mempolicy.c revision 55cfaa3cbdd29c4919ecb5fb8965c310f357e48c
1/*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave     Allocate memory interleaved over a set of nodes,
16 *                with normal fallback if it fails.
17 *                For VMA based allocations this interleaves based on the
18 *                offset into the backing object or offset into the mapping
19 *                for anonymous memory. For process policy an process counter
20 *                is used.
21 *
22 * bind           Only allocate memory on a specific set of nodes,
23 *                no fallback.
24 *                FIXME: memory is allocated starting with the first node
25 *                to the last. It would be better if bind would truly restrict
26 *                the allocation to memory nodes instead
27 *
28 * preferred       Try a specific node first before normal fallback.
29 *                As a special case node -1 here means do the allocation
30 *                on the local CPU. This is normally identical to default,
31 *                but useful to set in a VMA when you have a non default
32 *                process policy.
33 *
34 * default        Allocate on the local node first, or when on a VMA
35 *                use the process policy. This is what Linux always did
36 *		  in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57   fix mmap readahead to honour policy and enable policy for any page cache
58   object
59   statistics for bigpages
60   global policy for page cache? currently it uses process policy. Requires
61   first item above.
62   handle mremap for shared memory (currently ignored for the policy)
63   grows down?
64   make bind policy root only? It can trigger oom much faster and the
65   kernel is not always grateful with that.
66*/
67
68#include <linux/mempolicy.h>
69#include <linux/mm.h>
70#include <linux/highmem.h>
71#include <linux/hugetlb.h>
72#include <linux/kernel.h>
73#include <linux/sched.h>
74#include <linux/nodemask.h>
75#include <linux/cpuset.h>
76#include <linux/slab.h>
77#include <linux/string.h>
78#include <linux/module.h>
79#include <linux/nsproxy.h>
80#include <linux/interrupt.h>
81#include <linux/init.h>
82#include <linux/compat.h>
83#include <linux/swap.h>
84#include <linux/seq_file.h>
85#include <linux/proc_fs.h>
86#include <linux/migrate.h>
87#include <linux/ksm.h>
88#include <linux/rmap.h>
89#include <linux/security.h>
90#include <linux/syscalls.h>
91#include <linux/ctype.h>
92#include <linux/mm_inline.h>
93
94#include <asm/tlbflush.h>
95#include <asm/uaccess.h>
96
97#include "internal.h"
98
99/* Internal flags */
100#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
101#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
102#define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2)		/* Gather statistics */
103
104static struct kmem_cache *policy_cache;
105static struct kmem_cache *sn_cache;
106
107/* Highest zone. An specific allocation for a zone below that is not
108   policied. */
109enum zone_type policy_zone = 0;
110
111/*
112 * run-time system-wide default policy => local allocation
113 */
114struct mempolicy default_policy = {
115	.refcnt = ATOMIC_INIT(1), /* never free it */
116	.mode = MPOL_PREFERRED,
117	.flags = MPOL_F_LOCAL,
118};
119
120static const struct mempolicy_operations {
121	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122	/*
123	 * If read-side task has no lock to protect task->mempolicy, write-side
124	 * task will rebind the task->mempolicy by two step. The first step is
125	 * setting all the newly nodes, and the second step is cleaning all the
126	 * disallowed nodes. In this way, we can avoid finding no node to alloc
127	 * page.
128	 * If we have a lock to protect task->mempolicy in read-side, we do
129	 * rebind directly.
130	 *
131	 * step:
132	 * 	MPOL_REBIND_ONCE - do rebind work at once
133	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
134	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
135	 */
136	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137			enum mpol_rebind_step step);
138} mpol_ops[MPOL_MAX];
139
140/* Check that the nodemask contains at least one populated zone */
141static int is_valid_nodemask(const nodemask_t *nodemask)
142{
143	int nd, k;
144
145	for_each_node_mask(nd, *nodemask) {
146		struct zone *z;
147
148		for (k = 0; k <= policy_zone; k++) {
149			z = &NODE_DATA(nd)->node_zones[k];
150			if (z->present_pages > 0)
151				return 1;
152		}
153	}
154
155	return 0;
156}
157
158static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159{
160	return pol->flags & MPOL_MODE_FLAGS;
161}
162
163static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164				   const nodemask_t *rel)
165{
166	nodemask_t tmp;
167	nodes_fold(tmp, *orig, nodes_weight(*rel));
168	nodes_onto(*ret, tmp, *rel);
169}
170
171static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172{
173	if (nodes_empty(*nodes))
174		return -EINVAL;
175	pol->v.nodes = *nodes;
176	return 0;
177}
178
179static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180{
181	if (!nodes)
182		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
183	else if (nodes_empty(*nodes))
184		return -EINVAL;			/*  no allowed nodes */
185	else
186		pol->v.preferred_node = first_node(*nodes);
187	return 0;
188}
189
190static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191{
192	if (!is_valid_nodemask(nodes))
193		return -EINVAL;
194	pol->v.nodes = *nodes;
195	return 0;
196}
197
198/*
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy.  mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags.  But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
203 *
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy.  May also be called holding the mmap_semaphore for write.
206 */
207static int mpol_set_nodemask(struct mempolicy *pol,
208		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
209{
210	int ret;
211
212	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213	if (pol == NULL)
214		return 0;
215	/* Check N_HIGH_MEMORY */
216	nodes_and(nsc->mask1,
217		  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218
219	VM_BUG_ON(!nodes);
220	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221		nodes = NULL;	/* explicit local allocation */
222	else {
223		if (pol->flags & MPOL_F_RELATIVE_NODES)
224			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225		else
226			nodes_and(nsc->mask2, *nodes, nsc->mask1);
227
228		if (mpol_store_user_nodemask(pol))
229			pol->w.user_nodemask = *nodes;
230		else
231			pol->w.cpuset_mems_allowed =
232						cpuset_current_mems_allowed;
233	}
234
235	if (nodes)
236		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237	else
238		ret = mpol_ops[pol->mode].create(pol, NULL);
239	return ret;
240}
241
242/*
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
245 */
246static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247				  nodemask_t *nodes)
248{
249	struct mempolicy *policy;
250
251	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253
254	if (mode == MPOL_DEFAULT) {
255		if (nodes && !nodes_empty(*nodes))
256			return ERR_PTR(-EINVAL);
257		return NULL;	/* simply delete any existing policy */
258	}
259	VM_BUG_ON(!nodes);
260
261	/*
262	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264	 * All other modes require a valid pointer to a non-empty nodemask.
265	 */
266	if (mode == MPOL_PREFERRED) {
267		if (nodes_empty(*nodes)) {
268			if (((flags & MPOL_F_STATIC_NODES) ||
269			     (flags & MPOL_F_RELATIVE_NODES)))
270				return ERR_PTR(-EINVAL);
271		}
272	} else if (nodes_empty(*nodes))
273		return ERR_PTR(-EINVAL);
274	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275	if (!policy)
276		return ERR_PTR(-ENOMEM);
277	atomic_set(&policy->refcnt, 1);
278	policy->mode = mode;
279	policy->flags = flags;
280
281	return policy;
282}
283
284/* Slow path of a mpol destructor. */
285void __mpol_put(struct mempolicy *p)
286{
287	if (!atomic_dec_and_test(&p->refcnt))
288		return;
289	kmem_cache_free(policy_cache, p);
290}
291
292static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293				enum mpol_rebind_step step)
294{
295}
296
297/*
298 * step:
299 * 	MPOL_REBIND_ONCE  - do rebind work at once
300 * 	MPOL_REBIND_STEP1 - set all the newly nodes
301 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
302 */
303static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304				 enum mpol_rebind_step step)
305{
306	nodemask_t tmp;
307
308	if (pol->flags & MPOL_F_STATIC_NODES)
309		nodes_and(tmp, pol->w.user_nodemask, *nodes);
310	else if (pol->flags & MPOL_F_RELATIVE_NODES)
311		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312	else {
313		/*
314		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315		 * result
316		 */
317		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318			nodes_remap(tmp, pol->v.nodes,
319					pol->w.cpuset_mems_allowed, *nodes);
320			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321		} else if (step == MPOL_REBIND_STEP2) {
322			tmp = pol->w.cpuset_mems_allowed;
323			pol->w.cpuset_mems_allowed = *nodes;
324		} else
325			BUG();
326	}
327
328	if (nodes_empty(tmp))
329		tmp = *nodes;
330
331	if (step == MPOL_REBIND_STEP1)
332		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334		pol->v.nodes = tmp;
335	else
336		BUG();
337
338	if (!node_isset(current->il_next, tmp)) {
339		current->il_next = next_node(current->il_next, tmp);
340		if (current->il_next >= MAX_NUMNODES)
341			current->il_next = first_node(tmp);
342		if (current->il_next >= MAX_NUMNODES)
343			current->il_next = numa_node_id();
344	}
345}
346
347static void mpol_rebind_preferred(struct mempolicy *pol,
348				  const nodemask_t *nodes,
349				  enum mpol_rebind_step step)
350{
351	nodemask_t tmp;
352
353	if (pol->flags & MPOL_F_STATIC_NODES) {
354		int node = first_node(pol->w.user_nodemask);
355
356		if (node_isset(node, *nodes)) {
357			pol->v.preferred_node = node;
358			pol->flags &= ~MPOL_F_LOCAL;
359		} else
360			pol->flags |= MPOL_F_LOCAL;
361	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363		pol->v.preferred_node = first_node(tmp);
364	} else if (!(pol->flags & MPOL_F_LOCAL)) {
365		pol->v.preferred_node = node_remap(pol->v.preferred_node,
366						   pol->w.cpuset_mems_allowed,
367						   *nodes);
368		pol->w.cpuset_mems_allowed = *nodes;
369	}
370}
371
372/*
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
374 *
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
379 * page.
380 * If we have a lock to protect task->mempolicy in read-side, we do
381 * rebind directly.
382 *
383 * step:
384 * 	MPOL_REBIND_ONCE  - do rebind work at once
385 * 	MPOL_REBIND_STEP1 - set all the newly nodes
386 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
387 */
388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389				enum mpol_rebind_step step)
390{
391	if (!pol)
392		return;
393	if (!mpol_store_user_nodemask(pol) && step == 0 &&
394	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395		return;
396
397	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398		return;
399
400	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401		BUG();
402
403	if (step == MPOL_REBIND_STEP1)
404		pol->flags |= MPOL_F_REBINDING;
405	else if (step == MPOL_REBIND_STEP2)
406		pol->flags &= ~MPOL_F_REBINDING;
407	else if (step >= MPOL_REBIND_NSTEP)
408		BUG();
409
410	mpol_ops[pol->mode].rebind(pol, newmask, step);
411}
412
413/*
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
416 *
417 * Called with task's alloc_lock held.
418 */
419
420void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421			enum mpol_rebind_step step)
422{
423	mpol_rebind_policy(tsk->mempolicy, new, step);
424}
425
426/*
427 * Rebind each vma in mm to new nodemask.
428 *
429 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
430 */
431
432void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433{
434	struct vm_area_struct *vma;
435
436	down_write(&mm->mmap_sem);
437	for (vma = mm->mmap; vma; vma = vma->vm_next)
438		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439	up_write(&mm->mmap_sem);
440}
441
442static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443	[MPOL_DEFAULT] = {
444		.rebind = mpol_rebind_default,
445	},
446	[MPOL_INTERLEAVE] = {
447		.create = mpol_new_interleave,
448		.rebind = mpol_rebind_nodemask,
449	},
450	[MPOL_PREFERRED] = {
451		.create = mpol_new_preferred,
452		.rebind = mpol_rebind_preferred,
453	},
454	[MPOL_BIND] = {
455		.create = mpol_new_bind,
456		.rebind = mpol_rebind_nodemask,
457	},
458};
459
460static void gather_stats(struct page *, void *, int pte_dirty);
461static void migrate_page_add(struct page *page, struct list_head *pagelist,
462				unsigned long flags);
463
464/* Scan through pages checking if pages follow certain conditions. */
465static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
466		unsigned long addr, unsigned long end,
467		const nodemask_t *nodes, unsigned long flags,
468		void *private)
469{
470	pte_t *orig_pte;
471	pte_t *pte;
472	spinlock_t *ptl;
473
474	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
475	do {
476		struct page *page;
477		int nid;
478
479		if (!pte_present(*pte))
480			continue;
481		page = vm_normal_page(vma, addr, *pte);
482		if (!page)
483			continue;
484		/*
485		 * vm_normal_page() filters out zero pages, but there might
486		 * still be PageReserved pages to skip, perhaps in a VDSO.
487		 * And we cannot move PageKsm pages sensibly or safely yet.
488		 */
489		if (PageReserved(page) || PageKsm(page))
490			continue;
491		nid = page_to_nid(page);
492		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
493			continue;
494
495		if (flags & MPOL_MF_STATS)
496			gather_stats(page, private, pte_dirty(*pte));
497		else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
498			migrate_page_add(page, private, flags);
499		else
500			break;
501	} while (pte++, addr += PAGE_SIZE, addr != end);
502	pte_unmap_unlock(orig_pte, ptl);
503	return addr != end;
504}
505
506static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
507		unsigned long addr, unsigned long end,
508		const nodemask_t *nodes, unsigned long flags,
509		void *private)
510{
511	pmd_t *pmd;
512	unsigned long next;
513
514	pmd = pmd_offset(pud, addr);
515	do {
516		next = pmd_addr_end(addr, end);
517		if (pmd_none_or_clear_bad(pmd))
518			continue;
519		if (check_pte_range(vma, pmd, addr, next, nodes,
520				    flags, private))
521			return -EIO;
522	} while (pmd++, addr = next, addr != end);
523	return 0;
524}
525
526static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
527		unsigned long addr, unsigned long end,
528		const nodemask_t *nodes, unsigned long flags,
529		void *private)
530{
531	pud_t *pud;
532	unsigned long next;
533
534	pud = pud_offset(pgd, addr);
535	do {
536		next = pud_addr_end(addr, end);
537		if (pud_none_or_clear_bad(pud))
538			continue;
539		if (check_pmd_range(vma, pud, addr, next, nodes,
540				    flags, private))
541			return -EIO;
542	} while (pud++, addr = next, addr != end);
543	return 0;
544}
545
546static inline int check_pgd_range(struct vm_area_struct *vma,
547		unsigned long addr, unsigned long end,
548		const nodemask_t *nodes, unsigned long flags,
549		void *private)
550{
551	pgd_t *pgd;
552	unsigned long next;
553
554	pgd = pgd_offset(vma->vm_mm, addr);
555	do {
556		next = pgd_addr_end(addr, end);
557		if (pgd_none_or_clear_bad(pgd))
558			continue;
559		if (check_pud_range(vma, pgd, addr, next, nodes,
560				    flags, private))
561			return -EIO;
562	} while (pgd++, addr = next, addr != end);
563	return 0;
564}
565
566/*
567 * Check if all pages in a range are on a set of nodes.
568 * If pagelist != NULL then isolate pages from the LRU and
569 * put them on the pagelist.
570 */
571static struct vm_area_struct *
572check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
573		const nodemask_t *nodes, unsigned long flags, void *private)
574{
575	int err;
576	struct vm_area_struct *first, *vma, *prev;
577
578
579	first = find_vma(mm, start);
580	if (!first)
581		return ERR_PTR(-EFAULT);
582	prev = NULL;
583	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
584		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
585			if (!vma->vm_next && vma->vm_end < end)
586				return ERR_PTR(-EFAULT);
587			if (prev && prev->vm_end < vma->vm_start)
588				return ERR_PTR(-EFAULT);
589		}
590		if (!is_vm_hugetlb_page(vma) &&
591		    ((flags & MPOL_MF_STRICT) ||
592		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
593				vma_migratable(vma)))) {
594			unsigned long endvma = vma->vm_end;
595
596			if (endvma > end)
597				endvma = end;
598			if (vma->vm_start > start)
599				start = vma->vm_start;
600			err = check_pgd_range(vma, start, endvma, nodes,
601						flags, private);
602			if (err) {
603				first = ERR_PTR(err);
604				break;
605			}
606		}
607		prev = vma;
608	}
609	return first;
610}
611
612/* Apply policy to a single VMA */
613static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
614{
615	int err = 0;
616	struct mempolicy *old = vma->vm_policy;
617
618	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
619		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
620		 vma->vm_ops, vma->vm_file,
621		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
622
623	if (vma->vm_ops && vma->vm_ops->set_policy)
624		err = vma->vm_ops->set_policy(vma, new);
625	if (!err) {
626		mpol_get(new);
627		vma->vm_policy = new;
628		mpol_put(old);
629	}
630	return err;
631}
632
633/* Step 2: apply policy to a range and do splits. */
634static int mbind_range(struct mm_struct *mm, unsigned long start,
635		       unsigned long end, struct mempolicy *new_pol)
636{
637	struct vm_area_struct *next;
638	struct vm_area_struct *prev;
639	struct vm_area_struct *vma;
640	int err = 0;
641	pgoff_t pgoff;
642	unsigned long vmstart;
643	unsigned long vmend;
644
645	vma = find_vma_prev(mm, start, &prev);
646	if (!vma || vma->vm_start > start)
647		return -EFAULT;
648
649	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
650		next = vma->vm_next;
651		vmstart = max(start, vma->vm_start);
652		vmend   = min(end, vma->vm_end);
653
654		pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
655		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
656				  vma->anon_vma, vma->vm_file, pgoff, new_pol);
657		if (prev) {
658			vma = prev;
659			next = vma->vm_next;
660			continue;
661		}
662		if (vma->vm_start != vmstart) {
663			err = split_vma(vma->vm_mm, vma, vmstart, 1);
664			if (err)
665				goto out;
666		}
667		if (vma->vm_end != vmend) {
668			err = split_vma(vma->vm_mm, vma, vmend, 0);
669			if (err)
670				goto out;
671		}
672		err = policy_vma(vma, new_pol);
673		if (err)
674			goto out;
675	}
676
677 out:
678	return err;
679}
680
681/*
682 * Update task->flags PF_MEMPOLICY bit: set iff non-default
683 * mempolicy.  Allows more rapid checking of this (combined perhaps
684 * with other PF_* flag bits) on memory allocation hot code paths.
685 *
686 * If called from outside this file, the task 'p' should -only- be
687 * a newly forked child not yet visible on the task list, because
688 * manipulating the task flags of a visible task is not safe.
689 *
690 * The above limitation is why this routine has the funny name
691 * mpol_fix_fork_child_flag().
692 *
693 * It is also safe to call this with a task pointer of current,
694 * which the static wrapper mpol_set_task_struct_flag() does,
695 * for use within this file.
696 */
697
698void mpol_fix_fork_child_flag(struct task_struct *p)
699{
700	if (p->mempolicy)
701		p->flags |= PF_MEMPOLICY;
702	else
703		p->flags &= ~PF_MEMPOLICY;
704}
705
706static void mpol_set_task_struct_flag(void)
707{
708	mpol_fix_fork_child_flag(current);
709}
710
711/* Set the process memory policy */
712static long do_set_mempolicy(unsigned short mode, unsigned short flags,
713			     nodemask_t *nodes)
714{
715	struct mempolicy *new, *old;
716	struct mm_struct *mm = current->mm;
717	NODEMASK_SCRATCH(scratch);
718	int ret;
719
720	if (!scratch)
721		return -ENOMEM;
722
723	new = mpol_new(mode, flags, nodes);
724	if (IS_ERR(new)) {
725		ret = PTR_ERR(new);
726		goto out;
727	}
728	/*
729	 * prevent changing our mempolicy while show_numa_maps()
730	 * is using it.
731	 * Note:  do_set_mempolicy() can be called at init time
732	 * with no 'mm'.
733	 */
734	if (mm)
735		down_write(&mm->mmap_sem);
736	task_lock(current);
737	ret = mpol_set_nodemask(new, nodes, scratch);
738	if (ret) {
739		task_unlock(current);
740		if (mm)
741			up_write(&mm->mmap_sem);
742		mpol_put(new);
743		goto out;
744	}
745	old = current->mempolicy;
746	current->mempolicy = new;
747	mpol_set_task_struct_flag();
748	if (new && new->mode == MPOL_INTERLEAVE &&
749	    nodes_weight(new->v.nodes))
750		current->il_next = first_node(new->v.nodes);
751	task_unlock(current);
752	if (mm)
753		up_write(&mm->mmap_sem);
754
755	mpol_put(old);
756	ret = 0;
757out:
758	NODEMASK_SCRATCH_FREE(scratch);
759	return ret;
760}
761
762/*
763 * Return nodemask for policy for get_mempolicy() query
764 *
765 * Called with task's alloc_lock held
766 */
767static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
768{
769	nodes_clear(*nodes);
770	if (p == &default_policy)
771		return;
772
773	switch (p->mode) {
774	case MPOL_BIND:
775		/* Fall through */
776	case MPOL_INTERLEAVE:
777		*nodes = p->v.nodes;
778		break;
779	case MPOL_PREFERRED:
780		if (!(p->flags & MPOL_F_LOCAL))
781			node_set(p->v.preferred_node, *nodes);
782		/* else return empty node mask for local allocation */
783		break;
784	default:
785		BUG();
786	}
787}
788
789static int lookup_node(struct mm_struct *mm, unsigned long addr)
790{
791	struct page *p;
792	int err;
793
794	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
795	if (err >= 0) {
796		err = page_to_nid(p);
797		put_page(p);
798	}
799	return err;
800}
801
802/* Retrieve NUMA policy */
803static long do_get_mempolicy(int *policy, nodemask_t *nmask,
804			     unsigned long addr, unsigned long flags)
805{
806	int err;
807	struct mm_struct *mm = current->mm;
808	struct vm_area_struct *vma = NULL;
809	struct mempolicy *pol = current->mempolicy;
810
811	if (flags &
812		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
813		return -EINVAL;
814
815	if (flags & MPOL_F_MEMS_ALLOWED) {
816		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
817			return -EINVAL;
818		*policy = 0;	/* just so it's initialized */
819		task_lock(current);
820		*nmask  = cpuset_current_mems_allowed;
821		task_unlock(current);
822		return 0;
823	}
824
825	if (flags & MPOL_F_ADDR) {
826		/*
827		 * Do NOT fall back to task policy if the
828		 * vma/shared policy at addr is NULL.  We
829		 * want to return MPOL_DEFAULT in this case.
830		 */
831		down_read(&mm->mmap_sem);
832		vma = find_vma_intersection(mm, addr, addr+1);
833		if (!vma) {
834			up_read(&mm->mmap_sem);
835			return -EFAULT;
836		}
837		if (vma->vm_ops && vma->vm_ops->get_policy)
838			pol = vma->vm_ops->get_policy(vma, addr);
839		else
840			pol = vma->vm_policy;
841	} else if (addr)
842		return -EINVAL;
843
844	if (!pol)
845		pol = &default_policy;	/* indicates default behavior */
846
847	if (flags & MPOL_F_NODE) {
848		if (flags & MPOL_F_ADDR) {
849			err = lookup_node(mm, addr);
850			if (err < 0)
851				goto out;
852			*policy = err;
853		} else if (pol == current->mempolicy &&
854				pol->mode == MPOL_INTERLEAVE) {
855			*policy = current->il_next;
856		} else {
857			err = -EINVAL;
858			goto out;
859		}
860	} else {
861		*policy = pol == &default_policy ? MPOL_DEFAULT :
862						pol->mode;
863		/*
864		 * Internal mempolicy flags must be masked off before exposing
865		 * the policy to userspace.
866		 */
867		*policy |= (pol->flags & MPOL_MODE_FLAGS);
868	}
869
870	if (vma) {
871		up_read(&current->mm->mmap_sem);
872		vma = NULL;
873	}
874
875	err = 0;
876	if (nmask) {
877		if (mpol_store_user_nodemask(pol)) {
878			*nmask = pol->w.user_nodemask;
879		} else {
880			task_lock(current);
881			get_policy_nodemask(pol, nmask);
882			task_unlock(current);
883		}
884	}
885
886 out:
887	mpol_cond_put(pol);
888	if (vma)
889		up_read(&current->mm->mmap_sem);
890	return err;
891}
892
893#ifdef CONFIG_MIGRATION
894/*
895 * page migration
896 */
897static void migrate_page_add(struct page *page, struct list_head *pagelist,
898				unsigned long flags)
899{
900	/*
901	 * Avoid migrating a page that is shared with others.
902	 */
903	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
904		if (!isolate_lru_page(page)) {
905			list_add_tail(&page->lru, pagelist);
906			inc_zone_page_state(page, NR_ISOLATED_ANON +
907					    page_is_file_cache(page));
908		}
909	}
910}
911
912static struct page *new_node_page(struct page *page, unsigned long node, int **x)
913{
914	return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
915}
916
917/*
918 * Migrate pages from one node to a target node.
919 * Returns error or the number of pages not migrated.
920 */
921static int migrate_to_node(struct mm_struct *mm, int source, int dest,
922			   int flags)
923{
924	nodemask_t nmask;
925	LIST_HEAD(pagelist);
926	int err = 0;
927	struct vm_area_struct *vma;
928
929	nodes_clear(nmask);
930	node_set(source, nmask);
931
932	vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
933			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
934	if (IS_ERR(vma))
935		return PTR_ERR(vma);
936
937	if (!list_empty(&pagelist)) {
938		err = migrate_pages(&pagelist, new_node_page, dest, 0);
939		if (err)
940			putback_lru_pages(&pagelist);
941	}
942
943	return err;
944}
945
946/*
947 * Move pages between the two nodesets so as to preserve the physical
948 * layout as much as possible.
949 *
950 * Returns the number of page that could not be moved.
951 */
952int do_migrate_pages(struct mm_struct *mm,
953	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
954{
955	int busy = 0;
956	int err;
957	nodemask_t tmp;
958
959	err = migrate_prep();
960	if (err)
961		return err;
962
963	down_read(&mm->mmap_sem);
964
965	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
966	if (err)
967		goto out;
968
969	/*
970	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
971	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
972	 * bit in 'tmp', and return that <source, dest> pair for migration.
973	 * The pair of nodemasks 'to' and 'from' define the map.
974	 *
975	 * If no pair of bits is found that way, fallback to picking some
976	 * pair of 'source' and 'dest' bits that are not the same.  If the
977	 * 'source' and 'dest' bits are the same, this represents a node
978	 * that will be migrating to itself, so no pages need move.
979	 *
980	 * If no bits are left in 'tmp', or if all remaining bits left
981	 * in 'tmp' correspond to the same bit in 'to', return false
982	 * (nothing left to migrate).
983	 *
984	 * This lets us pick a pair of nodes to migrate between, such that
985	 * if possible the dest node is not already occupied by some other
986	 * source node, minimizing the risk of overloading the memory on a
987	 * node that would happen if we migrated incoming memory to a node
988	 * before migrating outgoing memory source that same node.
989	 *
990	 * A single scan of tmp is sufficient.  As we go, we remember the
991	 * most recent <s, d> pair that moved (s != d).  If we find a pair
992	 * that not only moved, but what's better, moved to an empty slot
993	 * (d is not set in tmp), then we break out then, with that pair.
994	 * Otherwise when we finish scannng from_tmp, we at least have the
995	 * most recent <s, d> pair that moved.  If we get all the way through
996	 * the scan of tmp without finding any node that moved, much less
997	 * moved to an empty node, then there is nothing left worth migrating.
998	 */
999
1000	tmp = *from_nodes;
1001	while (!nodes_empty(tmp)) {
1002		int s,d;
1003		int source = -1;
1004		int dest = 0;
1005
1006		for_each_node_mask(s, tmp) {
1007			d = node_remap(s, *from_nodes, *to_nodes);
1008			if (s == d)
1009				continue;
1010
1011			source = s;	/* Node moved. Memorize */
1012			dest = d;
1013
1014			/* dest not in remaining from nodes? */
1015			if (!node_isset(dest, tmp))
1016				break;
1017		}
1018		if (source == -1)
1019			break;
1020
1021		node_clear(source, tmp);
1022		err = migrate_to_node(mm, source, dest, flags);
1023		if (err > 0)
1024			busy += err;
1025		if (err < 0)
1026			break;
1027	}
1028out:
1029	up_read(&mm->mmap_sem);
1030	if (err < 0)
1031		return err;
1032	return busy;
1033
1034}
1035
1036/*
1037 * Allocate a new page for page migration based on vma policy.
1038 * Start assuming that page is mapped by vma pointed to by @private.
1039 * Search forward from there, if not.  N.B., this assumes that the
1040 * list of pages handed to migrate_pages()--which is how we get here--
1041 * is in virtual address order.
1042 */
1043static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1044{
1045	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1046	unsigned long uninitialized_var(address);
1047
1048	while (vma) {
1049		address = page_address_in_vma(page, vma);
1050		if (address != -EFAULT)
1051			break;
1052		vma = vma->vm_next;
1053	}
1054
1055	/*
1056	 * if !vma, alloc_page_vma() will use task or system default policy
1057	 */
1058	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1059}
1060#else
1061
1062static void migrate_page_add(struct page *page, struct list_head *pagelist,
1063				unsigned long flags)
1064{
1065}
1066
1067int do_migrate_pages(struct mm_struct *mm,
1068	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1069{
1070	return -ENOSYS;
1071}
1072
1073static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1074{
1075	return NULL;
1076}
1077#endif
1078
1079static long do_mbind(unsigned long start, unsigned long len,
1080		     unsigned short mode, unsigned short mode_flags,
1081		     nodemask_t *nmask, unsigned long flags)
1082{
1083	struct vm_area_struct *vma;
1084	struct mm_struct *mm = current->mm;
1085	struct mempolicy *new;
1086	unsigned long end;
1087	int err;
1088	LIST_HEAD(pagelist);
1089
1090	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1091				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1092		return -EINVAL;
1093	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1094		return -EPERM;
1095
1096	if (start & ~PAGE_MASK)
1097		return -EINVAL;
1098
1099	if (mode == MPOL_DEFAULT)
1100		flags &= ~MPOL_MF_STRICT;
1101
1102	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1103	end = start + len;
1104
1105	if (end < start)
1106		return -EINVAL;
1107	if (end == start)
1108		return 0;
1109
1110	new = mpol_new(mode, mode_flags, nmask);
1111	if (IS_ERR(new))
1112		return PTR_ERR(new);
1113
1114	/*
1115	 * If we are using the default policy then operation
1116	 * on discontinuous address spaces is okay after all
1117	 */
1118	if (!new)
1119		flags |= MPOL_MF_DISCONTIG_OK;
1120
1121	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1122		 start, start + len, mode, mode_flags,
1123		 nmask ? nodes_addr(*nmask)[0] : -1);
1124
1125	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1126
1127		err = migrate_prep();
1128		if (err)
1129			goto mpol_out;
1130	}
1131	{
1132		NODEMASK_SCRATCH(scratch);
1133		if (scratch) {
1134			down_write(&mm->mmap_sem);
1135			task_lock(current);
1136			err = mpol_set_nodemask(new, nmask, scratch);
1137			task_unlock(current);
1138			if (err)
1139				up_write(&mm->mmap_sem);
1140		} else
1141			err = -ENOMEM;
1142		NODEMASK_SCRATCH_FREE(scratch);
1143	}
1144	if (err)
1145		goto mpol_out;
1146
1147	vma = check_range(mm, start, end, nmask,
1148			  flags | MPOL_MF_INVERT, &pagelist);
1149
1150	err = PTR_ERR(vma);
1151	if (!IS_ERR(vma)) {
1152		int nr_failed = 0;
1153
1154		err = mbind_range(mm, start, end, new);
1155
1156		if (!list_empty(&pagelist)) {
1157			nr_failed = migrate_pages(&pagelist, new_vma_page,
1158						(unsigned long)vma, 0);
1159			if (nr_failed)
1160				putback_lru_pages(&pagelist);
1161		}
1162
1163		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1164			err = -EIO;
1165	} else
1166		putback_lru_pages(&pagelist);
1167
1168	up_write(&mm->mmap_sem);
1169 mpol_out:
1170	mpol_put(new);
1171	return err;
1172}
1173
1174/*
1175 * User space interface with variable sized bitmaps for nodelists.
1176 */
1177
1178/* Copy a node mask from user space. */
1179static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1180		     unsigned long maxnode)
1181{
1182	unsigned long k;
1183	unsigned long nlongs;
1184	unsigned long endmask;
1185
1186	--maxnode;
1187	nodes_clear(*nodes);
1188	if (maxnode == 0 || !nmask)
1189		return 0;
1190	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1191		return -EINVAL;
1192
1193	nlongs = BITS_TO_LONGS(maxnode);
1194	if ((maxnode % BITS_PER_LONG) == 0)
1195		endmask = ~0UL;
1196	else
1197		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1198
1199	/* When the user specified more nodes than supported just check
1200	   if the non supported part is all zero. */
1201	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1202		if (nlongs > PAGE_SIZE/sizeof(long))
1203			return -EINVAL;
1204		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1205			unsigned long t;
1206			if (get_user(t, nmask + k))
1207				return -EFAULT;
1208			if (k == nlongs - 1) {
1209				if (t & endmask)
1210					return -EINVAL;
1211			} else if (t)
1212				return -EINVAL;
1213		}
1214		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1215		endmask = ~0UL;
1216	}
1217
1218	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1219		return -EFAULT;
1220	nodes_addr(*nodes)[nlongs-1] &= endmask;
1221	return 0;
1222}
1223
1224/* Copy a kernel node mask to user space */
1225static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1226			      nodemask_t *nodes)
1227{
1228	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1229	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1230
1231	if (copy > nbytes) {
1232		if (copy > PAGE_SIZE)
1233			return -EINVAL;
1234		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1235			return -EFAULT;
1236		copy = nbytes;
1237	}
1238	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1239}
1240
1241SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1242		unsigned long, mode, unsigned long __user *, nmask,
1243		unsigned long, maxnode, unsigned, flags)
1244{
1245	nodemask_t nodes;
1246	int err;
1247	unsigned short mode_flags;
1248
1249	mode_flags = mode & MPOL_MODE_FLAGS;
1250	mode &= ~MPOL_MODE_FLAGS;
1251	if (mode >= MPOL_MAX)
1252		return -EINVAL;
1253	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1254	    (mode_flags & MPOL_F_RELATIVE_NODES))
1255		return -EINVAL;
1256	err = get_nodes(&nodes, nmask, maxnode);
1257	if (err)
1258		return err;
1259	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1260}
1261
1262/* Set the process memory policy */
1263SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1264		unsigned long, maxnode)
1265{
1266	int err;
1267	nodemask_t nodes;
1268	unsigned short flags;
1269
1270	flags = mode & MPOL_MODE_FLAGS;
1271	mode &= ~MPOL_MODE_FLAGS;
1272	if ((unsigned int)mode >= MPOL_MAX)
1273		return -EINVAL;
1274	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1275		return -EINVAL;
1276	err = get_nodes(&nodes, nmask, maxnode);
1277	if (err)
1278		return err;
1279	return do_set_mempolicy(mode, flags, &nodes);
1280}
1281
1282SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1283		const unsigned long __user *, old_nodes,
1284		const unsigned long __user *, new_nodes)
1285{
1286	const struct cred *cred = current_cred(), *tcred;
1287	struct mm_struct *mm = NULL;
1288	struct task_struct *task;
1289	nodemask_t task_nodes;
1290	int err;
1291	nodemask_t *old;
1292	nodemask_t *new;
1293	NODEMASK_SCRATCH(scratch);
1294
1295	if (!scratch)
1296		return -ENOMEM;
1297
1298	old = &scratch->mask1;
1299	new = &scratch->mask2;
1300
1301	err = get_nodes(old, old_nodes, maxnode);
1302	if (err)
1303		goto out;
1304
1305	err = get_nodes(new, new_nodes, maxnode);
1306	if (err)
1307		goto out;
1308
1309	/* Find the mm_struct */
1310	rcu_read_lock();
1311	read_lock(&tasklist_lock);
1312	task = pid ? find_task_by_vpid(pid) : current;
1313	if (!task) {
1314		read_unlock(&tasklist_lock);
1315		rcu_read_unlock();
1316		err = -ESRCH;
1317		goto out;
1318	}
1319	mm = get_task_mm(task);
1320	read_unlock(&tasklist_lock);
1321	rcu_read_unlock();
1322
1323	err = -EINVAL;
1324	if (!mm)
1325		goto out;
1326
1327	/*
1328	 * Check if this process has the right to modify the specified
1329	 * process. The right exists if the process has administrative
1330	 * capabilities, superuser privileges or the same
1331	 * userid as the target process.
1332	 */
1333	rcu_read_lock();
1334	tcred = __task_cred(task);
1335	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1336	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1337	    !capable(CAP_SYS_NICE)) {
1338		rcu_read_unlock();
1339		err = -EPERM;
1340		goto out;
1341	}
1342	rcu_read_unlock();
1343
1344	task_nodes = cpuset_mems_allowed(task);
1345	/* Is the user allowed to access the target nodes? */
1346	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1347		err = -EPERM;
1348		goto out;
1349	}
1350
1351	if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1352		err = -EINVAL;
1353		goto out;
1354	}
1355
1356	err = security_task_movememory(task);
1357	if (err)
1358		goto out;
1359
1360	err = do_migrate_pages(mm, old, new,
1361		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1362out:
1363	if (mm)
1364		mmput(mm);
1365	NODEMASK_SCRATCH_FREE(scratch);
1366
1367	return err;
1368}
1369
1370
1371/* Retrieve NUMA policy */
1372SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1373		unsigned long __user *, nmask, unsigned long, maxnode,
1374		unsigned long, addr, unsigned long, flags)
1375{
1376	int err;
1377	int uninitialized_var(pval);
1378	nodemask_t nodes;
1379
1380	if (nmask != NULL && maxnode < MAX_NUMNODES)
1381		return -EINVAL;
1382
1383	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1384
1385	if (err)
1386		return err;
1387
1388	if (policy && put_user(pval, policy))
1389		return -EFAULT;
1390
1391	if (nmask)
1392		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1393
1394	return err;
1395}
1396
1397#ifdef CONFIG_COMPAT
1398
1399asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1400				     compat_ulong_t __user *nmask,
1401				     compat_ulong_t maxnode,
1402				     compat_ulong_t addr, compat_ulong_t flags)
1403{
1404	long err;
1405	unsigned long __user *nm = NULL;
1406	unsigned long nr_bits, alloc_size;
1407	DECLARE_BITMAP(bm, MAX_NUMNODES);
1408
1409	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1410	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1411
1412	if (nmask)
1413		nm = compat_alloc_user_space(alloc_size);
1414
1415	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1416
1417	if (!err && nmask) {
1418		err = copy_from_user(bm, nm, alloc_size);
1419		/* ensure entire bitmap is zeroed */
1420		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1421		err |= compat_put_bitmap(nmask, bm, nr_bits);
1422	}
1423
1424	return err;
1425}
1426
1427asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1428				     compat_ulong_t maxnode)
1429{
1430	long err = 0;
1431	unsigned long __user *nm = NULL;
1432	unsigned long nr_bits, alloc_size;
1433	DECLARE_BITMAP(bm, MAX_NUMNODES);
1434
1435	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1436	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1437
1438	if (nmask) {
1439		err = compat_get_bitmap(bm, nmask, nr_bits);
1440		nm = compat_alloc_user_space(alloc_size);
1441		err |= copy_to_user(nm, bm, alloc_size);
1442	}
1443
1444	if (err)
1445		return -EFAULT;
1446
1447	return sys_set_mempolicy(mode, nm, nr_bits+1);
1448}
1449
1450asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1451			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1452			     compat_ulong_t maxnode, compat_ulong_t flags)
1453{
1454	long err = 0;
1455	unsigned long __user *nm = NULL;
1456	unsigned long nr_bits, alloc_size;
1457	nodemask_t bm;
1458
1459	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1460	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1461
1462	if (nmask) {
1463		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1464		nm = compat_alloc_user_space(alloc_size);
1465		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1466	}
1467
1468	if (err)
1469		return -EFAULT;
1470
1471	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1472}
1473
1474#endif
1475
1476/*
1477 * get_vma_policy(@task, @vma, @addr)
1478 * @task - task for fallback if vma policy == default
1479 * @vma   - virtual memory area whose policy is sought
1480 * @addr  - address in @vma for shared policy lookup
1481 *
1482 * Returns effective policy for a VMA at specified address.
1483 * Falls back to @task or system default policy, as necessary.
1484 * Current or other task's task mempolicy and non-shared vma policies
1485 * are protected by the task's mmap_sem, which must be held for read by
1486 * the caller.
1487 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1488 * count--added by the get_policy() vm_op, as appropriate--to protect against
1489 * freeing by another task.  It is the caller's responsibility to free the
1490 * extra reference for shared policies.
1491 */
1492static struct mempolicy *get_vma_policy(struct task_struct *task,
1493		struct vm_area_struct *vma, unsigned long addr)
1494{
1495	struct mempolicy *pol = task->mempolicy;
1496
1497	if (vma) {
1498		if (vma->vm_ops && vma->vm_ops->get_policy) {
1499			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1500									addr);
1501			if (vpol)
1502				pol = vpol;
1503		} else if (vma->vm_policy)
1504			pol = vma->vm_policy;
1505	}
1506	if (!pol)
1507		pol = &default_policy;
1508	return pol;
1509}
1510
1511/*
1512 * Return a nodemask representing a mempolicy for filtering nodes for
1513 * page allocation
1514 */
1515static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1516{
1517	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1518	if (unlikely(policy->mode == MPOL_BIND) &&
1519			gfp_zone(gfp) >= policy_zone &&
1520			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1521		return &policy->v.nodes;
1522
1523	return NULL;
1524}
1525
1526/* Return a zonelist indicated by gfp for node representing a mempolicy */
1527static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1528{
1529	int nd = numa_node_id();
1530
1531	switch (policy->mode) {
1532	case MPOL_PREFERRED:
1533		if (!(policy->flags & MPOL_F_LOCAL))
1534			nd = policy->v.preferred_node;
1535		break;
1536	case MPOL_BIND:
1537		/*
1538		 * Normally, MPOL_BIND allocations are node-local within the
1539		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1540		 * current node isn't part of the mask, we use the zonelist for
1541		 * the first node in the mask instead.
1542		 */
1543		if (unlikely(gfp & __GFP_THISNODE) &&
1544				unlikely(!node_isset(nd, policy->v.nodes)))
1545			nd = first_node(policy->v.nodes);
1546		break;
1547	default:
1548		BUG();
1549	}
1550	return node_zonelist(nd, gfp);
1551}
1552
1553/* Do dynamic interleaving for a process */
1554static unsigned interleave_nodes(struct mempolicy *policy)
1555{
1556	unsigned nid, next;
1557	struct task_struct *me = current;
1558
1559	nid = me->il_next;
1560	next = next_node(nid, policy->v.nodes);
1561	if (next >= MAX_NUMNODES)
1562		next = first_node(policy->v.nodes);
1563	if (next < MAX_NUMNODES)
1564		me->il_next = next;
1565	return nid;
1566}
1567
1568/*
1569 * Depending on the memory policy provide a node from which to allocate the
1570 * next slab entry.
1571 * @policy must be protected by freeing by the caller.  If @policy is
1572 * the current task's mempolicy, this protection is implicit, as only the
1573 * task can change it's policy.  The system default policy requires no
1574 * such protection.
1575 */
1576unsigned slab_node(struct mempolicy *policy)
1577{
1578	if (!policy || policy->flags & MPOL_F_LOCAL)
1579		return numa_node_id();
1580
1581	switch (policy->mode) {
1582	case MPOL_PREFERRED:
1583		/*
1584		 * handled MPOL_F_LOCAL above
1585		 */
1586		return policy->v.preferred_node;
1587
1588	case MPOL_INTERLEAVE:
1589		return interleave_nodes(policy);
1590
1591	case MPOL_BIND: {
1592		/*
1593		 * Follow bind policy behavior and start allocation at the
1594		 * first node.
1595		 */
1596		struct zonelist *zonelist;
1597		struct zone *zone;
1598		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1599		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1600		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1601							&policy->v.nodes,
1602							&zone);
1603		return zone ? zone->node : numa_node_id();
1604	}
1605
1606	default:
1607		BUG();
1608	}
1609}
1610
1611/* Do static interleaving for a VMA with known offset. */
1612static unsigned offset_il_node(struct mempolicy *pol,
1613		struct vm_area_struct *vma, unsigned long off)
1614{
1615	unsigned nnodes = nodes_weight(pol->v.nodes);
1616	unsigned target;
1617	int c;
1618	int nid = -1;
1619
1620	if (!nnodes)
1621		return numa_node_id();
1622	target = (unsigned int)off % nnodes;
1623	c = 0;
1624	do {
1625		nid = next_node(nid, pol->v.nodes);
1626		c++;
1627	} while (c <= target);
1628	return nid;
1629}
1630
1631/* Determine a node number for interleave */
1632static inline unsigned interleave_nid(struct mempolicy *pol,
1633		 struct vm_area_struct *vma, unsigned long addr, int shift)
1634{
1635	if (vma) {
1636		unsigned long off;
1637
1638		/*
1639		 * for small pages, there is no difference between
1640		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1641		 * for huge pages, since vm_pgoff is in units of small
1642		 * pages, we need to shift off the always 0 bits to get
1643		 * a useful offset.
1644		 */
1645		BUG_ON(shift < PAGE_SHIFT);
1646		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1647		off += (addr - vma->vm_start) >> shift;
1648		return offset_il_node(pol, vma, off);
1649	} else
1650		return interleave_nodes(pol);
1651}
1652
1653#ifdef CONFIG_HUGETLBFS
1654/*
1655 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1656 * @vma = virtual memory area whose policy is sought
1657 * @addr = address in @vma for shared policy lookup and interleave policy
1658 * @gfp_flags = for requested zone
1659 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1660 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1661 *
1662 * Returns a zonelist suitable for a huge page allocation and a pointer
1663 * to the struct mempolicy for conditional unref after allocation.
1664 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1665 * @nodemask for filtering the zonelist.
1666 *
1667 * Must be protected by get_mems_allowed()
1668 */
1669struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1670				gfp_t gfp_flags, struct mempolicy **mpol,
1671				nodemask_t **nodemask)
1672{
1673	struct zonelist *zl;
1674
1675	*mpol = get_vma_policy(current, vma, addr);
1676	*nodemask = NULL;	/* assume !MPOL_BIND */
1677
1678	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1679		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1680				huge_page_shift(hstate_vma(vma))), gfp_flags);
1681	} else {
1682		zl = policy_zonelist(gfp_flags, *mpol);
1683		if ((*mpol)->mode == MPOL_BIND)
1684			*nodemask = &(*mpol)->v.nodes;
1685	}
1686	return zl;
1687}
1688
1689/*
1690 * init_nodemask_of_mempolicy
1691 *
1692 * If the current task's mempolicy is "default" [NULL], return 'false'
1693 * to indicate default policy.  Otherwise, extract the policy nodemask
1694 * for 'bind' or 'interleave' policy into the argument nodemask, or
1695 * initialize the argument nodemask to contain the single node for
1696 * 'preferred' or 'local' policy and return 'true' to indicate presence
1697 * of non-default mempolicy.
1698 *
1699 * We don't bother with reference counting the mempolicy [mpol_get/put]
1700 * because the current task is examining it's own mempolicy and a task's
1701 * mempolicy is only ever changed by the task itself.
1702 *
1703 * N.B., it is the caller's responsibility to free a returned nodemask.
1704 */
1705bool init_nodemask_of_mempolicy(nodemask_t *mask)
1706{
1707	struct mempolicy *mempolicy;
1708	int nid;
1709
1710	if (!(mask && current->mempolicy))
1711		return false;
1712
1713	task_lock(current);
1714	mempolicy = current->mempolicy;
1715	switch (mempolicy->mode) {
1716	case MPOL_PREFERRED:
1717		if (mempolicy->flags & MPOL_F_LOCAL)
1718			nid = numa_node_id();
1719		else
1720			nid = mempolicy->v.preferred_node;
1721		init_nodemask_of_node(mask, nid);
1722		break;
1723
1724	case MPOL_BIND:
1725		/* Fall through */
1726	case MPOL_INTERLEAVE:
1727		*mask =  mempolicy->v.nodes;
1728		break;
1729
1730	default:
1731		BUG();
1732	}
1733	task_unlock(current);
1734
1735	return true;
1736}
1737#endif
1738
1739/*
1740 * mempolicy_nodemask_intersects
1741 *
1742 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1743 * policy.  Otherwise, check for intersection between mask and the policy
1744 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1745 * policy, always return true since it may allocate elsewhere on fallback.
1746 *
1747 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1748 */
1749bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1750					const nodemask_t *mask)
1751{
1752	struct mempolicy *mempolicy;
1753	bool ret = true;
1754
1755	if (!mask)
1756		return ret;
1757	task_lock(tsk);
1758	mempolicy = tsk->mempolicy;
1759	if (!mempolicy)
1760		goto out;
1761
1762	switch (mempolicy->mode) {
1763	case MPOL_PREFERRED:
1764		/*
1765		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1766		 * allocate from, they may fallback to other nodes when oom.
1767		 * Thus, it's possible for tsk to have allocated memory from
1768		 * nodes in mask.
1769		 */
1770		break;
1771	case MPOL_BIND:
1772	case MPOL_INTERLEAVE:
1773		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1774		break;
1775	default:
1776		BUG();
1777	}
1778out:
1779	task_unlock(tsk);
1780	return ret;
1781}
1782
1783/* Allocate a page in interleaved policy.
1784   Own path because it needs to do special accounting. */
1785static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1786					unsigned nid)
1787{
1788	struct zonelist *zl;
1789	struct page *page;
1790
1791	zl = node_zonelist(nid, gfp);
1792	page = __alloc_pages(gfp, order, zl);
1793	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1794		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1795	return page;
1796}
1797
1798/**
1799 * 	alloc_page_vma	- Allocate a page for a VMA.
1800 *
1801 * 	@gfp:
1802 *      %GFP_USER    user allocation.
1803 *      %GFP_KERNEL  kernel allocations,
1804 *      %GFP_HIGHMEM highmem/user allocations,
1805 *      %GFP_FS      allocation should not call back into a file system.
1806 *      %GFP_ATOMIC  don't sleep.
1807 *
1808 * 	@vma:  Pointer to VMA or NULL if not available.
1809 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1810 *
1811 * 	This function allocates a page from the kernel page pool and applies
1812 *	a NUMA policy associated with the VMA or the current process.
1813 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1814 *	mm_struct of the VMA to prevent it from going away. Should be used for
1815 *	all allocations for pages that will be mapped into
1816 * 	user space. Returns NULL when no page can be allocated.
1817 *
1818 *	Should be called with the mm_sem of the vma hold.
1819 */
1820struct page *
1821alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1822{
1823	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1824	struct zonelist *zl;
1825	struct page *page;
1826
1827	get_mems_allowed();
1828	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1829		unsigned nid;
1830
1831		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1832		mpol_cond_put(pol);
1833		page = alloc_page_interleave(gfp, 0, nid);
1834		put_mems_allowed();
1835		return page;
1836	}
1837	zl = policy_zonelist(gfp, pol);
1838	if (unlikely(mpol_needs_cond_ref(pol))) {
1839		/*
1840		 * slow path: ref counted shared policy
1841		 */
1842		struct page *page =  __alloc_pages_nodemask(gfp, 0,
1843						zl, policy_nodemask(gfp, pol));
1844		__mpol_put(pol);
1845		put_mems_allowed();
1846		return page;
1847	}
1848	/*
1849	 * fast path:  default or task policy
1850	 */
1851	page = __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1852	put_mems_allowed();
1853	return page;
1854}
1855
1856/**
1857 * 	alloc_pages_current - Allocate pages.
1858 *
1859 *	@gfp:
1860 *		%GFP_USER   user allocation,
1861 *      	%GFP_KERNEL kernel allocation,
1862 *      	%GFP_HIGHMEM highmem allocation,
1863 *      	%GFP_FS     don't call back into a file system.
1864 *      	%GFP_ATOMIC don't sleep.
1865 *	@order: Power of two of allocation size in pages. 0 is a single page.
1866 *
1867 *	Allocate a page from the kernel page pool.  When not in
1868 *	interrupt context and apply the current process NUMA policy.
1869 *	Returns NULL when no page can be allocated.
1870 *
1871 *	Don't call cpuset_update_task_memory_state() unless
1872 *	1) it's ok to take cpuset_sem (can WAIT), and
1873 *	2) allocating for current task (not interrupt).
1874 */
1875struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1876{
1877	struct mempolicy *pol = current->mempolicy;
1878	struct page *page;
1879
1880	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1881		pol = &default_policy;
1882
1883	get_mems_allowed();
1884	/*
1885	 * No reference counting needed for current->mempolicy
1886	 * nor system default_policy
1887	 */
1888	if (pol->mode == MPOL_INTERLEAVE)
1889		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1890	else
1891		page = __alloc_pages_nodemask(gfp, order,
1892			policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1893	put_mems_allowed();
1894	return page;
1895}
1896EXPORT_SYMBOL(alloc_pages_current);
1897
1898/*
1899 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1900 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1901 * with the mems_allowed returned by cpuset_mems_allowed().  This
1902 * keeps mempolicies cpuset relative after its cpuset moves.  See
1903 * further kernel/cpuset.c update_nodemask().
1904 *
1905 * current's mempolicy may be rebinded by the other task(the task that changes
1906 * cpuset's mems), so we needn't do rebind work for current task.
1907 */
1908
1909/* Slow path of a mempolicy duplicate */
1910struct mempolicy *__mpol_dup(struct mempolicy *old)
1911{
1912	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1913
1914	if (!new)
1915		return ERR_PTR(-ENOMEM);
1916
1917	/* task's mempolicy is protected by alloc_lock */
1918	if (old == current->mempolicy) {
1919		task_lock(current);
1920		*new = *old;
1921		task_unlock(current);
1922	} else
1923		*new = *old;
1924
1925	rcu_read_lock();
1926	if (current_cpuset_is_being_rebound()) {
1927		nodemask_t mems = cpuset_mems_allowed(current);
1928		if (new->flags & MPOL_F_REBINDING)
1929			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1930		else
1931			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1932	}
1933	rcu_read_unlock();
1934	atomic_set(&new->refcnt, 1);
1935	return new;
1936}
1937
1938/*
1939 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1940 * eliminate the * MPOL_F_* flags that require conditional ref and
1941 * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
1942 * after return.  Use the returned value.
1943 *
1944 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1945 * policy lookup, even if the policy needs/has extra ref on lookup.
1946 * shmem_readahead needs this.
1947 */
1948struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1949						struct mempolicy *frompol)
1950{
1951	if (!mpol_needs_cond_ref(frompol))
1952		return frompol;
1953
1954	*tompol = *frompol;
1955	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
1956	__mpol_put(frompol);
1957	return tompol;
1958}
1959
1960/* Slow path of a mempolicy comparison */
1961int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1962{
1963	if (!a || !b)
1964		return 0;
1965	if (a->mode != b->mode)
1966		return 0;
1967	if (a->flags != b->flags)
1968		return 0;
1969	if (mpol_store_user_nodemask(a))
1970		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1971			return 0;
1972
1973	switch (a->mode) {
1974	case MPOL_BIND:
1975		/* Fall through */
1976	case MPOL_INTERLEAVE:
1977		return nodes_equal(a->v.nodes, b->v.nodes);
1978	case MPOL_PREFERRED:
1979		return a->v.preferred_node == b->v.preferred_node &&
1980			a->flags == b->flags;
1981	default:
1982		BUG();
1983		return 0;
1984	}
1985}
1986
1987/*
1988 * Shared memory backing store policy support.
1989 *
1990 * Remember policies even when nobody has shared memory mapped.
1991 * The policies are kept in Red-Black tree linked from the inode.
1992 * They are protected by the sp->lock spinlock, which should be held
1993 * for any accesses to the tree.
1994 */
1995
1996/* lookup first element intersecting start-end */
1997/* Caller holds sp->lock */
1998static struct sp_node *
1999sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2000{
2001	struct rb_node *n = sp->root.rb_node;
2002
2003	while (n) {
2004		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2005
2006		if (start >= p->end)
2007			n = n->rb_right;
2008		else if (end <= p->start)
2009			n = n->rb_left;
2010		else
2011			break;
2012	}
2013	if (!n)
2014		return NULL;
2015	for (;;) {
2016		struct sp_node *w = NULL;
2017		struct rb_node *prev = rb_prev(n);
2018		if (!prev)
2019			break;
2020		w = rb_entry(prev, struct sp_node, nd);
2021		if (w->end <= start)
2022			break;
2023		n = prev;
2024	}
2025	return rb_entry(n, struct sp_node, nd);
2026}
2027
2028/* Insert a new shared policy into the list. */
2029/* Caller holds sp->lock */
2030static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2031{
2032	struct rb_node **p = &sp->root.rb_node;
2033	struct rb_node *parent = NULL;
2034	struct sp_node *nd;
2035
2036	while (*p) {
2037		parent = *p;
2038		nd = rb_entry(parent, struct sp_node, nd);
2039		if (new->start < nd->start)
2040			p = &(*p)->rb_left;
2041		else if (new->end > nd->end)
2042			p = &(*p)->rb_right;
2043		else
2044			BUG();
2045	}
2046	rb_link_node(&new->nd, parent, p);
2047	rb_insert_color(&new->nd, &sp->root);
2048	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2049		 new->policy ? new->policy->mode : 0);
2050}
2051
2052/* Find shared policy intersecting idx */
2053struct mempolicy *
2054mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2055{
2056	struct mempolicy *pol = NULL;
2057	struct sp_node *sn;
2058
2059	if (!sp->root.rb_node)
2060		return NULL;
2061	spin_lock(&sp->lock);
2062	sn = sp_lookup(sp, idx, idx+1);
2063	if (sn) {
2064		mpol_get(sn->policy);
2065		pol = sn->policy;
2066	}
2067	spin_unlock(&sp->lock);
2068	return pol;
2069}
2070
2071static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2072{
2073	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2074	rb_erase(&n->nd, &sp->root);
2075	mpol_put(n->policy);
2076	kmem_cache_free(sn_cache, n);
2077}
2078
2079static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2080				struct mempolicy *pol)
2081{
2082	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2083
2084	if (!n)
2085		return NULL;
2086	n->start = start;
2087	n->end = end;
2088	mpol_get(pol);
2089	pol->flags |= MPOL_F_SHARED;	/* for unref */
2090	n->policy = pol;
2091	return n;
2092}
2093
2094/* Replace a policy range. */
2095static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2096				 unsigned long end, struct sp_node *new)
2097{
2098	struct sp_node *n, *new2 = NULL;
2099
2100restart:
2101	spin_lock(&sp->lock);
2102	n = sp_lookup(sp, start, end);
2103	/* Take care of old policies in the same range. */
2104	while (n && n->start < end) {
2105		struct rb_node *next = rb_next(&n->nd);
2106		if (n->start >= start) {
2107			if (n->end <= end)
2108				sp_delete(sp, n);
2109			else
2110				n->start = end;
2111		} else {
2112			/* Old policy spanning whole new range. */
2113			if (n->end > end) {
2114				if (!new2) {
2115					spin_unlock(&sp->lock);
2116					new2 = sp_alloc(end, n->end, n->policy);
2117					if (!new2)
2118						return -ENOMEM;
2119					goto restart;
2120				}
2121				n->end = start;
2122				sp_insert(sp, new2);
2123				new2 = NULL;
2124				break;
2125			} else
2126				n->end = start;
2127		}
2128		if (!next)
2129			break;
2130		n = rb_entry(next, struct sp_node, nd);
2131	}
2132	if (new)
2133		sp_insert(sp, new);
2134	spin_unlock(&sp->lock);
2135	if (new2) {
2136		mpol_put(new2->policy);
2137		kmem_cache_free(sn_cache, new2);
2138	}
2139	return 0;
2140}
2141
2142/**
2143 * mpol_shared_policy_init - initialize shared policy for inode
2144 * @sp: pointer to inode shared policy
2145 * @mpol:  struct mempolicy to install
2146 *
2147 * Install non-NULL @mpol in inode's shared policy rb-tree.
2148 * On entry, the current task has a reference on a non-NULL @mpol.
2149 * This must be released on exit.
2150 * This is called at get_inode() calls and we can use GFP_KERNEL.
2151 */
2152void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2153{
2154	int ret;
2155
2156	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2157	spin_lock_init(&sp->lock);
2158
2159	if (mpol) {
2160		struct vm_area_struct pvma;
2161		struct mempolicy *new;
2162		NODEMASK_SCRATCH(scratch);
2163
2164		if (!scratch)
2165			goto put_mpol;
2166		/* contextualize the tmpfs mount point mempolicy */
2167		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2168		if (IS_ERR(new))
2169			goto free_scratch; /* no valid nodemask intersection */
2170
2171		task_lock(current);
2172		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2173		task_unlock(current);
2174		if (ret)
2175			goto put_new;
2176
2177		/* Create pseudo-vma that contains just the policy */
2178		memset(&pvma, 0, sizeof(struct vm_area_struct));
2179		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2180		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2181
2182put_new:
2183		mpol_put(new);			/* drop initial ref */
2184free_scratch:
2185		NODEMASK_SCRATCH_FREE(scratch);
2186put_mpol:
2187		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2188	}
2189}
2190
2191int mpol_set_shared_policy(struct shared_policy *info,
2192			struct vm_area_struct *vma, struct mempolicy *npol)
2193{
2194	int err;
2195	struct sp_node *new = NULL;
2196	unsigned long sz = vma_pages(vma);
2197
2198	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2199		 vma->vm_pgoff,
2200		 sz, npol ? npol->mode : -1,
2201		 npol ? npol->flags : -1,
2202		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2203
2204	if (npol) {
2205		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2206		if (!new)
2207			return -ENOMEM;
2208	}
2209	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2210	if (err && new)
2211		kmem_cache_free(sn_cache, new);
2212	return err;
2213}
2214
2215/* Free a backing policy store on inode delete. */
2216void mpol_free_shared_policy(struct shared_policy *p)
2217{
2218	struct sp_node *n;
2219	struct rb_node *next;
2220
2221	if (!p->root.rb_node)
2222		return;
2223	spin_lock(&p->lock);
2224	next = rb_first(&p->root);
2225	while (next) {
2226		n = rb_entry(next, struct sp_node, nd);
2227		next = rb_next(&n->nd);
2228		rb_erase(&n->nd, &p->root);
2229		mpol_put(n->policy);
2230		kmem_cache_free(sn_cache, n);
2231	}
2232	spin_unlock(&p->lock);
2233}
2234
2235/* assumes fs == KERNEL_DS */
2236void __init numa_policy_init(void)
2237{
2238	nodemask_t interleave_nodes;
2239	unsigned long largest = 0;
2240	int nid, prefer = 0;
2241
2242	policy_cache = kmem_cache_create("numa_policy",
2243					 sizeof(struct mempolicy),
2244					 0, SLAB_PANIC, NULL);
2245
2246	sn_cache = kmem_cache_create("shared_policy_node",
2247				     sizeof(struct sp_node),
2248				     0, SLAB_PANIC, NULL);
2249
2250	/*
2251	 * Set interleaving policy for system init. Interleaving is only
2252	 * enabled across suitably sized nodes (default is >= 16MB), or
2253	 * fall back to the largest node if they're all smaller.
2254	 */
2255	nodes_clear(interleave_nodes);
2256	for_each_node_state(nid, N_HIGH_MEMORY) {
2257		unsigned long total_pages = node_present_pages(nid);
2258
2259		/* Preserve the largest node */
2260		if (largest < total_pages) {
2261			largest = total_pages;
2262			prefer = nid;
2263		}
2264
2265		/* Interleave this node? */
2266		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2267			node_set(nid, interleave_nodes);
2268	}
2269
2270	/* All too small, use the largest */
2271	if (unlikely(nodes_empty(interleave_nodes)))
2272		node_set(prefer, interleave_nodes);
2273
2274	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2275		printk("numa_policy_init: interleaving failed\n");
2276}
2277
2278/* Reset policy of current process to default */
2279void numa_default_policy(void)
2280{
2281	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2282}
2283
2284/*
2285 * Parse and format mempolicy from/to strings
2286 */
2287
2288/*
2289 * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
2290 * Used only for mpol_parse_str() and mpol_to_str()
2291 */
2292#define MPOL_LOCAL MPOL_MAX
2293static const char * const policy_modes[] =
2294{
2295	[MPOL_DEFAULT]    = "default",
2296	[MPOL_PREFERRED]  = "prefer",
2297	[MPOL_BIND]       = "bind",
2298	[MPOL_INTERLEAVE] = "interleave",
2299	[MPOL_LOCAL]      = "local"
2300};
2301
2302
2303#ifdef CONFIG_TMPFS
2304/**
2305 * mpol_parse_str - parse string to mempolicy
2306 * @str:  string containing mempolicy to parse
2307 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2308 * @no_context:  flag whether to "contextualize" the mempolicy
2309 *
2310 * Format of input:
2311 *	<mode>[=<flags>][:<nodelist>]
2312 *
2313 * if @no_context is true, save the input nodemask in w.user_nodemask in
2314 * the returned mempolicy.  This will be used to "clone" the mempolicy in
2315 * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
2316 * mount option.  Note that if 'static' or 'relative' mode flags were
2317 * specified, the input nodemask will already have been saved.  Saving
2318 * it again is redundant, but safe.
2319 *
2320 * On success, returns 0, else 1
2321 */
2322int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2323{
2324	struct mempolicy *new = NULL;
2325	unsigned short mode;
2326	unsigned short uninitialized_var(mode_flags);
2327	nodemask_t nodes;
2328	char *nodelist = strchr(str, ':');
2329	char *flags = strchr(str, '=');
2330	int err = 1;
2331
2332	if (nodelist) {
2333		/* NUL-terminate mode or flags string */
2334		*nodelist++ = '\0';
2335		if (nodelist_parse(nodelist, nodes))
2336			goto out;
2337		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2338			goto out;
2339	} else
2340		nodes_clear(nodes);
2341
2342	if (flags)
2343		*flags++ = '\0';	/* terminate mode string */
2344
2345	for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2346		if (!strcmp(str, policy_modes[mode])) {
2347			break;
2348		}
2349	}
2350	if (mode > MPOL_LOCAL)
2351		goto out;
2352
2353	switch (mode) {
2354	case MPOL_PREFERRED:
2355		/*
2356		 * Insist on a nodelist of one node only
2357		 */
2358		if (nodelist) {
2359			char *rest = nodelist;
2360			while (isdigit(*rest))
2361				rest++;
2362			if (*rest)
2363				goto out;
2364		}
2365		break;
2366	case MPOL_INTERLEAVE:
2367		/*
2368		 * Default to online nodes with memory if no nodelist
2369		 */
2370		if (!nodelist)
2371			nodes = node_states[N_HIGH_MEMORY];
2372		break;
2373	case MPOL_LOCAL:
2374		/*
2375		 * Don't allow a nodelist;  mpol_new() checks flags
2376		 */
2377		if (nodelist)
2378			goto out;
2379		mode = MPOL_PREFERRED;
2380		break;
2381	case MPOL_DEFAULT:
2382		/*
2383		 * Insist on a empty nodelist
2384		 */
2385		if (!nodelist)
2386			err = 0;
2387		goto out;
2388	case MPOL_BIND:
2389		/*
2390		 * Insist on a nodelist
2391		 */
2392		if (!nodelist)
2393			goto out;
2394	}
2395
2396	mode_flags = 0;
2397	if (flags) {
2398		/*
2399		 * Currently, we only support two mutually exclusive
2400		 * mode flags.
2401		 */
2402		if (!strcmp(flags, "static"))
2403			mode_flags |= MPOL_F_STATIC_NODES;
2404		else if (!strcmp(flags, "relative"))
2405			mode_flags |= MPOL_F_RELATIVE_NODES;
2406		else
2407			goto out;
2408	}
2409
2410	new = mpol_new(mode, mode_flags, &nodes);
2411	if (IS_ERR(new))
2412		goto out;
2413
2414	if (no_context) {
2415		/* save for contextualization */
2416		new->w.user_nodemask = nodes;
2417	} else {
2418		int ret;
2419		NODEMASK_SCRATCH(scratch);
2420		if (scratch) {
2421			task_lock(current);
2422			ret = mpol_set_nodemask(new, &nodes, scratch);
2423			task_unlock(current);
2424		} else
2425			ret = -ENOMEM;
2426		NODEMASK_SCRATCH_FREE(scratch);
2427		if (ret) {
2428			mpol_put(new);
2429			goto out;
2430		}
2431	}
2432	err = 0;
2433
2434out:
2435	/* Restore string for error message */
2436	if (nodelist)
2437		*--nodelist = ':';
2438	if (flags)
2439		*--flags = '=';
2440	if (!err)
2441		*mpol = new;
2442	return err;
2443}
2444#endif /* CONFIG_TMPFS */
2445
2446/**
2447 * mpol_to_str - format a mempolicy structure for printing
2448 * @buffer:  to contain formatted mempolicy string
2449 * @maxlen:  length of @buffer
2450 * @pol:  pointer to mempolicy to be formatted
2451 * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2452 *
2453 * Convert a mempolicy into a string.
2454 * Returns the number of characters in buffer (if positive)
2455 * or an error (negative)
2456 */
2457int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2458{
2459	char *p = buffer;
2460	int l;
2461	nodemask_t nodes;
2462	unsigned short mode;
2463	unsigned short flags = pol ? pol->flags : 0;
2464
2465	/*
2466	 * Sanity check:  room for longest mode, flag and some nodes
2467	 */
2468	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2469
2470	if (!pol || pol == &default_policy)
2471		mode = MPOL_DEFAULT;
2472	else
2473		mode = pol->mode;
2474
2475	switch (mode) {
2476	case MPOL_DEFAULT:
2477		nodes_clear(nodes);
2478		break;
2479
2480	case MPOL_PREFERRED:
2481		nodes_clear(nodes);
2482		if (flags & MPOL_F_LOCAL)
2483			mode = MPOL_LOCAL;	/* pseudo-policy */
2484		else
2485			node_set(pol->v.preferred_node, nodes);
2486		break;
2487
2488	case MPOL_BIND:
2489		/* Fall through */
2490	case MPOL_INTERLEAVE:
2491		if (no_context)
2492			nodes = pol->w.user_nodemask;
2493		else
2494			nodes = pol->v.nodes;
2495		break;
2496
2497	default:
2498		BUG();
2499	}
2500
2501	l = strlen(policy_modes[mode]);
2502	if (buffer + maxlen < p + l + 1)
2503		return -ENOSPC;
2504
2505	strcpy(p, policy_modes[mode]);
2506	p += l;
2507
2508	if (flags & MPOL_MODE_FLAGS) {
2509		if (buffer + maxlen < p + 2)
2510			return -ENOSPC;
2511		*p++ = '=';
2512
2513		/*
2514		 * Currently, the only defined flags are mutually exclusive
2515		 */
2516		if (flags & MPOL_F_STATIC_NODES)
2517			p += snprintf(p, buffer + maxlen - p, "static");
2518		else if (flags & MPOL_F_RELATIVE_NODES)
2519			p += snprintf(p, buffer + maxlen - p, "relative");
2520	}
2521
2522	if (!nodes_empty(nodes)) {
2523		if (buffer + maxlen < p + 2)
2524			return -ENOSPC;
2525		*p++ = ':';
2526	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2527	}
2528	return p - buffer;
2529}
2530
2531struct numa_maps {
2532	unsigned long pages;
2533	unsigned long anon;
2534	unsigned long active;
2535	unsigned long writeback;
2536	unsigned long mapcount_max;
2537	unsigned long dirty;
2538	unsigned long swapcache;
2539	unsigned long node[MAX_NUMNODES];
2540};
2541
2542static void gather_stats(struct page *page, void *private, int pte_dirty)
2543{
2544	struct numa_maps *md = private;
2545	int count = page_mapcount(page);
2546
2547	md->pages++;
2548	if (pte_dirty || PageDirty(page))
2549		md->dirty++;
2550
2551	if (PageSwapCache(page))
2552		md->swapcache++;
2553
2554	if (PageActive(page) || PageUnevictable(page))
2555		md->active++;
2556
2557	if (PageWriteback(page))
2558		md->writeback++;
2559
2560	if (PageAnon(page))
2561		md->anon++;
2562
2563	if (count > md->mapcount_max)
2564		md->mapcount_max = count;
2565
2566	md->node[page_to_nid(page)]++;
2567}
2568
2569#ifdef CONFIG_HUGETLB_PAGE
2570static void check_huge_range(struct vm_area_struct *vma,
2571		unsigned long start, unsigned long end,
2572		struct numa_maps *md)
2573{
2574	unsigned long addr;
2575	struct page *page;
2576	struct hstate *h = hstate_vma(vma);
2577	unsigned long sz = huge_page_size(h);
2578
2579	for (addr = start; addr < end; addr += sz) {
2580		pte_t *ptep = huge_pte_offset(vma->vm_mm,
2581						addr & huge_page_mask(h));
2582		pte_t pte;
2583
2584		if (!ptep)
2585			continue;
2586
2587		pte = *ptep;
2588		if (pte_none(pte))
2589			continue;
2590
2591		page = pte_page(pte);
2592		if (!page)
2593			continue;
2594
2595		gather_stats(page, md, pte_dirty(*ptep));
2596	}
2597}
2598#else
2599static inline void check_huge_range(struct vm_area_struct *vma,
2600		unsigned long start, unsigned long end,
2601		struct numa_maps *md)
2602{
2603}
2604#endif
2605
2606/*
2607 * Display pages allocated per node and memory policy via /proc.
2608 */
2609int show_numa_map(struct seq_file *m, void *v)
2610{
2611	struct proc_maps_private *priv = m->private;
2612	struct vm_area_struct *vma = v;
2613	struct numa_maps *md;
2614	struct file *file = vma->vm_file;
2615	struct mm_struct *mm = vma->vm_mm;
2616	struct mempolicy *pol;
2617	int n;
2618	char buffer[50];
2619
2620	if (!mm)
2621		return 0;
2622
2623	md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2624	if (!md)
2625		return 0;
2626
2627	pol = get_vma_policy(priv->task, vma, vma->vm_start);
2628	mpol_to_str(buffer, sizeof(buffer), pol, 0);
2629	mpol_cond_put(pol);
2630
2631	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2632
2633	if (file) {
2634		seq_printf(m, " file=");
2635		seq_path(m, &file->f_path, "\n\t= ");
2636	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2637		seq_printf(m, " heap");
2638	} else if (vma->vm_start <= mm->start_stack &&
2639			vma->vm_end >= mm->start_stack) {
2640		seq_printf(m, " stack");
2641	}
2642
2643	if (is_vm_hugetlb_page(vma)) {
2644		check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2645		seq_printf(m, " huge");
2646	} else {
2647		check_pgd_range(vma, vma->vm_start, vma->vm_end,
2648			&node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2649	}
2650
2651	if (!md->pages)
2652		goto out;
2653
2654	if (md->anon)
2655		seq_printf(m," anon=%lu",md->anon);
2656
2657	if (md->dirty)
2658		seq_printf(m," dirty=%lu",md->dirty);
2659
2660	if (md->pages != md->anon && md->pages != md->dirty)
2661		seq_printf(m, " mapped=%lu", md->pages);
2662
2663	if (md->mapcount_max > 1)
2664		seq_printf(m, " mapmax=%lu", md->mapcount_max);
2665
2666	if (md->swapcache)
2667		seq_printf(m," swapcache=%lu", md->swapcache);
2668
2669	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2670		seq_printf(m," active=%lu", md->active);
2671
2672	if (md->writeback)
2673		seq_printf(m," writeback=%lu", md->writeback);
2674
2675	for_each_node_state(n, N_HIGH_MEMORY)
2676		if (md->node[n])
2677			seq_printf(m, " N%d=%lu", n, md->node[n]);
2678out:
2679	seq_putc(m, '\n');
2680	kfree(md);
2681
2682	if (m->count < m->size)
2683		m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2684	return 0;
2685}
2686