mempolicy.c revision a3b51e0142d1be156ac697eaadadd6cfbb7ba32b
1/*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave     Allocate memory interleaved over a set of nodes,
16 *                with normal fallback if it fails.
17 *                For VMA based allocations this interleaves based on the
18 *                offset into the backing object or offset into the mapping
19 *                for anonymous memory. For process policy an process counter
20 *                is used.
21 *
22 * bind           Only allocate memory on a specific set of nodes,
23 *                no fallback.
24 *                FIXME: memory is allocated starting with the first node
25 *                to the last. It would be better if bind would truly restrict
26 *                the allocation to memory nodes instead
27 *
28 * preferred       Try a specific node first before normal fallback.
29 *                As a special case node -1 here means do the allocation
30 *                on the local CPU. This is normally identical to default,
31 *                but useful to set in a VMA when you have a non default
32 *                process policy.
33 *
34 * default        Allocate on the local node first, or when on a VMA
35 *                use the process policy. This is what Linux always did
36 *		  in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57   fix mmap readahead to honour policy and enable policy for any page cache
58   object
59   statistics for bigpages
60   global policy for page cache? currently it uses process policy. Requires
61   first item above.
62   handle mremap for shared memory (currently ignored for the policy)
63   grows down?
64   make bind policy root only? It can trigger oom much faster and the
65   kernel is not always grateful with that.
66   could replace all the switch()es with a mempolicy_ops structure.
67*/
68
69#include <linux/mempolicy.h>
70#include <linux/mm.h>
71#include <linux/highmem.h>
72#include <linux/hugetlb.h>
73#include <linux/kernel.h>
74#include <linux/sched.h>
75#include <linux/nodemask.h>
76#include <linux/cpuset.h>
77#include <linux/gfp.h>
78#include <linux/slab.h>
79#include <linux/string.h>
80#include <linux/module.h>
81#include <linux/nsproxy.h>
82#include <linux/interrupt.h>
83#include <linux/init.h>
84#include <linux/compat.h>
85#include <linux/swap.h>
86#include <linux/seq_file.h>
87#include <linux/proc_fs.h>
88#include <linux/migrate.h>
89#include <linux/rmap.h>
90#include <linux/security.h>
91#include <linux/syscalls.h>
92
93#include <asm/tlbflush.h>
94#include <asm/uaccess.h>
95
96/* Internal flags */
97#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
98#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
99#define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2)		/* Gather statistics */
100
101static struct kmem_cache *policy_cache;
102static struct kmem_cache *sn_cache;
103
104/* Highest zone. An specific allocation for a zone below that is not
105   policied. */
106enum zone_type policy_zone = 0;
107
108struct mempolicy default_policy = {
109	.refcnt = ATOMIC_INIT(1), /* never free it */
110	.policy = MPOL_DEFAULT,
111};
112
113static void mpol_rebind_policy(struct mempolicy *pol,
114                               const nodemask_t *newmask);
115
116/* Do sanity checking on a policy */
117static int mpol_check_policy(unsigned short mode, nodemask_t *nodes)
118{
119	int was_empty, is_empty;
120
121	if (!nodes)
122		return 0;
123
124	/*
125	 * "Contextualize" the in-coming nodemast for cpusets:
126	 * Remember whether in-coming nodemask was empty,  If not,
127	 * restrict the nodes to the allowed nodes in the cpuset.
128	 * This is guaranteed to be a subset of nodes with memory.
129	 */
130	cpuset_update_task_memory_state();
131	is_empty = was_empty = nodes_empty(*nodes);
132	if (!was_empty) {
133		nodes_and(*nodes, *nodes, cpuset_current_mems_allowed);
134		is_empty = nodes_empty(*nodes);	/* after "contextualization" */
135	}
136
137	switch (mode) {
138	case MPOL_DEFAULT:
139		/*
140		 * require caller to specify an empty nodemask
141		 * before "contextualization"
142		 */
143		if (!was_empty)
144			return -EINVAL;
145		break;
146	case MPOL_BIND:
147	case MPOL_INTERLEAVE:
148		/*
149		 * require at least 1 valid node after "contextualization"
150		 */
151		if (is_empty)
152			return -EINVAL;
153		break;
154	case MPOL_PREFERRED:
155		/*
156		 * Did caller specify invalid nodes?
157		 * Don't silently accept this as "local allocation".
158		 */
159		if (!was_empty && is_empty)
160			return -EINVAL;
161		break;
162	default:
163		BUG();
164	}
165	return 0;
166}
167
168/* Check that the nodemask contains at least one populated zone */
169static int is_valid_nodemask(nodemask_t *nodemask)
170{
171	int nd, k;
172
173	/* Check that there is something useful in this mask */
174	k = policy_zone;
175
176	for_each_node_mask(nd, *nodemask) {
177		struct zone *z;
178
179		for (k = 0; k <= policy_zone; k++) {
180			z = &NODE_DATA(nd)->node_zones[k];
181			if (z->present_pages > 0)
182				return 1;
183		}
184	}
185
186	return 0;
187}
188
189/* Create a new policy */
190static struct mempolicy *mpol_new(unsigned short mode, nodemask_t *nodes)
191{
192	struct mempolicy *policy;
193
194	pr_debug("setting mode %d nodes[0] %lx\n",
195		 mode, nodes ? nodes_addr(*nodes)[0] : -1);
196
197	if (mode == MPOL_DEFAULT)
198		return NULL;
199	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
200	if (!policy)
201		return ERR_PTR(-ENOMEM);
202	atomic_set(&policy->refcnt, 1);
203	switch (mode) {
204	case MPOL_INTERLEAVE:
205		policy->v.nodes = *nodes;
206		if (nodes_weight(policy->v.nodes) == 0) {
207			kmem_cache_free(policy_cache, policy);
208			return ERR_PTR(-EINVAL);
209		}
210		break;
211	case MPOL_PREFERRED:
212		policy->v.preferred_node = first_node(*nodes);
213		if (policy->v.preferred_node >= MAX_NUMNODES)
214			policy->v.preferred_node = -1;
215		break;
216	case MPOL_BIND:
217		if (!is_valid_nodemask(nodes)) {
218			kmem_cache_free(policy_cache, policy);
219			return ERR_PTR(-EINVAL);
220		}
221		policy->v.nodes = *nodes;
222		break;
223	default:
224		BUG();
225	}
226	policy->policy = mode;
227	policy->cpuset_mems_allowed = cpuset_mems_allowed(current);
228	return policy;
229}
230
231static void gather_stats(struct page *, void *, int pte_dirty);
232static void migrate_page_add(struct page *page, struct list_head *pagelist,
233				unsigned long flags);
234
235/* Scan through pages checking if pages follow certain conditions. */
236static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
237		unsigned long addr, unsigned long end,
238		const nodemask_t *nodes, unsigned long flags,
239		void *private)
240{
241	pte_t *orig_pte;
242	pte_t *pte;
243	spinlock_t *ptl;
244
245	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
246	do {
247		struct page *page;
248		int nid;
249
250		if (!pte_present(*pte))
251			continue;
252		page = vm_normal_page(vma, addr, *pte);
253		if (!page)
254			continue;
255		/*
256		 * The check for PageReserved here is important to avoid
257		 * handling zero pages and other pages that may have been
258		 * marked special by the system.
259		 *
260		 * If the PageReserved would not be checked here then f.e.
261		 * the location of the zero page could have an influence
262		 * on MPOL_MF_STRICT, zero pages would be counted for
263		 * the per node stats, and there would be useless attempts
264		 * to put zero pages on the migration list.
265		 */
266		if (PageReserved(page))
267			continue;
268		nid = page_to_nid(page);
269		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
270			continue;
271
272		if (flags & MPOL_MF_STATS)
273			gather_stats(page, private, pte_dirty(*pte));
274		else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
275			migrate_page_add(page, private, flags);
276		else
277			break;
278	} while (pte++, addr += PAGE_SIZE, addr != end);
279	pte_unmap_unlock(orig_pte, ptl);
280	return addr != end;
281}
282
283static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
284		unsigned long addr, unsigned long end,
285		const nodemask_t *nodes, unsigned long flags,
286		void *private)
287{
288	pmd_t *pmd;
289	unsigned long next;
290
291	pmd = pmd_offset(pud, addr);
292	do {
293		next = pmd_addr_end(addr, end);
294		if (pmd_none_or_clear_bad(pmd))
295			continue;
296		if (check_pte_range(vma, pmd, addr, next, nodes,
297				    flags, private))
298			return -EIO;
299	} while (pmd++, addr = next, addr != end);
300	return 0;
301}
302
303static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
304		unsigned long addr, unsigned long end,
305		const nodemask_t *nodes, unsigned long flags,
306		void *private)
307{
308	pud_t *pud;
309	unsigned long next;
310
311	pud = pud_offset(pgd, addr);
312	do {
313		next = pud_addr_end(addr, end);
314		if (pud_none_or_clear_bad(pud))
315			continue;
316		if (check_pmd_range(vma, pud, addr, next, nodes,
317				    flags, private))
318			return -EIO;
319	} while (pud++, addr = next, addr != end);
320	return 0;
321}
322
323static inline int check_pgd_range(struct vm_area_struct *vma,
324		unsigned long addr, unsigned long end,
325		const nodemask_t *nodes, unsigned long flags,
326		void *private)
327{
328	pgd_t *pgd;
329	unsigned long next;
330
331	pgd = pgd_offset(vma->vm_mm, addr);
332	do {
333		next = pgd_addr_end(addr, end);
334		if (pgd_none_or_clear_bad(pgd))
335			continue;
336		if (check_pud_range(vma, pgd, addr, next, nodes,
337				    flags, private))
338			return -EIO;
339	} while (pgd++, addr = next, addr != end);
340	return 0;
341}
342
343/*
344 * Check if all pages in a range are on a set of nodes.
345 * If pagelist != NULL then isolate pages from the LRU and
346 * put them on the pagelist.
347 */
348static struct vm_area_struct *
349check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
350		const nodemask_t *nodes, unsigned long flags, void *private)
351{
352	int err;
353	struct vm_area_struct *first, *vma, *prev;
354
355	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
356
357		err = migrate_prep();
358		if (err)
359			return ERR_PTR(err);
360	}
361
362	first = find_vma(mm, start);
363	if (!first)
364		return ERR_PTR(-EFAULT);
365	prev = NULL;
366	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
367		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
368			if (!vma->vm_next && vma->vm_end < end)
369				return ERR_PTR(-EFAULT);
370			if (prev && prev->vm_end < vma->vm_start)
371				return ERR_PTR(-EFAULT);
372		}
373		if (!is_vm_hugetlb_page(vma) &&
374		    ((flags & MPOL_MF_STRICT) ||
375		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
376				vma_migratable(vma)))) {
377			unsigned long endvma = vma->vm_end;
378
379			if (endvma > end)
380				endvma = end;
381			if (vma->vm_start > start)
382				start = vma->vm_start;
383			err = check_pgd_range(vma, start, endvma, nodes,
384						flags, private);
385			if (err) {
386				first = ERR_PTR(err);
387				break;
388			}
389		}
390		prev = vma;
391	}
392	return first;
393}
394
395/* Apply policy to a single VMA */
396static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
397{
398	int err = 0;
399	struct mempolicy *old = vma->vm_policy;
400
401	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
402		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
403		 vma->vm_ops, vma->vm_file,
404		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
405
406	if (vma->vm_ops && vma->vm_ops->set_policy)
407		err = vma->vm_ops->set_policy(vma, new);
408	if (!err) {
409		mpol_get(new);
410		vma->vm_policy = new;
411		mpol_free(old);
412	}
413	return err;
414}
415
416/* Step 2: apply policy to a range and do splits. */
417static int mbind_range(struct vm_area_struct *vma, unsigned long start,
418		       unsigned long end, struct mempolicy *new)
419{
420	struct vm_area_struct *next;
421	int err;
422
423	err = 0;
424	for (; vma && vma->vm_start < end; vma = next) {
425		next = vma->vm_next;
426		if (vma->vm_start < start)
427			err = split_vma(vma->vm_mm, vma, start, 1);
428		if (!err && vma->vm_end > end)
429			err = split_vma(vma->vm_mm, vma, end, 0);
430		if (!err)
431			err = policy_vma(vma, new);
432		if (err)
433			break;
434	}
435	return err;
436}
437
438/*
439 * Update task->flags PF_MEMPOLICY bit: set iff non-default
440 * mempolicy.  Allows more rapid checking of this (combined perhaps
441 * with other PF_* flag bits) on memory allocation hot code paths.
442 *
443 * If called from outside this file, the task 'p' should -only- be
444 * a newly forked child not yet visible on the task list, because
445 * manipulating the task flags of a visible task is not safe.
446 *
447 * The above limitation is why this routine has the funny name
448 * mpol_fix_fork_child_flag().
449 *
450 * It is also safe to call this with a task pointer of current,
451 * which the static wrapper mpol_set_task_struct_flag() does,
452 * for use within this file.
453 */
454
455void mpol_fix_fork_child_flag(struct task_struct *p)
456{
457	if (p->mempolicy)
458		p->flags |= PF_MEMPOLICY;
459	else
460		p->flags &= ~PF_MEMPOLICY;
461}
462
463static void mpol_set_task_struct_flag(void)
464{
465	mpol_fix_fork_child_flag(current);
466}
467
468/* Set the process memory policy */
469static long do_set_mempolicy(unsigned short mode, nodemask_t *nodes)
470{
471	struct mempolicy *new;
472
473	if (mpol_check_policy(mode, nodes))
474		return -EINVAL;
475	new = mpol_new(mode, nodes);
476	if (IS_ERR(new))
477		return PTR_ERR(new);
478	mpol_free(current->mempolicy);
479	current->mempolicy = new;
480	mpol_set_task_struct_flag();
481	if (new && new->policy == MPOL_INTERLEAVE)
482		current->il_next = first_node(new->v.nodes);
483	return 0;
484}
485
486/* Fill a zone bitmap for a policy */
487static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
488{
489	nodes_clear(*nodes);
490	switch (p->policy) {
491	case MPOL_DEFAULT:
492		break;
493	case MPOL_BIND:
494		/* Fall through */
495	case MPOL_INTERLEAVE:
496		*nodes = p->v.nodes;
497		break;
498	case MPOL_PREFERRED:
499		/* or use current node instead of memory_map? */
500		if (p->v.preferred_node < 0)
501			*nodes = node_states[N_HIGH_MEMORY];
502		else
503			node_set(p->v.preferred_node, *nodes);
504		break;
505	default:
506		BUG();
507	}
508}
509
510static int lookup_node(struct mm_struct *mm, unsigned long addr)
511{
512	struct page *p;
513	int err;
514
515	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
516	if (err >= 0) {
517		err = page_to_nid(p);
518		put_page(p);
519	}
520	return err;
521}
522
523/* Retrieve NUMA policy */
524static long do_get_mempolicy(int *policy, nodemask_t *nmask,
525			     unsigned long addr, unsigned long flags)
526{
527	int err;
528	struct mm_struct *mm = current->mm;
529	struct vm_area_struct *vma = NULL;
530	struct mempolicy *pol = current->mempolicy;
531
532	cpuset_update_task_memory_state();
533	if (flags &
534		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
535		return -EINVAL;
536
537	if (flags & MPOL_F_MEMS_ALLOWED) {
538		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
539			return -EINVAL;
540		*policy = 0;	/* just so it's initialized */
541		*nmask  = cpuset_current_mems_allowed;
542		return 0;
543	}
544
545	if (flags & MPOL_F_ADDR) {
546		down_read(&mm->mmap_sem);
547		vma = find_vma_intersection(mm, addr, addr+1);
548		if (!vma) {
549			up_read(&mm->mmap_sem);
550			return -EFAULT;
551		}
552		if (vma->vm_ops && vma->vm_ops->get_policy)
553			pol = vma->vm_ops->get_policy(vma, addr);
554		else
555			pol = vma->vm_policy;
556	} else if (addr)
557		return -EINVAL;
558
559	if (!pol)
560		pol = &default_policy;
561
562	if (flags & MPOL_F_NODE) {
563		if (flags & MPOL_F_ADDR) {
564			err = lookup_node(mm, addr);
565			if (err < 0)
566				goto out;
567			*policy = err;
568		} else if (pol == current->mempolicy &&
569				pol->policy == MPOL_INTERLEAVE) {
570			*policy = current->il_next;
571		} else {
572			err = -EINVAL;
573			goto out;
574		}
575	} else
576		*policy = pol->policy;
577
578	if (vma) {
579		up_read(&current->mm->mmap_sem);
580		vma = NULL;
581	}
582
583	err = 0;
584	if (nmask)
585		get_zonemask(pol, nmask);
586
587 out:
588	if (vma)
589		up_read(&current->mm->mmap_sem);
590	return err;
591}
592
593#ifdef CONFIG_MIGRATION
594/*
595 * page migration
596 */
597static void migrate_page_add(struct page *page, struct list_head *pagelist,
598				unsigned long flags)
599{
600	/*
601	 * Avoid migrating a page that is shared with others.
602	 */
603	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
604		isolate_lru_page(page, pagelist);
605}
606
607static struct page *new_node_page(struct page *page, unsigned long node, int **x)
608{
609	return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
610}
611
612/*
613 * Migrate pages from one node to a target node.
614 * Returns error or the number of pages not migrated.
615 */
616static int migrate_to_node(struct mm_struct *mm, int source, int dest,
617			   int flags)
618{
619	nodemask_t nmask;
620	LIST_HEAD(pagelist);
621	int err = 0;
622
623	nodes_clear(nmask);
624	node_set(source, nmask);
625
626	check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
627			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
628
629	if (!list_empty(&pagelist))
630		err = migrate_pages(&pagelist, new_node_page, dest);
631
632	return err;
633}
634
635/*
636 * Move pages between the two nodesets so as to preserve the physical
637 * layout as much as possible.
638 *
639 * Returns the number of page that could not be moved.
640 */
641int do_migrate_pages(struct mm_struct *mm,
642	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
643{
644	LIST_HEAD(pagelist);
645	int busy = 0;
646	int err = 0;
647	nodemask_t tmp;
648
649  	down_read(&mm->mmap_sem);
650
651	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
652	if (err)
653		goto out;
654
655/*
656 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
657 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
658 * bit in 'tmp', and return that <source, dest> pair for migration.
659 * The pair of nodemasks 'to' and 'from' define the map.
660 *
661 * If no pair of bits is found that way, fallback to picking some
662 * pair of 'source' and 'dest' bits that are not the same.  If the
663 * 'source' and 'dest' bits are the same, this represents a node
664 * that will be migrating to itself, so no pages need move.
665 *
666 * If no bits are left in 'tmp', or if all remaining bits left
667 * in 'tmp' correspond to the same bit in 'to', return false
668 * (nothing left to migrate).
669 *
670 * This lets us pick a pair of nodes to migrate between, such that
671 * if possible the dest node is not already occupied by some other
672 * source node, minimizing the risk of overloading the memory on a
673 * node that would happen if we migrated incoming memory to a node
674 * before migrating outgoing memory source that same node.
675 *
676 * A single scan of tmp is sufficient.  As we go, we remember the
677 * most recent <s, d> pair that moved (s != d).  If we find a pair
678 * that not only moved, but what's better, moved to an empty slot
679 * (d is not set in tmp), then we break out then, with that pair.
680 * Otherwise when we finish scannng from_tmp, we at least have the
681 * most recent <s, d> pair that moved.  If we get all the way through
682 * the scan of tmp without finding any node that moved, much less
683 * moved to an empty node, then there is nothing left worth migrating.
684 */
685
686	tmp = *from_nodes;
687	while (!nodes_empty(tmp)) {
688		int s,d;
689		int source = -1;
690		int dest = 0;
691
692		for_each_node_mask(s, tmp) {
693			d = node_remap(s, *from_nodes, *to_nodes);
694			if (s == d)
695				continue;
696
697			source = s;	/* Node moved. Memorize */
698			dest = d;
699
700			/* dest not in remaining from nodes? */
701			if (!node_isset(dest, tmp))
702				break;
703		}
704		if (source == -1)
705			break;
706
707		node_clear(source, tmp);
708		err = migrate_to_node(mm, source, dest, flags);
709		if (err > 0)
710			busy += err;
711		if (err < 0)
712			break;
713	}
714out:
715	up_read(&mm->mmap_sem);
716	if (err < 0)
717		return err;
718	return busy;
719
720}
721
722/*
723 * Allocate a new page for page migration based on vma policy.
724 * Start assuming that page is mapped by vma pointed to by @private.
725 * Search forward from there, if not.  N.B., this assumes that the
726 * list of pages handed to migrate_pages()--which is how we get here--
727 * is in virtual address order.
728 */
729static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
730{
731	struct vm_area_struct *vma = (struct vm_area_struct *)private;
732	unsigned long uninitialized_var(address);
733
734	while (vma) {
735		address = page_address_in_vma(page, vma);
736		if (address != -EFAULT)
737			break;
738		vma = vma->vm_next;
739	}
740
741	/*
742	 * if !vma, alloc_page_vma() will use task or system default policy
743	 */
744	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
745}
746#else
747
748static void migrate_page_add(struct page *page, struct list_head *pagelist,
749				unsigned long flags)
750{
751}
752
753int do_migrate_pages(struct mm_struct *mm,
754	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
755{
756	return -ENOSYS;
757}
758
759static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
760{
761	return NULL;
762}
763#endif
764
765static long do_mbind(unsigned long start, unsigned long len,
766		     unsigned short mode, nodemask_t *nmask,
767		     unsigned long flags)
768{
769	struct vm_area_struct *vma;
770	struct mm_struct *mm = current->mm;
771	struct mempolicy *new;
772	unsigned long end;
773	int err;
774	LIST_HEAD(pagelist);
775
776	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
777				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
778		return -EINVAL;
779	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
780		return -EPERM;
781
782	if (start & ~PAGE_MASK)
783		return -EINVAL;
784
785	if (mode == MPOL_DEFAULT)
786		flags &= ~MPOL_MF_STRICT;
787
788	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
789	end = start + len;
790
791	if (end < start)
792		return -EINVAL;
793	if (end == start)
794		return 0;
795
796	if (mpol_check_policy(mode, nmask))
797		return -EINVAL;
798
799	new = mpol_new(mode, nmask);
800	if (IS_ERR(new))
801		return PTR_ERR(new);
802
803	/*
804	 * If we are using the default policy then operation
805	 * on discontinuous address spaces is okay after all
806	 */
807	if (!new)
808		flags |= MPOL_MF_DISCONTIG_OK;
809
810	pr_debug("mbind %lx-%lx mode:%d nodes:%lx\n", start, start + len,
811		 mode, nmask ? nodes_addr(*nmask)[0] : -1);
812
813	down_write(&mm->mmap_sem);
814	vma = check_range(mm, start, end, nmask,
815			  flags | MPOL_MF_INVERT, &pagelist);
816
817	err = PTR_ERR(vma);
818	if (!IS_ERR(vma)) {
819		int nr_failed = 0;
820
821		err = mbind_range(vma, start, end, new);
822
823		if (!list_empty(&pagelist))
824			nr_failed = migrate_pages(&pagelist, new_vma_page,
825						(unsigned long)vma);
826
827		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
828			err = -EIO;
829	}
830
831	up_write(&mm->mmap_sem);
832	mpol_free(new);
833	return err;
834}
835
836/*
837 * User space interface with variable sized bitmaps for nodelists.
838 */
839
840/* Copy a node mask from user space. */
841static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
842		     unsigned long maxnode)
843{
844	unsigned long k;
845	unsigned long nlongs;
846	unsigned long endmask;
847
848	--maxnode;
849	nodes_clear(*nodes);
850	if (maxnode == 0 || !nmask)
851		return 0;
852	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
853		return -EINVAL;
854
855	nlongs = BITS_TO_LONGS(maxnode);
856	if ((maxnode % BITS_PER_LONG) == 0)
857		endmask = ~0UL;
858	else
859		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
860
861	/* When the user specified more nodes than supported just check
862	   if the non supported part is all zero. */
863	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
864		if (nlongs > PAGE_SIZE/sizeof(long))
865			return -EINVAL;
866		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
867			unsigned long t;
868			if (get_user(t, nmask + k))
869				return -EFAULT;
870			if (k == nlongs - 1) {
871				if (t & endmask)
872					return -EINVAL;
873			} else if (t)
874				return -EINVAL;
875		}
876		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
877		endmask = ~0UL;
878	}
879
880	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
881		return -EFAULT;
882	nodes_addr(*nodes)[nlongs-1] &= endmask;
883	return 0;
884}
885
886/* Copy a kernel node mask to user space */
887static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
888			      nodemask_t *nodes)
889{
890	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
891	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
892
893	if (copy > nbytes) {
894		if (copy > PAGE_SIZE)
895			return -EINVAL;
896		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
897			return -EFAULT;
898		copy = nbytes;
899	}
900	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
901}
902
903asmlinkage long sys_mbind(unsigned long start, unsigned long len,
904			unsigned long mode,
905			unsigned long __user *nmask, unsigned long maxnode,
906			unsigned flags)
907{
908	nodemask_t nodes;
909	int err;
910
911	if (mode >= MPOL_MAX)
912		return -EINVAL;
913	err = get_nodes(&nodes, nmask, maxnode);
914	if (err)
915		return err;
916	return do_mbind(start, len, mode, &nodes, flags);
917}
918
919/* Set the process memory policy */
920asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
921		unsigned long maxnode)
922{
923	int err;
924	nodemask_t nodes;
925
926	if (mode < 0 || mode >= MPOL_MAX)
927		return -EINVAL;
928	err = get_nodes(&nodes, nmask, maxnode);
929	if (err)
930		return err;
931	return do_set_mempolicy(mode, &nodes);
932}
933
934asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
935		const unsigned long __user *old_nodes,
936		const unsigned long __user *new_nodes)
937{
938	struct mm_struct *mm;
939	struct task_struct *task;
940	nodemask_t old;
941	nodemask_t new;
942	nodemask_t task_nodes;
943	int err;
944
945	err = get_nodes(&old, old_nodes, maxnode);
946	if (err)
947		return err;
948
949	err = get_nodes(&new, new_nodes, maxnode);
950	if (err)
951		return err;
952
953	/* Find the mm_struct */
954	read_lock(&tasklist_lock);
955	task = pid ? find_task_by_vpid(pid) : current;
956	if (!task) {
957		read_unlock(&tasklist_lock);
958		return -ESRCH;
959	}
960	mm = get_task_mm(task);
961	read_unlock(&tasklist_lock);
962
963	if (!mm)
964		return -EINVAL;
965
966	/*
967	 * Check if this process has the right to modify the specified
968	 * process. The right exists if the process has administrative
969	 * capabilities, superuser privileges or the same
970	 * userid as the target process.
971	 */
972	if ((current->euid != task->suid) && (current->euid != task->uid) &&
973	    (current->uid != task->suid) && (current->uid != task->uid) &&
974	    !capable(CAP_SYS_NICE)) {
975		err = -EPERM;
976		goto out;
977	}
978
979	task_nodes = cpuset_mems_allowed(task);
980	/* Is the user allowed to access the target nodes? */
981	if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
982		err = -EPERM;
983		goto out;
984	}
985
986	if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
987		err = -EINVAL;
988		goto out;
989	}
990
991	err = security_task_movememory(task);
992	if (err)
993		goto out;
994
995	err = do_migrate_pages(mm, &old, &new,
996		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
997out:
998	mmput(mm);
999	return err;
1000}
1001
1002
1003/* Retrieve NUMA policy */
1004asmlinkage long sys_get_mempolicy(int __user *policy,
1005				unsigned long __user *nmask,
1006				unsigned long maxnode,
1007				unsigned long addr, unsigned long flags)
1008{
1009	int err;
1010	int uninitialized_var(pval);
1011	nodemask_t nodes;
1012
1013	if (nmask != NULL && maxnode < MAX_NUMNODES)
1014		return -EINVAL;
1015
1016	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1017
1018	if (err)
1019		return err;
1020
1021	if (policy && put_user(pval, policy))
1022		return -EFAULT;
1023
1024	if (nmask)
1025		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1026
1027	return err;
1028}
1029
1030#ifdef CONFIG_COMPAT
1031
1032asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1033				     compat_ulong_t __user *nmask,
1034				     compat_ulong_t maxnode,
1035				     compat_ulong_t addr, compat_ulong_t flags)
1036{
1037	long err;
1038	unsigned long __user *nm = NULL;
1039	unsigned long nr_bits, alloc_size;
1040	DECLARE_BITMAP(bm, MAX_NUMNODES);
1041
1042	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1043	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1044
1045	if (nmask)
1046		nm = compat_alloc_user_space(alloc_size);
1047
1048	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1049
1050	if (!err && nmask) {
1051		err = copy_from_user(bm, nm, alloc_size);
1052		/* ensure entire bitmap is zeroed */
1053		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1054		err |= compat_put_bitmap(nmask, bm, nr_bits);
1055	}
1056
1057	return err;
1058}
1059
1060asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1061				     compat_ulong_t maxnode)
1062{
1063	long err = 0;
1064	unsigned long __user *nm = NULL;
1065	unsigned long nr_bits, alloc_size;
1066	DECLARE_BITMAP(bm, MAX_NUMNODES);
1067
1068	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1069	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1070
1071	if (nmask) {
1072		err = compat_get_bitmap(bm, nmask, nr_bits);
1073		nm = compat_alloc_user_space(alloc_size);
1074		err |= copy_to_user(nm, bm, alloc_size);
1075	}
1076
1077	if (err)
1078		return -EFAULT;
1079
1080	return sys_set_mempolicy(mode, nm, nr_bits+1);
1081}
1082
1083asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1084			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1085			     compat_ulong_t maxnode, compat_ulong_t flags)
1086{
1087	long err = 0;
1088	unsigned long __user *nm = NULL;
1089	unsigned long nr_bits, alloc_size;
1090	nodemask_t bm;
1091
1092	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1093	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1094
1095	if (nmask) {
1096		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1097		nm = compat_alloc_user_space(alloc_size);
1098		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1099	}
1100
1101	if (err)
1102		return -EFAULT;
1103
1104	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1105}
1106
1107#endif
1108
1109/*
1110 * get_vma_policy(@task, @vma, @addr)
1111 * @task - task for fallback if vma policy == default
1112 * @vma   - virtual memory area whose policy is sought
1113 * @addr  - address in @vma for shared policy lookup
1114 *
1115 * Returns effective policy for a VMA at specified address.
1116 * Falls back to @task or system default policy, as necessary.
1117 * Returned policy has extra reference count if shared, vma,
1118 * or some other task's policy [show_numa_maps() can pass
1119 * @task != current].  It is the caller's responsibility to
1120 * free the reference in these cases.
1121 */
1122static struct mempolicy * get_vma_policy(struct task_struct *task,
1123		struct vm_area_struct *vma, unsigned long addr)
1124{
1125	struct mempolicy *pol = task->mempolicy;
1126	int shared_pol = 0;
1127
1128	if (vma) {
1129		if (vma->vm_ops && vma->vm_ops->get_policy) {
1130			pol = vma->vm_ops->get_policy(vma, addr);
1131			shared_pol = 1;	/* if pol non-NULL, add ref below */
1132		} else if (vma->vm_policy &&
1133				vma->vm_policy->policy != MPOL_DEFAULT)
1134			pol = vma->vm_policy;
1135	}
1136	if (!pol)
1137		pol = &default_policy;
1138	else if (!shared_pol && pol != current->mempolicy)
1139		mpol_get(pol);	/* vma or other task's policy */
1140	return pol;
1141}
1142
1143/* Return a nodemask representing a mempolicy */
1144static nodemask_t *nodemask_policy(gfp_t gfp, struct mempolicy *policy)
1145{
1146	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1147	if (unlikely(policy->policy == MPOL_BIND) &&
1148			gfp_zone(gfp) >= policy_zone &&
1149			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1150		return &policy->v.nodes;
1151
1152	return NULL;
1153}
1154
1155/* Return a zonelist representing a mempolicy */
1156static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
1157{
1158	int nd;
1159
1160	switch (policy->policy) {
1161	case MPOL_PREFERRED:
1162		nd = policy->v.preferred_node;
1163		if (nd < 0)
1164			nd = numa_node_id();
1165		break;
1166	case MPOL_BIND:
1167		/*
1168		 * Normally, MPOL_BIND allocations node-local are node-local
1169		 * within the allowed nodemask. However, if __GFP_THISNODE is
1170		 * set and the current node is part of the mask, we use the
1171		 * the zonelist for the first node in the mask instead.
1172		 */
1173		nd = numa_node_id();
1174		if (unlikely(gfp & __GFP_THISNODE) &&
1175				unlikely(!node_isset(nd, policy->v.nodes)))
1176			nd = first_node(policy->v.nodes);
1177		break;
1178	case MPOL_INTERLEAVE: /* should not happen */
1179	case MPOL_DEFAULT:
1180		nd = numa_node_id();
1181		break;
1182	default:
1183		nd = 0;
1184		BUG();
1185	}
1186	return node_zonelist(nd, gfp);
1187}
1188
1189/* Do dynamic interleaving for a process */
1190static unsigned interleave_nodes(struct mempolicy *policy)
1191{
1192	unsigned nid, next;
1193	struct task_struct *me = current;
1194
1195	nid = me->il_next;
1196	next = next_node(nid, policy->v.nodes);
1197	if (next >= MAX_NUMNODES)
1198		next = first_node(policy->v.nodes);
1199	me->il_next = next;
1200	return nid;
1201}
1202
1203/*
1204 * Depending on the memory policy provide a node from which to allocate the
1205 * next slab entry.
1206 */
1207unsigned slab_node(struct mempolicy *policy)
1208{
1209	unsigned short pol = policy ? policy->policy : MPOL_DEFAULT;
1210
1211	switch (pol) {
1212	case MPOL_INTERLEAVE:
1213		return interleave_nodes(policy);
1214
1215	case MPOL_BIND: {
1216		/*
1217		 * Follow bind policy behavior and start allocation at the
1218		 * first node.
1219		 */
1220		struct zonelist *zonelist;
1221		struct zone *zone;
1222		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1223		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1224		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1225							&policy->v.nodes,
1226							&zone);
1227		return zone->node;
1228	}
1229
1230	case MPOL_PREFERRED:
1231		if (policy->v.preferred_node >= 0)
1232			return policy->v.preferred_node;
1233		/* Fall through */
1234
1235	default:
1236		return numa_node_id();
1237	}
1238}
1239
1240/* Do static interleaving for a VMA with known offset. */
1241static unsigned offset_il_node(struct mempolicy *pol,
1242		struct vm_area_struct *vma, unsigned long off)
1243{
1244	unsigned nnodes = nodes_weight(pol->v.nodes);
1245	unsigned target = (unsigned)off % nnodes;
1246	int c;
1247	int nid = -1;
1248
1249	c = 0;
1250	do {
1251		nid = next_node(nid, pol->v.nodes);
1252		c++;
1253	} while (c <= target);
1254	return nid;
1255}
1256
1257/* Determine a node number for interleave */
1258static inline unsigned interleave_nid(struct mempolicy *pol,
1259		 struct vm_area_struct *vma, unsigned long addr, int shift)
1260{
1261	if (vma) {
1262		unsigned long off;
1263
1264		/*
1265		 * for small pages, there is no difference between
1266		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1267		 * for huge pages, since vm_pgoff is in units of small
1268		 * pages, we need to shift off the always 0 bits to get
1269		 * a useful offset.
1270		 */
1271		BUG_ON(shift < PAGE_SHIFT);
1272		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1273		off += (addr - vma->vm_start) >> shift;
1274		return offset_il_node(pol, vma, off);
1275	} else
1276		return interleave_nodes(pol);
1277}
1278
1279#ifdef CONFIG_HUGETLBFS
1280/*
1281 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1282 * @vma = virtual memory area whose policy is sought
1283 * @addr = address in @vma for shared policy lookup and interleave policy
1284 * @gfp_flags = for requested zone
1285 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1286 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1287 *
1288 * Returns a zonelist suitable for a huge page allocation.
1289 * If the effective policy is 'BIND, returns pointer to local node's zonelist,
1290 * and a pointer to the mempolicy's @nodemask for filtering the zonelist.
1291 * If it is also a policy for which get_vma_policy() returns an extra
1292 * reference, we must hold that reference until after the allocation.
1293 * In that case, return policy via @mpol so hugetlb allocation can drop
1294 * the reference. For non-'BIND referenced policies, we can/do drop the
1295 * reference here, so the caller doesn't need to know about the special case
1296 * for default and current task policy.
1297 */
1298struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1299				gfp_t gfp_flags, struct mempolicy **mpol,
1300				nodemask_t **nodemask)
1301{
1302	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1303	struct zonelist *zl;
1304
1305	*mpol = NULL;		/* probably no unref needed */
1306	*nodemask = NULL;	/* assume !MPOL_BIND */
1307	if (pol->policy == MPOL_BIND) {
1308			*nodemask = &pol->v.nodes;
1309	} else if (pol->policy == MPOL_INTERLEAVE) {
1310		unsigned nid;
1311
1312		nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1313		if (unlikely(pol != &default_policy &&
1314				pol != current->mempolicy))
1315			__mpol_free(pol);	/* finished with pol */
1316		return node_zonelist(nid, gfp_flags);
1317	}
1318
1319	zl = zonelist_policy(GFP_HIGHUSER, pol);
1320	if (unlikely(pol != &default_policy && pol != current->mempolicy)) {
1321		if (pol->policy != MPOL_BIND)
1322			__mpol_free(pol);	/* finished with pol */
1323		else
1324			*mpol = pol;	/* unref needed after allocation */
1325	}
1326	return zl;
1327}
1328#endif
1329
1330/* Allocate a page in interleaved policy.
1331   Own path because it needs to do special accounting. */
1332static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1333					unsigned nid)
1334{
1335	struct zonelist *zl;
1336	struct page *page;
1337
1338	zl = node_zonelist(nid, gfp);
1339	page = __alloc_pages(gfp, order, zl);
1340	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1341		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1342	return page;
1343}
1344
1345/**
1346 * 	alloc_page_vma	- Allocate a page for a VMA.
1347 *
1348 * 	@gfp:
1349 *      %GFP_USER    user allocation.
1350 *      %GFP_KERNEL  kernel allocations,
1351 *      %GFP_HIGHMEM highmem/user allocations,
1352 *      %GFP_FS      allocation should not call back into a file system.
1353 *      %GFP_ATOMIC  don't sleep.
1354 *
1355 * 	@vma:  Pointer to VMA or NULL if not available.
1356 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1357 *
1358 * 	This function allocates a page from the kernel page pool and applies
1359 *	a NUMA policy associated with the VMA or the current process.
1360 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1361 *	mm_struct of the VMA to prevent it from going away. Should be used for
1362 *	all allocations for pages that will be mapped into
1363 * 	user space. Returns NULL when no page can be allocated.
1364 *
1365 *	Should be called with the mm_sem of the vma hold.
1366 */
1367struct page *
1368alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1369{
1370	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1371	struct zonelist *zl;
1372
1373	cpuset_update_task_memory_state();
1374
1375	if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1376		unsigned nid;
1377
1378		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1379		if (unlikely(pol != &default_policy &&
1380				pol != current->mempolicy))
1381			__mpol_free(pol);	/* finished with pol */
1382		return alloc_page_interleave(gfp, 0, nid);
1383	}
1384	zl = zonelist_policy(gfp, pol);
1385	if (pol != &default_policy && pol != current->mempolicy) {
1386		/*
1387		 * slow path: ref counted policy -- shared or vma
1388		 */
1389		struct page *page =  __alloc_pages_nodemask(gfp, 0,
1390						zl, nodemask_policy(gfp, pol));
1391		__mpol_free(pol);
1392		return page;
1393	}
1394	/*
1395	 * fast path:  default or task policy
1396	 */
1397	return __alloc_pages_nodemask(gfp, 0, zl, nodemask_policy(gfp, pol));
1398}
1399
1400/**
1401 * 	alloc_pages_current - Allocate pages.
1402 *
1403 *	@gfp:
1404 *		%GFP_USER   user allocation,
1405 *      	%GFP_KERNEL kernel allocation,
1406 *      	%GFP_HIGHMEM highmem allocation,
1407 *      	%GFP_FS     don't call back into a file system.
1408 *      	%GFP_ATOMIC don't sleep.
1409 *	@order: Power of two of allocation size in pages. 0 is a single page.
1410 *
1411 *	Allocate a page from the kernel page pool.  When not in
1412 *	interrupt context and apply the current process NUMA policy.
1413 *	Returns NULL when no page can be allocated.
1414 *
1415 *	Don't call cpuset_update_task_memory_state() unless
1416 *	1) it's ok to take cpuset_sem (can WAIT), and
1417 *	2) allocating for current task (not interrupt).
1418 */
1419struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1420{
1421	struct mempolicy *pol = current->mempolicy;
1422
1423	if ((gfp & __GFP_WAIT) && !in_interrupt())
1424		cpuset_update_task_memory_state();
1425	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1426		pol = &default_policy;
1427	if (pol->policy == MPOL_INTERLEAVE)
1428		return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1429	return __alloc_pages_nodemask(gfp, order,
1430			zonelist_policy(gfp, pol), nodemask_policy(gfp, pol));
1431}
1432EXPORT_SYMBOL(alloc_pages_current);
1433
1434/*
1435 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1436 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1437 * with the mems_allowed returned by cpuset_mems_allowed().  This
1438 * keeps mempolicies cpuset relative after its cpuset moves.  See
1439 * further kernel/cpuset.c update_nodemask().
1440 */
1441
1442/* Slow path of a mempolicy copy */
1443struct mempolicy *__mpol_copy(struct mempolicy *old)
1444{
1445	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1446
1447	if (!new)
1448		return ERR_PTR(-ENOMEM);
1449	if (current_cpuset_is_being_rebound()) {
1450		nodemask_t mems = cpuset_mems_allowed(current);
1451		mpol_rebind_policy(old, &mems);
1452	}
1453	*new = *old;
1454	atomic_set(&new->refcnt, 1);
1455	return new;
1456}
1457
1458/* Slow path of a mempolicy comparison */
1459int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1460{
1461	if (!a || !b)
1462		return 0;
1463	if (a->policy != b->policy)
1464		return 0;
1465	switch (a->policy) {
1466	case MPOL_DEFAULT:
1467		return 1;
1468	case MPOL_BIND:
1469		/* Fall through */
1470	case MPOL_INTERLEAVE:
1471		return nodes_equal(a->v.nodes, b->v.nodes);
1472	case MPOL_PREFERRED:
1473		return a->v.preferred_node == b->v.preferred_node;
1474	default:
1475		BUG();
1476		return 0;
1477	}
1478}
1479
1480/* Slow path of a mpol destructor. */
1481void __mpol_free(struct mempolicy *p)
1482{
1483	if (!atomic_dec_and_test(&p->refcnt))
1484		return;
1485	p->policy = MPOL_DEFAULT;
1486	kmem_cache_free(policy_cache, p);
1487}
1488
1489/*
1490 * Shared memory backing store policy support.
1491 *
1492 * Remember policies even when nobody has shared memory mapped.
1493 * The policies are kept in Red-Black tree linked from the inode.
1494 * They are protected by the sp->lock spinlock, which should be held
1495 * for any accesses to the tree.
1496 */
1497
1498/* lookup first element intersecting start-end */
1499/* Caller holds sp->lock */
1500static struct sp_node *
1501sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1502{
1503	struct rb_node *n = sp->root.rb_node;
1504
1505	while (n) {
1506		struct sp_node *p = rb_entry(n, struct sp_node, nd);
1507
1508		if (start >= p->end)
1509			n = n->rb_right;
1510		else if (end <= p->start)
1511			n = n->rb_left;
1512		else
1513			break;
1514	}
1515	if (!n)
1516		return NULL;
1517	for (;;) {
1518		struct sp_node *w = NULL;
1519		struct rb_node *prev = rb_prev(n);
1520		if (!prev)
1521			break;
1522		w = rb_entry(prev, struct sp_node, nd);
1523		if (w->end <= start)
1524			break;
1525		n = prev;
1526	}
1527	return rb_entry(n, struct sp_node, nd);
1528}
1529
1530/* Insert a new shared policy into the list. */
1531/* Caller holds sp->lock */
1532static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1533{
1534	struct rb_node **p = &sp->root.rb_node;
1535	struct rb_node *parent = NULL;
1536	struct sp_node *nd;
1537
1538	while (*p) {
1539		parent = *p;
1540		nd = rb_entry(parent, struct sp_node, nd);
1541		if (new->start < nd->start)
1542			p = &(*p)->rb_left;
1543		else if (new->end > nd->end)
1544			p = &(*p)->rb_right;
1545		else
1546			BUG();
1547	}
1548	rb_link_node(&new->nd, parent, p);
1549	rb_insert_color(&new->nd, &sp->root);
1550	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1551		 new->policy ? new->policy->policy : 0);
1552}
1553
1554/* Find shared policy intersecting idx */
1555struct mempolicy *
1556mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1557{
1558	struct mempolicy *pol = NULL;
1559	struct sp_node *sn;
1560
1561	if (!sp->root.rb_node)
1562		return NULL;
1563	spin_lock(&sp->lock);
1564	sn = sp_lookup(sp, idx, idx+1);
1565	if (sn) {
1566		mpol_get(sn->policy);
1567		pol = sn->policy;
1568	}
1569	spin_unlock(&sp->lock);
1570	return pol;
1571}
1572
1573static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1574{
1575	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1576	rb_erase(&n->nd, &sp->root);
1577	mpol_free(n->policy);
1578	kmem_cache_free(sn_cache, n);
1579}
1580
1581static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1582				struct mempolicy *pol)
1583{
1584	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1585
1586	if (!n)
1587		return NULL;
1588	n->start = start;
1589	n->end = end;
1590	mpol_get(pol);
1591	n->policy = pol;
1592	return n;
1593}
1594
1595/* Replace a policy range. */
1596static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1597				 unsigned long end, struct sp_node *new)
1598{
1599	struct sp_node *n, *new2 = NULL;
1600
1601restart:
1602	spin_lock(&sp->lock);
1603	n = sp_lookup(sp, start, end);
1604	/* Take care of old policies in the same range. */
1605	while (n && n->start < end) {
1606		struct rb_node *next = rb_next(&n->nd);
1607		if (n->start >= start) {
1608			if (n->end <= end)
1609				sp_delete(sp, n);
1610			else
1611				n->start = end;
1612		} else {
1613			/* Old policy spanning whole new range. */
1614			if (n->end > end) {
1615				if (!new2) {
1616					spin_unlock(&sp->lock);
1617					new2 = sp_alloc(end, n->end, n->policy);
1618					if (!new2)
1619						return -ENOMEM;
1620					goto restart;
1621				}
1622				n->end = start;
1623				sp_insert(sp, new2);
1624				new2 = NULL;
1625				break;
1626			} else
1627				n->end = start;
1628		}
1629		if (!next)
1630			break;
1631		n = rb_entry(next, struct sp_node, nd);
1632	}
1633	if (new)
1634		sp_insert(sp, new);
1635	spin_unlock(&sp->lock);
1636	if (new2) {
1637		mpol_free(new2->policy);
1638		kmem_cache_free(sn_cache, new2);
1639	}
1640	return 0;
1641}
1642
1643void mpol_shared_policy_init(struct shared_policy *info, unsigned short policy,
1644				nodemask_t *policy_nodes)
1645{
1646	info->root = RB_ROOT;
1647	spin_lock_init(&info->lock);
1648
1649	if (policy != MPOL_DEFAULT) {
1650		struct mempolicy *newpol;
1651
1652		/* Falls back to MPOL_DEFAULT on any error */
1653		newpol = mpol_new(policy, policy_nodes);
1654		if (!IS_ERR(newpol)) {
1655			/* Create pseudo-vma that contains just the policy */
1656			struct vm_area_struct pvma;
1657
1658			memset(&pvma, 0, sizeof(struct vm_area_struct));
1659			/* Policy covers entire file */
1660			pvma.vm_end = TASK_SIZE;
1661			mpol_set_shared_policy(info, &pvma, newpol);
1662			mpol_free(newpol);
1663		}
1664	}
1665}
1666
1667int mpol_set_shared_policy(struct shared_policy *info,
1668			struct vm_area_struct *vma, struct mempolicy *npol)
1669{
1670	int err;
1671	struct sp_node *new = NULL;
1672	unsigned long sz = vma_pages(vma);
1673
1674	pr_debug("set_shared_policy %lx sz %lu %d %lx\n",
1675		 vma->vm_pgoff,
1676		 sz, npol? npol->policy : -1,
1677		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1678
1679	if (npol) {
1680		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1681		if (!new)
1682			return -ENOMEM;
1683	}
1684	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1685	if (err && new)
1686		kmem_cache_free(sn_cache, new);
1687	return err;
1688}
1689
1690/* Free a backing policy store on inode delete. */
1691void mpol_free_shared_policy(struct shared_policy *p)
1692{
1693	struct sp_node *n;
1694	struct rb_node *next;
1695
1696	if (!p->root.rb_node)
1697		return;
1698	spin_lock(&p->lock);
1699	next = rb_first(&p->root);
1700	while (next) {
1701		n = rb_entry(next, struct sp_node, nd);
1702		next = rb_next(&n->nd);
1703		rb_erase(&n->nd, &p->root);
1704		mpol_free(n->policy);
1705		kmem_cache_free(sn_cache, n);
1706	}
1707	spin_unlock(&p->lock);
1708}
1709
1710/* assumes fs == KERNEL_DS */
1711void __init numa_policy_init(void)
1712{
1713	nodemask_t interleave_nodes;
1714	unsigned long largest = 0;
1715	int nid, prefer = 0;
1716
1717	policy_cache = kmem_cache_create("numa_policy",
1718					 sizeof(struct mempolicy),
1719					 0, SLAB_PANIC, NULL);
1720
1721	sn_cache = kmem_cache_create("shared_policy_node",
1722				     sizeof(struct sp_node),
1723				     0, SLAB_PANIC, NULL);
1724
1725	/*
1726	 * Set interleaving policy for system init. Interleaving is only
1727	 * enabled across suitably sized nodes (default is >= 16MB), or
1728	 * fall back to the largest node if they're all smaller.
1729	 */
1730	nodes_clear(interleave_nodes);
1731	for_each_node_state(nid, N_HIGH_MEMORY) {
1732		unsigned long total_pages = node_present_pages(nid);
1733
1734		/* Preserve the largest node */
1735		if (largest < total_pages) {
1736			largest = total_pages;
1737			prefer = nid;
1738		}
1739
1740		/* Interleave this node? */
1741		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
1742			node_set(nid, interleave_nodes);
1743	}
1744
1745	/* All too small, use the largest */
1746	if (unlikely(nodes_empty(interleave_nodes)))
1747		node_set(prefer, interleave_nodes);
1748
1749	if (do_set_mempolicy(MPOL_INTERLEAVE, &interleave_nodes))
1750		printk("numa_policy_init: interleaving failed\n");
1751}
1752
1753/* Reset policy of current process to default */
1754void numa_default_policy(void)
1755{
1756	do_set_mempolicy(MPOL_DEFAULT, NULL);
1757}
1758
1759/* Migrate a policy to a different set of nodes */
1760static void mpol_rebind_policy(struct mempolicy *pol,
1761			       const nodemask_t *newmask)
1762{
1763	nodemask_t *mpolmask;
1764	nodemask_t tmp;
1765
1766	if (!pol)
1767		return;
1768	mpolmask = &pol->cpuset_mems_allowed;
1769	if (nodes_equal(*mpolmask, *newmask))
1770		return;
1771
1772	switch (pol->policy) {
1773	case MPOL_DEFAULT:
1774		break;
1775	case MPOL_BIND:
1776		/* Fall through */
1777	case MPOL_INTERLEAVE:
1778		nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask);
1779		pol->v.nodes = tmp;
1780		*mpolmask = *newmask;
1781		current->il_next = node_remap(current->il_next,
1782						*mpolmask, *newmask);
1783		break;
1784	case MPOL_PREFERRED:
1785		pol->v.preferred_node = node_remap(pol->v.preferred_node,
1786						*mpolmask, *newmask);
1787		*mpolmask = *newmask;
1788		break;
1789	default:
1790		BUG();
1791		break;
1792	}
1793}
1794
1795/*
1796 * Wrapper for mpol_rebind_policy() that just requires task
1797 * pointer, and updates task mempolicy.
1798 */
1799
1800void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
1801{
1802	mpol_rebind_policy(tsk->mempolicy, new);
1803}
1804
1805/*
1806 * Rebind each vma in mm to new nodemask.
1807 *
1808 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
1809 */
1810
1811void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
1812{
1813	struct vm_area_struct *vma;
1814
1815	down_write(&mm->mmap_sem);
1816	for (vma = mm->mmap; vma; vma = vma->vm_next)
1817		mpol_rebind_policy(vma->vm_policy, new);
1818	up_write(&mm->mmap_sem);
1819}
1820
1821/*
1822 * Display pages allocated per node and memory policy via /proc.
1823 */
1824
1825static const char * const policy_types[] =
1826	{ "default", "prefer", "bind", "interleave" };
1827
1828/*
1829 * Convert a mempolicy into a string.
1830 * Returns the number of characters in buffer (if positive)
1831 * or an error (negative)
1832 */
1833static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1834{
1835	char *p = buffer;
1836	int l;
1837	nodemask_t nodes;
1838	unsigned short mode = pol ? pol->policy : MPOL_DEFAULT;
1839
1840	switch (mode) {
1841	case MPOL_DEFAULT:
1842		nodes_clear(nodes);
1843		break;
1844
1845	case MPOL_PREFERRED:
1846		nodes_clear(nodes);
1847		node_set(pol->v.preferred_node, nodes);
1848		break;
1849
1850	case MPOL_BIND:
1851		/* Fall through */
1852	case MPOL_INTERLEAVE:
1853		nodes = pol->v.nodes;
1854		break;
1855
1856	default:
1857		BUG();
1858		return -EFAULT;
1859	}
1860
1861	l = strlen(policy_types[mode]);
1862 	if (buffer + maxlen < p + l + 1)
1863 		return -ENOSPC;
1864
1865	strcpy(p, policy_types[mode]);
1866	p += l;
1867
1868	if (!nodes_empty(nodes)) {
1869		if (buffer + maxlen < p + 2)
1870			return -ENOSPC;
1871		*p++ = '=';
1872	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1873	}
1874	return p - buffer;
1875}
1876
1877struct numa_maps {
1878	unsigned long pages;
1879	unsigned long anon;
1880	unsigned long active;
1881	unsigned long writeback;
1882	unsigned long mapcount_max;
1883	unsigned long dirty;
1884	unsigned long swapcache;
1885	unsigned long node[MAX_NUMNODES];
1886};
1887
1888static void gather_stats(struct page *page, void *private, int pte_dirty)
1889{
1890	struct numa_maps *md = private;
1891	int count = page_mapcount(page);
1892
1893	md->pages++;
1894	if (pte_dirty || PageDirty(page))
1895		md->dirty++;
1896
1897	if (PageSwapCache(page))
1898		md->swapcache++;
1899
1900	if (PageActive(page))
1901		md->active++;
1902
1903	if (PageWriteback(page))
1904		md->writeback++;
1905
1906	if (PageAnon(page))
1907		md->anon++;
1908
1909	if (count > md->mapcount_max)
1910		md->mapcount_max = count;
1911
1912	md->node[page_to_nid(page)]++;
1913}
1914
1915#ifdef CONFIG_HUGETLB_PAGE
1916static void check_huge_range(struct vm_area_struct *vma,
1917		unsigned long start, unsigned long end,
1918		struct numa_maps *md)
1919{
1920	unsigned long addr;
1921	struct page *page;
1922
1923	for (addr = start; addr < end; addr += HPAGE_SIZE) {
1924		pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
1925		pte_t pte;
1926
1927		if (!ptep)
1928			continue;
1929
1930		pte = *ptep;
1931		if (pte_none(pte))
1932			continue;
1933
1934		page = pte_page(pte);
1935		if (!page)
1936			continue;
1937
1938		gather_stats(page, md, pte_dirty(*ptep));
1939	}
1940}
1941#else
1942static inline void check_huge_range(struct vm_area_struct *vma,
1943		unsigned long start, unsigned long end,
1944		struct numa_maps *md)
1945{
1946}
1947#endif
1948
1949int show_numa_map(struct seq_file *m, void *v)
1950{
1951	struct proc_maps_private *priv = m->private;
1952	struct vm_area_struct *vma = v;
1953	struct numa_maps *md;
1954	struct file *file = vma->vm_file;
1955	struct mm_struct *mm = vma->vm_mm;
1956	struct mempolicy *pol;
1957	int n;
1958	char buffer[50];
1959
1960	if (!mm)
1961		return 0;
1962
1963	md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
1964	if (!md)
1965		return 0;
1966
1967	pol = get_vma_policy(priv->task, vma, vma->vm_start);
1968	mpol_to_str(buffer, sizeof(buffer), pol);
1969	/*
1970	 * unref shared or other task's mempolicy
1971	 */
1972	if (pol != &default_policy && pol != current->mempolicy)
1973		__mpol_free(pol);
1974
1975	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1976
1977	if (file) {
1978		seq_printf(m, " file=");
1979		seq_path(m, &file->f_path, "\n\t= ");
1980	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1981		seq_printf(m, " heap");
1982	} else if (vma->vm_start <= mm->start_stack &&
1983			vma->vm_end >= mm->start_stack) {
1984		seq_printf(m, " stack");
1985	}
1986
1987	if (is_vm_hugetlb_page(vma)) {
1988		check_huge_range(vma, vma->vm_start, vma->vm_end, md);
1989		seq_printf(m, " huge");
1990	} else {
1991		check_pgd_range(vma, vma->vm_start, vma->vm_end,
1992			&node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
1993	}
1994
1995	if (!md->pages)
1996		goto out;
1997
1998	if (md->anon)
1999		seq_printf(m," anon=%lu",md->anon);
2000
2001	if (md->dirty)
2002		seq_printf(m," dirty=%lu",md->dirty);
2003
2004	if (md->pages != md->anon && md->pages != md->dirty)
2005		seq_printf(m, " mapped=%lu", md->pages);
2006
2007	if (md->mapcount_max > 1)
2008		seq_printf(m, " mapmax=%lu", md->mapcount_max);
2009
2010	if (md->swapcache)
2011		seq_printf(m," swapcache=%lu", md->swapcache);
2012
2013	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2014		seq_printf(m," active=%lu", md->active);
2015
2016	if (md->writeback)
2017		seq_printf(m," writeback=%lu", md->writeback);
2018
2019	for_each_node_state(n, N_HIGH_MEMORY)
2020		if (md->node[n])
2021			seq_printf(m, " N%d=%lu", n, md->node[n]);
2022out:
2023	seq_putc(m, '\n');
2024	kfree(md);
2025
2026	if (m->count < m->size)
2027		m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2028	return 0;
2029}
2030