigned long addr;
2019	struct page *page;
2020
2021	for (addr = start; addr < end; addr += HPAGE_SIZE) {
2022		pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
2023		pte_t pte;
2024
2025		if (!ptep)
2026			continue;
2027
2028		pte = *ptep;
2029		if (pte_none(pte))
2030			continue;
2031
2032		page = pte_page(pte);
2033		if (!page)
2034			continue;
2035
2036		gather_stats(page, md, pte_dirty(*ptep));
2037	}
2038}
2039#else
2040static inline void check_huge_range(struct vm_area_struct *vma,
2041		unsigned long start, unsigned long end,
2042		struct numa_maps *md)
2043{
2044}
2045#endif
2046
2047int show_numa_map(struct seq_file *m, void *v)
2048{
2049	struct proc_maps_private *priv = m->private;
2050	struct vm_area_struct *vma = v;
2051	struct numa_maps *md;
2052	struct file *file = vma->vm_file;
2053	struct mm_struct *mm = vma->vm_mm;
2054	struct mempolicy *pol;
2055	int n;
2056	char buffer[50];
2057
2058	if (!mm)
2059		return 0;
2060
2061	md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2062	if (!md)
2063		return 0;
2064
2065	pol = get_vma_policy(priv->task, vma, vma->vm_start);
2066	mpol_to_str(buffer, sizeof(buffer), pol);
2067	/*
2068	 * unref shared or other task's mempolicy
2069	 */
2070	if (pol != &default_policy && pol != current->mempolicy)
2071		__mpol_free(pol);
2072
2073	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2074
2075	if (file) {
2076		seq_printf(m, " file=");
2077		seq_path(m, &file->f_path, "\n\t= ");
2078	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2079		seq_printf(m, " heap");
2080	} else if (vma->vm_start <= mm->start_stack &&
2081			vma->vm_end >= mm->start_stack) {
2082		seq_printf(m, " stack");
2083	}
2084
2085	if (is_vm_hugetlb_page(vma)) {
2086		check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2087		seq_printf(m, " huge");
2088	} else {
2089		check_pgd_range(vma, vma->vm_start, vma->vm_end,
2090			&node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2091	}
2092
2093	if (!md->pages)
2094		goto out;
2095
2096	if (md->anon)
2097		seq_printf(m," anon=%lu",md->anon);
2098
2099	if (md->dirty)
2100		seq_printf(m," dirty=%lu",md->dirty);
2101
2102	if (md->pages != md->anon && md->pages != md->dirty)
2103		seq_printf(m, " mapped=%lu", md->pages);
2104
2105	if (md->mapcount_max > 1)
2106		seq_printf(m, " mapmax=%lu", md->mapcount_max);
2107
2108	if (md->swapcache)
2109		seq_printf(m," swapcache=%lu", md->swapcache);
2110
2111	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2112		seq_printf(m," active=%lu", md->active);
2113
2114	if (md->writeback)
2115		seq_printf(m," writeback=%lu", md->writeback);
2116
2117	for_each_node_state(n, N_HIGH_MEMORY)
2118		if (md->node[n])
2119			seq_printf(m, " N%d=%lu", n, md->node[n]);
2120out:
2121	seq_putc(m, '\n');
2122	kfree(md);
2123
2124	if (m->count < m->size)
2125		m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2126	return 0;
2127}
2128