mempolicy.c revision e754d79d35f0b8612445a9bd7491c48d7317e3ad
1/*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave     Allocate memory interleaved over a set of nodes,
16 *                with normal fallback if it fails.
17 *                For VMA based allocations this interleaves based on the
18 *                offset into the backing object or offset into the mapping
19 *                for anonymous memory. For process policy an process counter
20 *                is used.
21 *
22 * bind           Only allocate memory on a specific set of nodes,
23 *                no fallback.
24 *                FIXME: memory is allocated starting with the first node
25 *                to the last. It would be better if bind would truly restrict
26 *                the allocation to memory nodes instead
27 *
28 * preferred       Try a specific node first before normal fallback.
29 *                As a special case node -1 here means do the allocation
30 *                on the local CPU. This is normally identical to default,
31 *                but useful to set in a VMA when you have a non default
32 *                process policy.
33 *
34 * default        Allocate on the local node first, or when on a VMA
35 *                use the process policy. This is what Linux always did
36 *		  in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57   fix mmap readahead to honour policy and enable policy for any page cache
58   object
59   statistics for bigpages
60   global policy for page cache? currently it uses process policy. Requires
61   first item above.
62   handle mremap for shared memory (currently ignored for the policy)
63   grows down?
64   make bind policy root only? It can trigger oom much faster and the
65   kernel is not always grateful with that.
66*/
67
68#include <linux/mempolicy.h>
69#include <linux/mm.h>
70#include <linux/highmem.h>
71#include <linux/hugetlb.h>
72#include <linux/kernel.h>
73#include <linux/sched.h>
74#include <linux/nodemask.h>
75#include <linux/cpuset.h>
76#include <linux/slab.h>
77#include <linux/string.h>
78#include <linux/module.h>
79#include <linux/nsproxy.h>
80#include <linux/interrupt.h>
81#include <linux/init.h>
82#include <linux/compat.h>
83#include <linux/swap.h>
84#include <linux/seq_file.h>
85#include <linux/proc_fs.h>
86#include <linux/migrate.h>
87#include <linux/ksm.h>
88#include <linux/rmap.h>
89#include <linux/security.h>
90#include <linux/syscalls.h>
91#include <linux/ctype.h>
92#include <linux/mm_inline.h>
93
94#include <asm/tlbflush.h>
95#include <asm/uaccess.h>
96#include <linux/random.h>
97
98#include "internal.h"
99
100/* Internal flags */
101#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
102#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
103
104static struct kmem_cache *policy_cache;
105static struct kmem_cache *sn_cache;
106
107/* Highest zone. An specific allocation for a zone below that is not
108   policied. */
109enum zone_type policy_zone = 0;
110
111/*
112 * run-time system-wide default policy => local allocation
113 */
114static struct mempolicy default_policy = {
115	.refcnt = ATOMIC_INIT(1), /* never free it */
116	.mode = MPOL_PREFERRED,
117	.flags = MPOL_F_LOCAL,
118};
119
120static const struct mempolicy_operations {
121	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122	/*
123	 * If read-side task has no lock to protect task->mempolicy, write-side
124	 * task will rebind the task->mempolicy by two step. The first step is
125	 * setting all the newly nodes, and the second step is cleaning all the
126	 * disallowed nodes. In this way, we can avoid finding no node to alloc
127	 * page.
128	 * If we have a lock to protect task->mempolicy in read-side, we do
129	 * rebind directly.
130	 *
131	 * step:
132	 * 	MPOL_REBIND_ONCE - do rebind work at once
133	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
134	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
135	 */
136	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137			enum mpol_rebind_step step);
138} mpol_ops[MPOL_MAX];
139
140/* Check that the nodemask contains at least one populated zone */
141static int is_valid_nodemask(const nodemask_t *nodemask)
142{
143	int nd, k;
144
145	for_each_node_mask(nd, *nodemask) {
146		struct zone *z;
147
148		for (k = 0; k <= policy_zone; k++) {
149			z = &NODE_DATA(nd)->node_zones[k];
150			if (z->present_pages > 0)
151				return 1;
152		}
153	}
154
155	return 0;
156}
157
158static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159{
160	return pol->flags & MPOL_MODE_FLAGS;
161}
162
163static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164				   const nodemask_t *rel)
165{
166	nodemask_t tmp;
167	nodes_fold(tmp, *orig, nodes_weight(*rel));
168	nodes_onto(*ret, tmp, *rel);
169}
170
171static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172{
173	if (nodes_empty(*nodes))
174		return -EINVAL;
175	pol->v.nodes = *nodes;
176	return 0;
177}
178
179static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180{
181	if (!nodes)
182		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
183	else if (nodes_empty(*nodes))
184		return -EINVAL;			/*  no allowed nodes */
185	else
186		pol->v.preferred_node = first_node(*nodes);
187	return 0;
188}
189
190static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191{
192	if (!is_valid_nodemask(nodes))
193		return -EINVAL;
194	pol->v.nodes = *nodes;
195	return 0;
196}
197
198/*
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy.  mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags.  But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
203 *
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy.  May also be called holding the mmap_semaphore for write.
206 */
207static int mpol_set_nodemask(struct mempolicy *pol,
208		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
209{
210	int ret;
211
212	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213	if (pol == NULL)
214		return 0;
215	/* Check N_HIGH_MEMORY */
216	nodes_and(nsc->mask1,
217		  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218
219	VM_BUG_ON(!nodes);
220	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221		nodes = NULL;	/* explicit local allocation */
222	else {
223		if (pol->flags & MPOL_F_RELATIVE_NODES)
224			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225		else
226			nodes_and(nsc->mask2, *nodes, nsc->mask1);
227
228		if (mpol_store_user_nodemask(pol))
229			pol->w.user_nodemask = *nodes;
230		else
231			pol->w.cpuset_mems_allowed =
232						cpuset_current_mems_allowed;
233	}
234
235	if (nodes)
236		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237	else
238		ret = mpol_ops[pol->mode].create(pol, NULL);
239	return ret;
240}
241
242/*
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
245 */
246static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247				  nodemask_t *nodes)
248{
249	struct mempolicy *policy;
250
251	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253
254	if (mode == MPOL_DEFAULT) {
255		if (nodes && !nodes_empty(*nodes))
256			return ERR_PTR(-EINVAL);
257		return NULL;	/* simply delete any existing policy */
258	}
259	VM_BUG_ON(!nodes);
260
261	/*
262	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264	 * All other modes require a valid pointer to a non-empty nodemask.
265	 */
266	if (mode == MPOL_PREFERRED) {
267		if (nodes_empty(*nodes)) {
268			if (((flags & MPOL_F_STATIC_NODES) ||
269			     (flags & MPOL_F_RELATIVE_NODES)))
270				return ERR_PTR(-EINVAL);
271		}
272	} else if (nodes_empty(*nodes))
273		return ERR_PTR(-EINVAL);
274	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275	if (!policy)
276		return ERR_PTR(-ENOMEM);
277	atomic_set(&policy->refcnt, 1);
278	policy->mode = mode;
279	policy->flags = flags;
280
281	return policy;
282}
283
284/* Slow path of a mpol destructor. */
285void __mpol_put(struct mempolicy *p)
286{
287	if (!atomic_dec_and_test(&p->refcnt))
288		return;
289	kmem_cache_free(policy_cache, p);
290}
291
292static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293				enum mpol_rebind_step step)
294{
295}
296
297/*
298 * step:
299 * 	MPOL_REBIND_ONCE  - do rebind work at once
300 * 	MPOL_REBIND_STEP1 - set all the newly nodes
301 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
302 */
303static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304				 enum mpol_rebind_step step)
305{
306	nodemask_t tmp;
307
308	if (pol->flags & MPOL_F_STATIC_NODES)
309		nodes_and(tmp, pol->w.user_nodemask, *nodes);
310	else if (pol->flags & MPOL_F_RELATIVE_NODES)
311		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312	else {
313		/*
314		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315		 * result
316		 */
317		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318			nodes_remap(tmp, pol->v.nodes,
319					pol->w.cpuset_mems_allowed, *nodes);
320			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321		} else if (step == MPOL_REBIND_STEP2) {
322			tmp = pol->w.cpuset_mems_allowed;
323			pol->w.cpuset_mems_allowed = *nodes;
324		} else
325			BUG();
326	}
327
328	if (nodes_empty(tmp))
329		tmp = *nodes;
330
331	if (step == MPOL_REBIND_STEP1)
332		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334		pol->v.nodes = tmp;
335	else
336		BUG();
337
338	if (!node_isset(current->il_next, tmp)) {
339		current->il_next = next_node(current->il_next, tmp);
340		if (current->il_next >= MAX_NUMNODES)
341			current->il_next = first_node(tmp);
342		if (current->il_next >= MAX_NUMNODES)
343			current->il_next = numa_node_id();
344	}
345}
346
347static void mpol_rebind_preferred(struct mempolicy *pol,
348				  const nodemask_t *nodes,
349				  enum mpol_rebind_step step)
350{
351	nodemask_t tmp;
352
353	if (pol->flags & MPOL_F_STATIC_NODES) {
354		int node = first_node(pol->w.user_nodemask);
355
356		if (node_isset(node, *nodes)) {
357			pol->v.preferred_node = node;
358			pol->flags &= ~MPOL_F_LOCAL;
359		} else
360			pol->flags |= MPOL_F_LOCAL;
361	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363		pol->v.preferred_node = first_node(tmp);
364	} else if (!(pol->flags & MPOL_F_LOCAL)) {
365		pol->v.preferred_node = node_remap(pol->v.preferred_node,
366						   pol->w.cpuset_mems_allowed,
367						   *nodes);
368		pol->w.cpuset_mems_allowed = *nodes;
369	}
370}
371
372/*
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
374 *
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
379 * page.
380 * If we have a lock to protect task->mempolicy in read-side, we do
381 * rebind directly.
382 *
383 * step:
384 * 	MPOL_REBIND_ONCE  - do rebind work at once
385 * 	MPOL_REBIND_STEP1 - set all the newly nodes
386 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
387 */
388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389				enum mpol_rebind_step step)
390{
391	if (!pol)
392		return;
393	if (!mpol_store_user_nodemask(pol) && step == 0 &&
394	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395		return;
396
397	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398		return;
399
400	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401		BUG();
402
403	if (step == MPOL_REBIND_STEP1)
404		pol->flags |= MPOL_F_REBINDING;
405	else if (step == MPOL_REBIND_STEP2)
406		pol->flags &= ~MPOL_F_REBINDING;
407	else if (step >= MPOL_REBIND_NSTEP)
408		BUG();
409
410	mpol_ops[pol->mode].rebind(pol, newmask, step);
411}
412
413/*
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
416 *
417 * Called with task's alloc_lock held.
418 */
419
420void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421			enum mpol_rebind_step step)
422{
423	mpol_rebind_policy(tsk->mempolicy, new, step);
424}
425
426/*
427 * Rebind each vma in mm to new nodemask.
428 *
429 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
430 */
431
432void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433{
434	struct vm_area_struct *vma;
435
436	down_write(&mm->mmap_sem);
437	for (vma = mm->mmap; vma; vma = vma->vm_next)
438		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439	up_write(&mm->mmap_sem);
440}
441
442static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443	[MPOL_DEFAULT] = {
444		.rebind = mpol_rebind_default,
445	},
446	[MPOL_INTERLEAVE] = {
447		.create = mpol_new_interleave,
448		.rebind = mpol_rebind_nodemask,
449	},
450	[MPOL_PREFERRED] = {
451		.create = mpol_new_preferred,
452		.rebind = mpol_rebind_preferred,
453	},
454	[MPOL_BIND] = {
455		.create = mpol_new_bind,
456		.rebind = mpol_rebind_nodemask,
457	},
458};
459
460static void migrate_page_add(struct page *page, struct list_head *pagelist,
461				unsigned long flags);
462
463/* Scan through pages checking if pages follow certain conditions. */
464static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465		unsigned long addr, unsigned long end,
466		const nodemask_t *nodes, unsigned long flags,
467		void *private)
468{
469	pte_t *orig_pte;
470	pte_t *pte;
471	spinlock_t *ptl;
472
473	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474	do {
475		struct page *page;
476		int nid;
477
478		if (!pte_present(*pte))
479			continue;
480		page = vm_normal_page(vma, addr, *pte);
481		if (!page)
482			continue;
483		/*
484		 * vm_normal_page() filters out zero pages, but there might
485		 * still be PageReserved pages to skip, perhaps in a VDSO.
486		 * And we cannot move PageKsm pages sensibly or safely yet.
487		 */
488		if (PageReserved(page) || PageKsm(page))
489			continue;
490		nid = page_to_nid(page);
491		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492			continue;
493
494		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495			migrate_page_add(page, private, flags);
496		else
497			break;
498	} while (pte++, addr += PAGE_SIZE, addr != end);
499	pte_unmap_unlock(orig_pte, ptl);
500	return addr != end;
501}
502
503static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504		unsigned long addr, unsigned long end,
505		const nodemask_t *nodes, unsigned long flags,
506		void *private)
507{
508	pmd_t *pmd;
509	unsigned long next;
510
511	pmd = pmd_offset(pud, addr);
512	do {
513		next = pmd_addr_end(addr, end);
514		split_huge_page_pmd(vma->vm_mm, pmd);
515		if (pmd_none_or_clear_bad(pmd))
516			continue;
517		if (check_pte_range(vma, pmd, addr, next, nodes,
518				    flags, private))
519			return -EIO;
520	} while (pmd++, addr = next, addr != end);
521	return 0;
522}
523
524static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525		unsigned long addr, unsigned long end,
526		const nodemask_t *nodes, unsigned long flags,
527		void *private)
528{
529	pud_t *pud;
530	unsigned long next;
531
532	pud = pud_offset(pgd, addr);
533	do {
534		next = pud_addr_end(addr, end);
535		if (pud_none_or_clear_bad(pud))
536			continue;
537		if (check_pmd_range(vma, pud, addr, next, nodes,
538				    flags, private))
539			return -EIO;
540	} while (pud++, addr = next, addr != end);
541	return 0;
542}
543
544static inline int check_pgd_range(struct vm_area_struct *vma,
545		unsigned long addr, unsigned long end,
546		const nodemask_t *nodes, unsigned long flags,
547		void *private)
548{
549	pgd_t *pgd;
550	unsigned long next;
551
552	pgd = pgd_offset(vma->vm_mm, addr);
553	do {
554		next = pgd_addr_end(addr, end);
555		if (pgd_none_or_clear_bad(pgd))
556			continue;
557		if (check_pud_range(vma, pgd, addr, next, nodes,
558				    flags, private))
559			return -EIO;
560	} while (pgd++, addr = next, addr != end);
561	return 0;
562}
563
564/*
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
568 */
569static struct vm_area_struct *
570check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571		const nodemask_t *nodes, unsigned long flags, void *private)
572{
573	int err;
574	struct vm_area_struct *first, *vma, *prev;
575
576
577	first = find_vma(mm, start);
578	if (!first)
579		return ERR_PTR(-EFAULT);
580	prev = NULL;
581	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583			if (!vma->vm_next && vma->vm_end < end)
584				return ERR_PTR(-EFAULT);
585			if (prev && prev->vm_end < vma->vm_start)
586				return ERR_PTR(-EFAULT);
587		}
588		if (!is_vm_hugetlb_page(vma) &&
589		    ((flags & MPOL_MF_STRICT) ||
590		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591				vma_migratable(vma)))) {
592			unsigned long endvma = vma->vm_end;
593
594			if (endvma > end)
595				endvma = end;
596			if (vma->vm_start > start)
597				start = vma->vm_start;
598			err = check_pgd_range(vma, start, endvma, nodes,
599						flags, private);
600			if (err) {
601				first = ERR_PTR(err);
602				break;
603			}
604		}
605		prev = vma;
606	}
607	return first;
608}
609
610/* Apply policy to a single VMA */
611static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
612{
613	int err = 0;
614	struct mempolicy *old = vma->vm_policy;
615
616	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
617		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
618		 vma->vm_ops, vma->vm_file,
619		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
620
621	if (vma->vm_ops && vma->vm_ops->set_policy)
622		err = vma->vm_ops->set_policy(vma, new);
623	if (!err) {
624		mpol_get(new);
625		vma->vm_policy = new;
626		mpol_put(old);
627	}
628	return err;
629}
630
631/* Step 2: apply policy to a range and do splits. */
632static int mbind_range(struct mm_struct *mm, unsigned long start,
633		       unsigned long end, struct mempolicy *new_pol)
634{
635	struct vm_area_struct *next;
636	struct vm_area_struct *prev;
637	struct vm_area_struct *vma;
638	int err = 0;
639	unsigned long vmstart;
640	unsigned long vmend;
641
642	vma = find_vma_prev(mm, start, &prev);
643	if (!vma || vma->vm_start > start)
644		return -EFAULT;
645
646	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
647		next = vma->vm_next;
648		vmstart = max(start, vma->vm_start);
649		vmend   = min(end, vma->vm_end);
650
651		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
652				  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
653				  new_pol);
654		if (prev) {
655			vma = prev;
656			next = vma->vm_next;
657			continue;
658		}
659		if (vma->vm_start != vmstart) {
660			err = split_vma(vma->vm_mm, vma, vmstart, 1);
661			if (err)
662				goto out;
663		}
664		if (vma->vm_end != vmend) {
665			err = split_vma(vma->vm_mm, vma, vmend, 0);
666			if (err)
667				goto out;
668		}
669		err = policy_vma(vma, new_pol);
670		if (err)
671			goto out;
672	}
673
674 out:
675	return err;
676}
677
678/*
679 * Update task->flags PF_MEMPOLICY bit: set iff non-default
680 * mempolicy.  Allows more rapid checking of this (combined perhaps
681 * with other PF_* flag bits) on memory allocation hot code paths.
682 *
683 * If called from outside this file, the task 'p' should -only- be
684 * a newly forked child not yet visible on the task list, because
685 * manipulating the task flags of a visible task is not safe.
686 *
687 * The above limitation is why this routine has the funny name
688 * mpol_fix_fork_child_flag().
689 *
690 * It is also safe to call this with a task pointer of current,
691 * which the static wrapper mpol_set_task_struct_flag() does,
692 * for use within this file.
693 */
694
695void mpol_fix_fork_child_flag(struct task_struct *p)
696{
697	if (p->mempolicy)
698		p->flags |= PF_MEMPOLICY;
699	else
700		p->flags &= ~PF_MEMPOLICY;
701}
702
703static void mpol_set_task_struct_flag(void)
704{
705	mpol_fix_fork_child_flag(current);
706}
707
708/* Set the process memory policy */
709static long do_set_mempolicy(unsigned short mode, unsigned short flags,
710			     nodemask_t *nodes)
711{
712	struct mempolicy *new, *old;
713	struct mm_struct *mm = current->mm;
714	NODEMASK_SCRATCH(scratch);
715	int ret;
716
717	if (!scratch)
718		return -ENOMEM;
719
720	new = mpol_new(mode, flags, nodes);
721	if (IS_ERR(new)) {
722		ret = PTR_ERR(new);
723		goto out;
724	}
725	/*
726	 * prevent changing our mempolicy while show_numa_maps()
727	 * is using it.
728	 * Note:  do_set_mempolicy() can be called at init time
729	 * with no 'mm'.
730	 */
731	if (mm)
732		down_write(&mm->mmap_sem);
733	task_lock(current);
734	ret = mpol_set_nodemask(new, nodes, scratch);
735	if (ret) {
736		task_unlock(current);
737		if (mm)
738			up_write(&mm->mmap_sem);
739		mpol_put(new);
740		goto out;
741	}
742	old = current->mempolicy;
743	current->mempolicy = new;
744	mpol_set_task_struct_flag();
745	if (new && new->mode == MPOL_INTERLEAVE &&
746	    nodes_weight(new->v.nodes))
747		current->il_next = first_node(new->v.nodes);
748	task_unlock(current);
749	if (mm)
750		up_write(&mm->mmap_sem);
751
752	mpol_put(old);
753	ret = 0;
754out:
755	NODEMASK_SCRATCH_FREE(scratch);
756	return ret;
757}
758
759/*
760 * Return nodemask for policy for get_mempolicy() query
761 *
762 * Called with task's alloc_lock held
763 */
764static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
765{
766	nodes_clear(*nodes);
767	if (p == &default_policy)
768		return;
769
770	switch (p->mode) {
771	case MPOL_BIND:
772		/* Fall through */
773	case MPOL_INTERLEAVE:
774		*nodes = p->v.nodes;
775		break;
776	case MPOL_PREFERRED:
777		if (!(p->flags & MPOL_F_LOCAL))
778			node_set(p->v.preferred_node, *nodes);
779		/* else return empty node mask for local allocation */
780		break;
781	default:
782		BUG();
783	}
784}
785
786static int lookup_node(struct mm_struct *mm, unsigned long addr)
787{
788	struct page *p;
789	int err;
790
791	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
792	if (err >= 0) {
793		err = page_to_nid(p);
794		put_page(p);
795	}
796	return err;
797}
798
799/* Retrieve NUMA policy */
800static long do_get_mempolicy(int *policy, nodemask_t *nmask,
801			     unsigned long addr, unsigned long flags)
802{
803	int err;
804	struct mm_struct *mm = current->mm;
805	struct vm_area_struct *vma = NULL;
806	struct mempolicy *pol = current->mempolicy;
807
808	if (flags &
809		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
810		return -EINVAL;
811
812	if (flags & MPOL_F_MEMS_ALLOWED) {
813		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
814			return -EINVAL;
815		*policy = 0;	/* just so it's initialized */
816		task_lock(current);
817		*nmask  = cpuset_current_mems_allowed;
818		task_unlock(current);
819		return 0;
820	}
821
822	if (flags & MPOL_F_ADDR) {
823		/*
824		 * Do NOT fall back to task policy if the
825		 * vma/shared policy at addr is NULL.  We
826		 * want to return MPOL_DEFAULT in this case.
827		 */
828		down_read(&mm->mmap_sem);
829		vma = find_vma_intersection(mm, addr, addr+1);
830		if (!vma) {
831			up_read(&mm->mmap_sem);
832			return -EFAULT;
833		}
834		if (vma->vm_ops && vma->vm_ops->get_policy)
835			pol = vma->vm_ops->get_policy(vma, addr);
836		else
837			pol = vma->vm_policy;
838	} else if (addr)
839		return -EINVAL;
840
841	if (!pol)
842		pol = &default_policy;	/* indicates default behavior */
843
844	if (flags & MPOL_F_NODE) {
845		if (flags & MPOL_F_ADDR) {
846			err = lookup_node(mm, addr);
847			if (err < 0)
848				goto out;
849			*policy = err;
850		} else if (pol == current->mempolicy &&
851				pol->mode == MPOL_INTERLEAVE) {
852			*policy = current->il_next;
853		} else {
854			err = -EINVAL;
855			goto out;
856		}
857	} else {
858		*policy = pol == &default_policy ? MPOL_DEFAULT :
859						pol->mode;
860		/*
861		 * Internal mempolicy flags must be masked off before exposing
862		 * the policy to userspace.
863		 */
864		*policy |= (pol->flags & MPOL_MODE_FLAGS);
865	}
866
867	if (vma) {
868		up_read(&current->mm->mmap_sem);
869		vma = NULL;
870	}
871
872	err = 0;
873	if (nmask) {
874		if (mpol_store_user_nodemask(pol)) {
875			*nmask = pol->w.user_nodemask;
876		} else {
877			task_lock(current);
878			get_policy_nodemask(pol, nmask);
879			task_unlock(current);
880		}
881	}
882
883 out:
884	mpol_cond_put(pol);
885	if (vma)
886		up_read(&current->mm->mmap_sem);
887	return err;
888}
889
890#ifdef CONFIG_MIGRATION
891/*
892 * page migration
893 */
894static void migrate_page_add(struct page *page, struct list_head *pagelist,
895				unsigned long flags)
896{
897	/*
898	 * Avoid migrating a page that is shared with others.
899	 */
900	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
901		if (!isolate_lru_page(page)) {
902			list_add_tail(&page->lru, pagelist);
903			inc_zone_page_state(page, NR_ISOLATED_ANON +
904					    page_is_file_cache(page));
905		}
906	}
907}
908
909static struct page *new_node_page(struct page *page, unsigned long node, int **x)
910{
911	return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
912}
913
914/*
915 * Migrate pages from one node to a target node.
916 * Returns error or the number of pages not migrated.
917 */
918static int migrate_to_node(struct mm_struct *mm, int source, int dest,
919			   int flags)
920{
921	nodemask_t nmask;
922	LIST_HEAD(pagelist);
923	int err = 0;
924	struct vm_area_struct *vma;
925
926	nodes_clear(nmask);
927	node_set(source, nmask);
928
929	vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
930			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
931	if (IS_ERR(vma))
932		return PTR_ERR(vma);
933
934	if (!list_empty(&pagelist)) {
935		err = migrate_pages(&pagelist, new_node_page, dest,
936								false, true);
937		if (err)
938			putback_lru_pages(&pagelist);
939	}
940
941	return err;
942}
943
944/*
945 * Move pages between the two nodesets so as to preserve the physical
946 * layout as much as possible.
947 *
948 * Returns the number of page that could not be moved.
949 */
950int do_migrate_pages(struct mm_struct *mm,
951	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
952{
953	int busy = 0;
954	int err;
955	nodemask_t tmp;
956
957	err = migrate_prep();
958	if (err)
959		return err;
960
961	down_read(&mm->mmap_sem);
962
963	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
964	if (err)
965		goto out;
966
967	/*
968	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
969	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
970	 * bit in 'tmp', and return that <source, dest> pair for migration.
971	 * The pair of nodemasks 'to' and 'from' define the map.
972	 *
973	 * If no pair of bits is found that way, fallback to picking some
974	 * pair of 'source' and 'dest' bits that are not the same.  If the
975	 * 'source' and 'dest' bits are the same, this represents a node
976	 * that will be migrating to itself, so no pages need move.
977	 *
978	 * If no bits are left in 'tmp', or if all remaining bits left
979	 * in 'tmp' correspond to the same bit in 'to', return false
980	 * (nothing left to migrate).
981	 *
982	 * This lets us pick a pair of nodes to migrate between, such that
983	 * if possible the dest node is not already occupied by some other
984	 * source node, minimizing the risk of overloading the memory on a
985	 * node that would happen if we migrated incoming memory to a node
986	 * before migrating outgoing memory source that same node.
987	 *
988	 * A single scan of tmp is sufficient.  As we go, we remember the
989	 * most recent <s, d> pair that moved (s != d).  If we find a pair
990	 * that not only moved, but what's better, moved to an empty slot
991	 * (d is not set in tmp), then we break out then, with that pair.
992	 * Otherwise when we finish scanning from_tmp, we at least have the
993	 * most recent <s, d> pair that moved.  If we get all the way through
994	 * the scan of tmp without finding any node that moved, much less
995	 * moved to an empty node, then there is nothing left worth migrating.
996	 */
997
998	tmp = *from_nodes;
999	while (!nodes_empty(tmp)) {
1000		int s,d;
1001		int source = -1;
1002		int dest = 0;
1003
1004		for_each_node_mask(s, tmp) {
1005			d = node_remap(s, *from_nodes, *to_nodes);
1006			if (s == d)
1007				continue;
1008
1009			source = s;	/* Node moved. Memorize */
1010			dest = d;
1011
1012			/* dest not in remaining from nodes? */
1013			if (!node_isset(dest, tmp))
1014				break;
1015		}
1016		if (source == -1)
1017			break;
1018
1019		node_clear(source, tmp);
1020		err = migrate_to_node(mm, source, dest, flags);
1021		if (err > 0)
1022			busy += err;
1023		if (err < 0)
1024			break;
1025	}
1026out:
1027	up_read(&mm->mmap_sem);
1028	if (err < 0)
1029		return err;
1030	return busy;
1031
1032}
1033
1034/*
1035 * Allocate a new page for page migration based on vma policy.
1036 * Start assuming that page is mapped by vma pointed to by @private.
1037 * Search forward from there, if not.  N.B., this assumes that the
1038 * list of pages handed to migrate_pages()--which is how we get here--
1039 * is in virtual address order.
1040 */
1041static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1042{
1043	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1044	unsigned long uninitialized_var(address);
1045
1046	while (vma) {
1047		address = page_address_in_vma(page, vma);
1048		if (address != -EFAULT)
1049			break;
1050		vma = vma->vm_next;
1051	}
1052
1053	/*
1054	 * if !vma, alloc_page_vma() will use task or system default policy
1055	 */
1056	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1057}
1058#else
1059
1060static void migrate_page_add(struct page *page, struct list_head *pagelist,
1061				unsigned long flags)
1062{
1063}
1064
1065int do_migrate_pages(struct mm_struct *mm,
1066	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1067{
1068	return -ENOSYS;
1069}
1070
1071static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1072{
1073	return NULL;
1074}
1075#endif
1076
1077static long do_mbind(unsigned long start, unsigned long len,
1078		     unsigned short mode, unsigned short mode_flags,
1079		     nodemask_t *nmask, unsigned long flags)
1080{
1081	struct vm_area_struct *vma;
1082	struct mm_struct *mm = current->mm;
1083	struct mempolicy *new;
1084	unsigned long end;
1085	int err;
1086	LIST_HEAD(pagelist);
1087
1088	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1089				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1090		return -EINVAL;
1091	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1092		return -EPERM;
1093
1094	if (start & ~PAGE_MASK)
1095		return -EINVAL;
1096
1097	if (mode == MPOL_DEFAULT)
1098		flags &= ~MPOL_MF_STRICT;
1099
1100	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1101	end = start + len;
1102
1103	if (end < start)
1104		return -EINVAL;
1105	if (end == start)
1106		return 0;
1107
1108	new = mpol_new(mode, mode_flags, nmask);
1109	if (IS_ERR(new))
1110		return PTR_ERR(new);
1111
1112	/*
1113	 * If we are using the default policy then operation
1114	 * on discontinuous address spaces is okay after all
1115	 */
1116	if (!new)
1117		flags |= MPOL_MF_DISCONTIG_OK;
1118
1119	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1120		 start, start + len, mode, mode_flags,
1121		 nmask ? nodes_addr(*nmask)[0] : -1);
1122
1123	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1124
1125		err = migrate_prep();
1126		if (err)
1127			goto mpol_out;
1128	}
1129	{
1130		NODEMASK_SCRATCH(scratch);
1131		if (scratch) {
1132			down_write(&mm->mmap_sem);
1133			task_lock(current);
1134			err = mpol_set_nodemask(new, nmask, scratch);
1135			task_unlock(current);
1136			if (err)
1137				up_write(&mm->mmap_sem);
1138		} else
1139			err = -ENOMEM;
1140		NODEMASK_SCRATCH_FREE(scratch);
1141	}
1142	if (err)
1143		goto mpol_out;
1144
1145	vma = check_range(mm, start, end, nmask,
1146			  flags | MPOL_MF_INVERT, &pagelist);
1147
1148	err = PTR_ERR(vma);
1149	if (!IS_ERR(vma)) {
1150		int nr_failed = 0;
1151
1152		err = mbind_range(mm, start, end, new);
1153
1154		if (!list_empty(&pagelist)) {
1155			nr_failed = migrate_pages(&pagelist, new_vma_page,
1156						(unsigned long)vma,
1157						false, true);
1158			if (nr_failed)
1159				putback_lru_pages(&pagelist);
1160		}
1161
1162		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1163			err = -EIO;
1164	} else
1165		putback_lru_pages(&pagelist);
1166
1167	up_write(&mm->mmap_sem);
1168 mpol_out:
1169	mpol_put(new);
1170	return err;
1171}
1172
1173/*
1174 * User space interface with variable sized bitmaps for nodelists.
1175 */
1176
1177/* Copy a node mask from user space. */
1178static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1179		     unsigned long maxnode)
1180{
1181	unsigned long k;
1182	unsigned long nlongs;
1183	unsigned long endmask;
1184
1185	--maxnode;
1186	nodes_clear(*nodes);
1187	if (maxnode == 0 || !nmask)
1188		return 0;
1189	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1190		return -EINVAL;
1191
1192	nlongs = BITS_TO_LONGS(maxnode);
1193	if ((maxnode % BITS_PER_LONG) == 0)
1194		endmask = ~0UL;
1195	else
1196		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1197
1198	/* When the user specified more nodes than supported just check
1199	   if the non supported part is all zero. */
1200	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1201		if (nlongs > PAGE_SIZE/sizeof(long))
1202			return -EINVAL;
1203		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1204			unsigned long t;
1205			if (get_user(t, nmask + k))
1206				return -EFAULT;
1207			if (k == nlongs - 1) {
1208				if (t & endmask)
1209					return -EINVAL;
1210			} else if (t)
1211				return -EINVAL;
1212		}
1213		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1214		endmask = ~0UL;
1215	}
1216
1217	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1218		return -EFAULT;
1219	nodes_addr(*nodes)[nlongs-1] &= endmask;
1220	return 0;
1221}
1222
1223/* Copy a kernel node mask to user space */
1224static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1225			      nodemask_t *nodes)
1226{
1227	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1228	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1229
1230	if (copy > nbytes) {
1231		if (copy > PAGE_SIZE)
1232			return -EINVAL;
1233		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1234			return -EFAULT;
1235		copy = nbytes;
1236	}
1237	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1238}
1239
1240SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1241		unsigned long, mode, unsigned long __user *, nmask,
1242		unsigned long, maxnode, unsigned, flags)
1243{
1244	nodemask_t nodes;
1245	int err;
1246	unsigned short mode_flags;
1247
1248	mode_flags = mode & MPOL_MODE_FLAGS;
1249	mode &= ~MPOL_MODE_FLAGS;
1250	if (mode >= MPOL_MAX)
1251		return -EINVAL;
1252	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1253	    (mode_flags & MPOL_F_RELATIVE_NODES))
1254		return -EINVAL;
1255	err = get_nodes(&nodes, nmask, maxnode);
1256	if (err)
1257		return err;
1258	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1259}
1260
1261/* Set the process memory policy */
1262SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1263		unsigned long, maxnode)
1264{
1265	int err;
1266	nodemask_t nodes;
1267	unsigned short flags;
1268
1269	flags = mode & MPOL_MODE_FLAGS;
1270	mode &= ~MPOL_MODE_FLAGS;
1271	if ((unsigned int)mode >= MPOL_MAX)
1272		return -EINVAL;
1273	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1274		return -EINVAL;
1275	err = get_nodes(&nodes, nmask, maxnode);
1276	if (err)
1277		return err;
1278	return do_set_mempolicy(mode, flags, &nodes);
1279}
1280
1281SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1282		const unsigned long __user *, old_nodes,
1283		const unsigned long __user *, new_nodes)
1284{
1285	const struct cred *cred = current_cred(), *tcred;
1286	struct mm_struct *mm = NULL;
1287	struct task_struct *task;
1288	nodemask_t task_nodes;
1289	int err;
1290	nodemask_t *old;
1291	nodemask_t *new;
1292	NODEMASK_SCRATCH(scratch);
1293
1294	if (!scratch)
1295		return -ENOMEM;
1296
1297	old = &scratch->mask1;
1298	new = &scratch->mask2;
1299
1300	err = get_nodes(old, old_nodes, maxnode);
1301	if (err)
1302		goto out;
1303
1304	err = get_nodes(new, new_nodes, maxnode);
1305	if (err)
1306		goto out;
1307
1308	/* Find the mm_struct */
1309	rcu_read_lock();
1310	task = pid ? find_task_by_vpid(pid) : current;
1311	if (!task) {
1312		rcu_read_unlock();
1313		err = -ESRCH;
1314		goto out;
1315	}
1316	mm = get_task_mm(task);
1317	rcu_read_unlock();
1318
1319	err = -EINVAL;
1320	if (!mm)
1321		goto out;
1322
1323	/*
1324	 * Check if this process has the right to modify the specified
1325	 * process. The right exists if the process has administrative
1326	 * capabilities, superuser privileges or the same
1327	 * userid as the target process.
1328	 */
1329	rcu_read_lock();
1330	tcred = __task_cred(task);
1331	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1332	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1333	    !capable(CAP_SYS_NICE)) {
1334		rcu_read_unlock();
1335		err = -EPERM;
1336		goto out;
1337	}
1338	rcu_read_unlock();
1339
1340	task_nodes = cpuset_mems_allowed(task);
1341	/* Is the user allowed to access the target nodes? */
1342	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1343		err = -EPERM;
1344		goto out;
1345	}
1346
1347	if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1348		err = -EINVAL;
1349		goto out;
1350	}
1351
1352	err = security_task_movememory(task);
1353	if (err)
1354		goto out;
1355
1356	err = do_migrate_pages(mm, old, new,
1357		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1358out:
1359	if (mm)
1360		mmput(mm);
1361	NODEMASK_SCRATCH_FREE(scratch);
1362
1363	return err;
1364}
1365
1366
1367/* Retrieve NUMA policy */
1368SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1369		unsigned long __user *, nmask, unsigned long, maxnode,
1370		unsigned long, addr, unsigned long, flags)
1371{
1372	int err;
1373	int uninitialized_var(pval);
1374	nodemask_t nodes;
1375
1376	if (nmask != NULL && maxnode < MAX_NUMNODES)
1377		return -EINVAL;
1378
1379	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1380
1381	if (err)
1382		return err;
1383
1384	if (policy && put_user(pval, policy))
1385		return -EFAULT;
1386
1387	if (nmask)
1388		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1389
1390	return err;
1391}
1392
1393#ifdef CONFIG_COMPAT
1394
1395asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1396				     compat_ulong_t __user *nmask,
1397				     compat_ulong_t maxnode,
1398				     compat_ulong_t addr, compat_ulong_t flags)
1399{
1400	long err;
1401	unsigned long __user *nm = NULL;
1402	unsigned long nr_bits, alloc_size;
1403	DECLARE_BITMAP(bm, MAX_NUMNODES);
1404
1405	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1406	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1407
1408	if (nmask)
1409		nm = compat_alloc_user_space(alloc_size);
1410
1411	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1412
1413	if (!err && nmask) {
1414		unsigned long copy_size;
1415		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1416		err = copy_from_user(bm, nm, copy_size);
1417		/* ensure entire bitmap is zeroed */
1418		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1419		err |= compat_put_bitmap(nmask, bm, nr_bits);
1420	}
1421
1422	return err;
1423}
1424
1425asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1426				     compat_ulong_t maxnode)
1427{
1428	long err = 0;
1429	unsigned long __user *nm = NULL;
1430	unsigned long nr_bits, alloc_size;
1431	DECLARE_BITMAP(bm, MAX_NUMNODES);
1432
1433	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1434	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1435
1436	if (nmask) {
1437		err = compat_get_bitmap(bm, nmask, nr_bits);
1438		nm = compat_alloc_user_space(alloc_size);
1439		err |= copy_to_user(nm, bm, alloc_size);
1440	}
1441
1442	if (err)
1443		return -EFAULT;
1444
1445	return sys_set_mempolicy(mode, nm, nr_bits+1);
1446}
1447
1448asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1449			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1450			     compat_ulong_t maxnode, compat_ulong_t flags)
1451{
1452	long err = 0;
1453	unsigned long __user *nm = NULL;
1454	unsigned long nr_bits, alloc_size;
1455	nodemask_t bm;
1456
1457	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1458	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1459
1460	if (nmask) {
1461		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1462		nm = compat_alloc_user_space(alloc_size);
1463		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1464	}
1465
1466	if (err)
1467		return -EFAULT;
1468
1469	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1470}
1471
1472#endif
1473
1474/*
1475 * get_vma_policy(@task, @vma, @addr)
1476 * @task - task for fallback if vma policy == default
1477 * @vma   - virtual memory area whose policy is sought
1478 * @addr  - address in @vma for shared policy lookup
1479 *
1480 * Returns effective policy for a VMA at specified address.
1481 * Falls back to @task or system default policy, as necessary.
1482 * Current or other task's task mempolicy and non-shared vma policies
1483 * are protected by the task's mmap_sem, which must be held for read by
1484 * the caller.
1485 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1486 * count--added by the get_policy() vm_op, as appropriate--to protect against
1487 * freeing by another task.  It is the caller's responsibility to free the
1488 * extra reference for shared policies.
1489 */
1490struct mempolicy *get_vma_policy(struct task_struct *task,
1491		struct vm_area_struct *vma, unsigned long addr)
1492{
1493	struct mempolicy *pol = task->mempolicy;
1494
1495	if (vma) {
1496		if (vma->vm_ops && vma->vm_ops->get_policy) {
1497			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1498									addr);
1499			if (vpol)
1500				pol = vpol;
1501		} else if (vma->vm_policy)
1502			pol = vma->vm_policy;
1503	}
1504	if (!pol)
1505		pol = &default_policy;
1506	return pol;
1507}
1508
1509/*
1510 * Return a nodemask representing a mempolicy for filtering nodes for
1511 * page allocation
1512 */
1513static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1514{
1515	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1516	if (unlikely(policy->mode == MPOL_BIND) &&
1517			gfp_zone(gfp) >= policy_zone &&
1518			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1519		return &policy->v.nodes;
1520
1521	return NULL;
1522}
1523
1524/* Return a zonelist indicated by gfp for node representing a mempolicy */
1525static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1526	int nd)
1527{
1528	switch (policy->mode) {
1529	case MPOL_PREFERRED:
1530		if (!(policy->flags & MPOL_F_LOCAL))
1531			nd = policy->v.preferred_node;
1532		break;
1533	case MPOL_BIND:
1534		/*
1535		 * Normally, MPOL_BIND allocations are node-local within the
1536		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1537		 * current node isn't part of the mask, we use the zonelist for
1538		 * the first node in the mask instead.
1539		 */
1540		if (unlikely(gfp & __GFP_THISNODE) &&
1541				unlikely(!node_isset(nd, policy->v.nodes)))
1542			nd = first_node(policy->v.nodes);
1543		break;
1544	default:
1545		BUG();
1546	}
1547	return node_zonelist(nd, gfp);
1548}
1549
1550/* Do dynamic interleaving for a process */
1551static unsigned interleave_nodes(struct mempolicy *policy)
1552{
1553	unsigned nid, next;
1554	struct task_struct *me = current;
1555
1556	nid = me->il_next;
1557	next = next_node(nid, policy->v.nodes);
1558	if (next >= MAX_NUMNODES)
1559		next = first_node(policy->v.nodes);
1560	if (next < MAX_NUMNODES)
1561		me->il_next = next;
1562	return nid;
1563}
1564
1565/*
1566 * Depending on the memory policy provide a node from which to allocate the
1567 * next slab entry.
1568 * @policy must be protected by freeing by the caller.  If @policy is
1569 * the current task's mempolicy, this protection is implicit, as only the
1570 * task can change it's policy.  The system default policy requires no
1571 * such protection.
1572 */
1573unsigned slab_node(struct mempolicy *policy)
1574{
1575	if (!policy || policy->flags & MPOL_F_LOCAL)
1576		return numa_node_id();
1577
1578	switch (policy->mode) {
1579	case MPOL_PREFERRED:
1580		/*
1581		 * handled MPOL_F_LOCAL above
1582		 */
1583		return policy->v.preferred_node;
1584
1585	case MPOL_INTERLEAVE:
1586		return interleave_nodes(policy);
1587
1588	case MPOL_BIND: {
1589		/*
1590		 * Follow bind policy behavior and start allocation at the
1591		 * first node.
1592		 */
1593		struct zonelist *zonelist;
1594		struct zone *zone;
1595		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1596		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1597		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1598							&policy->v.nodes,
1599							&zone);
1600		return zone ? zone->node : numa_node_id();
1601	}
1602
1603	default:
1604		BUG();
1605	}
1606}
1607
1608/* Do static interleaving for a VMA with known offset. */
1609static unsigned offset_il_node(struct mempolicy *pol,
1610		struct vm_area_struct *vma, unsigned long off)
1611{
1612	unsigned nnodes = nodes_weight(pol->v.nodes);
1613	unsigned target;
1614	int c;
1615	int nid = -1;
1616
1617	if (!nnodes)
1618		return numa_node_id();
1619	target = (unsigned int)off % nnodes;
1620	c = 0;
1621	do {
1622		nid = next_node(nid, pol->v.nodes);
1623		c++;
1624	} while (c <= target);
1625	return nid;
1626}
1627
1628/* Determine a node number for interleave */
1629static inline unsigned interleave_nid(struct mempolicy *pol,
1630		 struct vm_area_struct *vma, unsigned long addr, int shift)
1631{
1632	if (vma) {
1633		unsigned long off;
1634
1635		/*
1636		 * for small pages, there is no difference between
1637		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1638		 * for huge pages, since vm_pgoff is in units of small
1639		 * pages, we need to shift off the always 0 bits to get
1640		 * a useful offset.
1641		 */
1642		BUG_ON(shift < PAGE_SHIFT);
1643		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1644		off += (addr - vma->vm_start) >> shift;
1645		return offset_il_node(pol, vma, off);
1646	} else
1647		return interleave_nodes(pol);
1648}
1649
1650/*
1651 * Return the bit number of a random bit set in the nodemask.
1652 * (returns -1 if nodemask is empty)
1653 */
1654int node_random(const nodemask_t *maskp)
1655{
1656	int w, bit = -1;
1657
1658	w = nodes_weight(*maskp);
1659	if (w)
1660		bit = bitmap_ord_to_pos(maskp->bits,
1661			get_random_int() % w, MAX_NUMNODES);
1662	return bit;
1663}
1664
1665#ifdef CONFIG_HUGETLBFS
1666/*
1667 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1668 * @vma = virtual memory area whose policy is sought
1669 * @addr = address in @vma for shared policy lookup and interleave policy
1670 * @gfp_flags = for requested zone
1671 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1672 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1673 *
1674 * Returns a zonelist suitable for a huge page allocation and a pointer
1675 * to the struct mempolicy for conditional unref after allocation.
1676 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1677 * @nodemask for filtering the zonelist.
1678 *
1679 * Must be protected by get_mems_allowed()
1680 */
1681struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1682				gfp_t gfp_flags, struct mempolicy **mpol,
1683				nodemask_t **nodemask)
1684{
1685	struct zonelist *zl;
1686
1687	*mpol = get_vma_policy(current, vma, addr);
1688	*nodemask = NULL;	/* assume !MPOL_BIND */
1689
1690	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1691		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1692				huge_page_shift(hstate_vma(vma))), gfp_flags);
1693	} else {
1694		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1695		if ((*mpol)->mode == MPOL_BIND)
1696			*nodemask = &(*mpol)->v.nodes;
1697	}
1698	return zl;
1699}
1700
1701/*
1702 * init_nodemask_of_mempolicy
1703 *
1704 * If the current task's mempolicy is "default" [NULL], return 'false'
1705 * to indicate default policy.  Otherwise, extract the policy nodemask
1706 * for 'bind' or 'interleave' policy into the argument nodemask, or
1707 * initialize the argument nodemask to contain the single node for
1708 * 'preferred' or 'local' policy and return 'true' to indicate presence
1709 * of non-default mempolicy.
1710 *
1711 * We don't bother with reference counting the mempolicy [mpol_get/put]
1712 * because the current task is examining it's own mempolicy and a task's
1713 * mempolicy is only ever changed by the task itself.
1714 *
1715 * N.B., it is the caller's responsibility to free a returned nodemask.
1716 */
1717bool init_nodemask_of_mempolicy(nodemask_t *mask)
1718{
1719	struct mempolicy *mempolicy;
1720	int nid;
1721
1722	if (!(mask && current->mempolicy))
1723		return false;
1724
1725	task_lock(current);
1726	mempolicy = current->mempolicy;
1727	switch (mempolicy->mode) {
1728	case MPOL_PREFERRED:
1729		if (mempolicy->flags & MPOL_F_LOCAL)
1730			nid = numa_node_id();
1731		else
1732			nid = mempolicy->v.preferred_node;
1733		init_nodemask_of_node(mask, nid);
1734		break;
1735
1736	case MPOL_BIND:
1737		/* Fall through */
1738	case MPOL_INTERLEAVE:
1739		*mask =  mempolicy->v.nodes;
1740		break;
1741
1742	default:
1743		BUG();
1744	}
1745	task_unlock(current);
1746
1747	return true;
1748}
1749#endif
1750
1751/*
1752 * mempolicy_nodemask_intersects
1753 *
1754 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1755 * policy.  Otherwise, check for intersection between mask and the policy
1756 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1757 * policy, always return true since it may allocate elsewhere on fallback.
1758 *
1759 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1760 */
1761bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1762					const nodemask_t *mask)
1763{
1764	struct mempolicy *mempolicy;
1765	bool ret = true;
1766
1767	if (!mask)
1768		return ret;
1769	task_lock(tsk);
1770	mempolicy = tsk->mempolicy;
1771	if (!mempolicy)
1772		goto out;
1773
1774	switch (mempolicy->mode) {
1775	case MPOL_PREFERRED:
1776		/*
1777		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1778		 * allocate from, they may fallback to other nodes when oom.
1779		 * Thus, it's possible for tsk to have allocated memory from
1780		 * nodes in mask.
1781		 */
1782		break;
1783	case MPOL_BIND:
1784	case MPOL_INTERLEAVE:
1785		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1786		break;
1787	default:
1788		BUG();
1789	}
1790out:
1791	task_unlock(tsk);
1792	return ret;
1793}
1794
1795/* Allocate a page in interleaved policy.
1796   Own path because it needs to do special accounting. */
1797static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1798					unsigned nid)
1799{
1800	struct zonelist *zl;
1801	struct page *page;
1802
1803	zl = node_zonelist(nid, gfp);
1804	page = __alloc_pages(gfp, order, zl);
1805	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1806		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1807	return page;
1808}
1809
1810/**
1811 * 	alloc_pages_vma	- Allocate a page for a VMA.
1812 *
1813 * 	@gfp:
1814 *      %GFP_USER    user allocation.
1815 *      %GFP_KERNEL  kernel allocations,
1816 *      %GFP_HIGHMEM highmem/user allocations,
1817 *      %GFP_FS      allocation should not call back into a file system.
1818 *      %GFP_ATOMIC  don't sleep.
1819 *
1820 *	@order:Order of the GFP allocation.
1821 * 	@vma:  Pointer to VMA or NULL if not available.
1822 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1823 *
1824 * 	This function allocates a page from the kernel page pool and applies
1825 *	a NUMA policy associated with the VMA or the current process.
1826 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1827 *	mm_struct of the VMA to prevent it from going away. Should be used for
1828 *	all allocations for pages that will be mapped into
1829 * 	user space. Returns NULL when no page can be allocated.
1830 *
1831 *	Should be called with the mm_sem of the vma hold.
1832 */
1833struct page *
1834alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1835		unsigned long addr, int node)
1836{
1837	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1838	struct zonelist *zl;
1839	struct page *page;
1840
1841	get_mems_allowed();
1842	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1843		unsigned nid;
1844
1845		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1846		mpol_cond_put(pol);
1847		page = alloc_page_interleave(gfp, order, nid);
1848		put_mems_allowed();
1849		return page;
1850	}
1851	zl = policy_zonelist(gfp, pol, node);
1852	if (unlikely(mpol_needs_cond_ref(pol))) {
1853		/*
1854		 * slow path: ref counted shared policy
1855		 */
1856		struct page *page =  __alloc_pages_nodemask(gfp, order,
1857						zl, policy_nodemask(gfp, pol));
1858		__mpol_put(pol);
1859		put_mems_allowed();
1860		return page;
1861	}
1862	/*
1863	 * fast path:  default or task policy
1864	 */
1865	page = __alloc_pages_nodemask(gfp, order, zl,
1866				      policy_nodemask(gfp, pol));
1867	put_mems_allowed();
1868	return page;
1869}
1870
1871/**
1872 * 	alloc_pages_current - Allocate pages.
1873 *
1874 *	@gfp:
1875 *		%GFP_USER   user allocation,
1876 *      	%GFP_KERNEL kernel allocation,
1877 *      	%GFP_HIGHMEM highmem allocation,
1878 *      	%GFP_FS     don't call back into a file system.
1879 *      	%GFP_ATOMIC don't sleep.
1880 *	@order: Power of two of allocation size in pages. 0 is a single page.
1881 *
1882 *	Allocate a page from the kernel page pool.  When not in
1883 *	interrupt context and apply the current process NUMA policy.
1884 *	Returns NULL when no page can be allocated.
1885 *
1886 *	Don't call cpuset_update_task_memory_state() unless
1887 *	1) it's ok to take cpuset_sem (can WAIT), and
1888 *	2) allocating for current task (not interrupt).
1889 */
1890struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1891{
1892	struct mempolicy *pol = current->mempolicy;
1893	struct page *page;
1894
1895	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1896		pol = &default_policy;
1897
1898	get_mems_allowed();
1899	/*
1900	 * No reference counting needed for current->mempolicy
1901	 * nor system default_policy
1902	 */
1903	if (pol->mode == MPOL_INTERLEAVE)
1904		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1905	else
1906		page = __alloc_pages_nodemask(gfp, order,
1907				policy_zonelist(gfp, pol, numa_node_id()),
1908				policy_nodemask(gfp, pol));
1909	put_mems_allowed();
1910	return page;
1911}
1912EXPORT_SYMBOL(alloc_pages_current);
1913
1914/*
1915 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1916 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1917 * with the mems_allowed returned by cpuset_mems_allowed().  This
1918 * keeps mempolicies cpuset relative after its cpuset moves.  See
1919 * further kernel/cpuset.c update_nodemask().
1920 *
1921 * current's mempolicy may be rebinded by the other task(the task that changes
1922 * cpuset's mems), so we needn't do rebind work for current task.
1923 */
1924
1925/* Slow path of a mempolicy duplicate */
1926struct mempolicy *__mpol_dup(struct mempolicy *old)
1927{
1928	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1929
1930	if (!new)
1931		return ERR_PTR(-ENOMEM);
1932
1933	/* task's mempolicy is protected by alloc_lock */
1934	if (old == current->mempolicy) {
1935		task_lock(current);
1936		*new = *old;
1937		task_unlock(current);
1938	} else
1939		*new = *old;
1940
1941	rcu_read_lock();
1942	if (current_cpuset_is_being_rebound()) {
1943		nodemask_t mems = cpuset_mems_allowed(current);
1944		if (new->flags & MPOL_F_REBINDING)
1945			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1946		else
1947			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1948	}
1949	rcu_read_unlock();
1950	atomic_set(&new->refcnt, 1);
1951	return new;
1952}
1953
1954/*
1955 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1956 * eliminate the * MPOL_F_* flags that require conditional ref and
1957 * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
1958 * after return.  Use the returned value.
1959 *
1960 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1961 * policy lookup, even if the policy needs/has extra ref on lookup.
1962 * shmem_readahead needs this.
1963 */
1964struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1965						struct mempolicy *frompol)
1966{
1967	if (!mpol_needs_cond_ref(frompol))
1968		return frompol;
1969
1970	*tompol = *frompol;
1971	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
1972	__mpol_put(frompol);
1973	return tompol;
1974}
1975
1976/* Slow path of a mempolicy comparison */
1977int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1978{
1979	if (!a || !b)
1980		return 0;
1981	if (a->mode != b->mode)
1982		return 0;
1983	if (a->flags != b->flags)
1984		return 0;
1985	if (mpol_store_user_nodemask(a))
1986		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1987			return 0;
1988
1989	switch (a->mode) {
1990	case MPOL_BIND:
1991		/* Fall through */
1992	case MPOL_INTERLEAVE:
1993		return nodes_equal(a->v.nodes, b->v.nodes);
1994	case MPOL_PREFERRED:
1995		return a->v.preferred_node == b->v.preferred_node;
1996	default:
1997		BUG();
1998		return 0;
1999	}
2000}
2001
2002/*
2003 * Shared memory backing store policy support.
2004 *
2005 * Remember policies even when nobody has shared memory mapped.
2006 * The policies are kept in Red-Black tree linked from the inode.
2007 * They are protected by the sp->lock spinlock, which should be held
2008 * for any accesses to the tree.
2009 */
2010
2011/* lookup first element intersecting start-end */
2012/* Caller holds sp->lock */
2013static struct sp_node *
2014sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2015{
2016	struct rb_node *n = sp->root.rb_node;
2017
2018	while (n) {
2019		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2020
2021		if (start >= p->end)
2022			n = n->rb_right;
2023		else if (end <= p->start)
2024			n = n->rb_left;
2025		else
2026			break;
2027	}
2028	if (!n)
2029		return NULL;
2030	for (;;) {
2031		struct sp_node *w = NULL;
2032		struct rb_node *prev = rb_prev(n);
2033		if (!prev)
2034			break;
2035		w = rb_entry(prev, struct sp_node, nd);
2036		if (w->end <= start)
2037			break;
2038		n = prev;
2039	}
2040	return rb_entry(n, struct sp_node, nd);
2041}
2042
2043/* Insert a new shared policy into the list. */
2044/* Caller holds sp->lock */
2045static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2046{
2047	struct rb_node **p = &sp->root.rb_node;
2048	struct rb_node *parent = NULL;
2049	struct sp_node *nd;
2050
2051	while (*p) {
2052		parent = *p;
2053		nd = rb_entry(parent, struct sp_node, nd);
2054		if (new->start < nd->start)
2055			p = &(*p)->rb_left;
2056		else if (new->end > nd->end)
2057			p = &(*p)->rb_right;
2058		else
2059			BUG();
2060	}
2061	rb_link_node(&new->nd, parent, p);
2062	rb_insert_color(&new->nd, &sp->root);
2063	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2064		 new->policy ? new->policy->mode : 0);
2065}
2066
2067/* Find shared policy intersecting idx */
2068struct mempolicy *
2069mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2070{
2071	struct mempolicy *pol = NULL;
2072	struct sp_node *sn;
2073
2074	if (!sp->root.rb_node)
2075		return NULL;
2076	spin_lock(&sp->lock);
2077	sn = sp_lookup(sp, idx, idx+1);
2078	if (sn) {
2079		mpol_get(sn->policy);
2080		pol = sn->policy;
2081	}
2082	spin_unlock(&sp->lock);
2083	return pol;
2084}
2085
2086static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2087{
2088	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2089	rb_erase(&n->nd, &sp->root);
2090	mpol_put(n->policy);
2091	kmem_cache_free(sn_cache, n);
2092}
2093
2094static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2095				struct mempolicy *pol)
2096{
2097	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2098
2099	if (!n)
2100		return NULL;
2101	n->start = start;
2102	n->end = end;
2103	mpol_get(pol);
2104	pol->flags |= MPOL_F_SHARED;	/* for unref */
2105	n->policy = pol;
2106	return n;
2107}
2108
2109/* Replace a policy range. */
2110static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2111				 unsigned long end, struct sp_node *new)
2112{
2113	struct sp_node *n, *new2 = NULL;
2114
2115restart:
2116	spin_lock(&sp->lock);
2117	n = sp_lookup(sp, start, end);
2118	/* Take care of old policies in the same range. */
2119	while (n && n->start < end) {
2120		struct rb_node *next = rb_next(&n->nd);
2121		if (n->start >= start) {
2122			if (n->end <= end)
2123				sp_delete(sp, n);
2124			else
2125				n->start = end;
2126		} else {
2127			/* Old policy spanning whole new range. */
2128			if (n->end > end) {
2129				if (!new2) {
2130					spin_unlock(&sp->lock);
2131					new2 = sp_alloc(end, n->end, n->policy);
2132					if (!new2)
2133						return -ENOMEM;
2134					goto restart;
2135				}
2136				n->end = start;
2137				sp_insert(sp, new2);
2138				new2 = NULL;
2139				break;
2140			} else
2141				n->end = start;
2142		}
2143		if (!next)
2144			break;
2145		n = rb_entry(next, struct sp_node, nd);
2146	}
2147	if (new)
2148		sp_insert(sp, new);
2149	spin_unlock(&sp->lock);
2150	if (new2) {
2151		mpol_put(new2->policy);
2152		kmem_cache_free(sn_cache, new2);
2153	}
2154	return 0;
2155}
2156
2157/**
2158 * mpol_shared_policy_init - initialize shared policy for inode
2159 * @sp: pointer to inode shared policy
2160 * @mpol:  struct mempolicy to install
2161 *
2162 * Install non-NULL @mpol in inode's shared policy rb-tree.
2163 * On entry, the current task has a reference on a non-NULL @mpol.
2164 * This must be released on exit.
2165 * This is called at get_inode() calls and we can use GFP_KERNEL.
2166 */
2167void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2168{
2169	int ret;
2170
2171	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2172	spin_lock_init(&sp->lock);
2173
2174	if (mpol) {
2175		struct vm_area_struct pvma;
2176		struct mempolicy *new;
2177		NODEMASK_SCRATCH(scratch);
2178
2179		if (!scratch)
2180			goto put_mpol;
2181		/* contextualize the tmpfs mount point mempolicy */
2182		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2183		if (IS_ERR(new))
2184			goto free_scratch; /* no valid nodemask intersection */
2185
2186		task_lock(current);
2187		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2188		task_unlock(current);
2189		if (ret)
2190			goto put_new;
2191
2192		/* Create pseudo-vma that contains just the policy */
2193		memset(&pvma, 0, sizeof(struct vm_area_struct));
2194		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2195		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2196
2197put_new:
2198		mpol_put(new);			/* drop initial ref */
2199free_scratch:
2200		NODEMASK_SCRATCH_FREE(scratch);
2201put_mpol:
2202		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2203	}
2204}
2205
2206int mpol_set_shared_policy(struct shared_policy *info,
2207			struct vm_area_struct *vma, struct mempolicy *npol)
2208{
2209	int err;
2210	struct sp_node *new = NULL;
2211	unsigned long sz = vma_pages(vma);
2212
2213	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2214		 vma->vm_pgoff,
2215		 sz, npol ? npol->mode : -1,
2216		 npol ? npol->flags : -1,
2217		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2218
2219	if (npol) {
2220		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2221		if (!new)
2222			return -ENOMEM;
2223	}
2224	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2225	if (err && new)
2226		kmem_cache_free(sn_cache, new);
2227	return err;
2228}
2229
2230/* Free a backing policy store on inode delete. */
2231void mpol_free_shared_policy(struct shared_policy *p)
2232{
2233	struct sp_node *n;
2234	struct rb_node *next;
2235
2236	if (!p->root.rb_node)
2237		return;
2238	spin_lock(&p->lock);
2239	next = rb_first(&p->root);
2240	while (next) {
2241		n = rb_entry(next, struct sp_node, nd);
2242		next = rb_next(&n->nd);
2243		rb_erase(&n->nd, &p->root);
2244		mpol_put(n->policy);
2245		kmem_cache_free(sn_cache, n);
2246	}
2247	spin_unlock(&p->lock);
2248}
2249
2250/* assumes fs == KERNEL_DS */
2251void __init numa_policy_init(void)
2252{
2253	nodemask_t interleave_nodes;
2254	unsigned long largest = 0;
2255	int nid, prefer = 0;
2256
2257	policy_cache = kmem_cache_create("numa_policy",
2258					 sizeof(struct mempolicy),
2259					 0, SLAB_PANIC, NULL);
2260
2261	sn_cache = kmem_cache_create("shared_policy_node",
2262				     sizeof(struct sp_node),
2263				     0, SLAB_PANIC, NULL);
2264
2265	/*
2266	 * Set interleaving policy for system init. Interleaving is only
2267	 * enabled across suitably sized nodes (default is >= 16MB), or
2268	 * fall back to the largest node if they're all smaller.
2269	 */
2270	nodes_clear(interleave_nodes);
2271	for_each_node_state(nid, N_HIGH_MEMORY) {
2272		unsigned long total_pages = node_present_pages(nid);
2273
2274		/* Preserve the largest node */
2275		if (largest < total_pages) {
2276			largest = total_pages;
2277			prefer = nid;
2278		}
2279
2280		/* Interleave this node? */
2281		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2282			node_set(nid, interleave_nodes);
2283	}
2284
2285	/* All too small, use the largest */
2286	if (unlikely(nodes_empty(interleave_nodes)))
2287		node_set(prefer, interleave_nodes);
2288
2289	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2290		printk("numa_policy_init: interleaving failed\n");
2291}
2292
2293/* Reset policy of current process to default */
2294void numa_default_policy(void)
2295{
2296	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2297}
2298
2299/*
2300 * Parse and format mempolicy from/to strings
2301 */
2302
2303/*
2304 * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
2305 * Used only for mpol_parse_str() and mpol_to_str()
2306 */
2307#define MPOL_LOCAL MPOL_MAX
2308static const char * const policy_modes[] =
2309{
2310	[MPOL_DEFAULT]    = "default",
2311	[MPOL_PREFERRED]  = "prefer",
2312	[MPOL_BIND]       = "bind",
2313	[MPOL_INTERLEAVE] = "interleave",
2314	[MPOL_LOCAL]      = "local"
2315};
2316
2317
2318#ifdef CONFIG_TMPFS
2319/**
2320 * mpol_parse_str - parse string to mempolicy
2321 * @str:  string containing mempolicy to parse
2322 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2323 * @no_context:  flag whether to "contextualize" the mempolicy
2324 *
2325 * Format of input:
2326 *	<mode>[=<flags>][:<nodelist>]
2327 *
2328 * if @no_context is true, save the input nodemask in w.user_nodemask in
2329 * the returned mempolicy.  This will be used to "clone" the mempolicy in
2330 * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
2331 * mount option.  Note that if 'static' or 'relative' mode flags were
2332 * specified, the input nodemask will already have been saved.  Saving
2333 * it again is redundant, but safe.
2334 *
2335 * On success, returns 0, else 1
2336 */
2337int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2338{
2339	struct mempolicy *new = NULL;
2340	unsigned short mode;
2341	unsigned short uninitialized_var(mode_flags);
2342	nodemask_t nodes;
2343	char *nodelist = strchr(str, ':');
2344	char *flags = strchr(str, '=');
2345	int err = 1;
2346
2347	if (nodelist) {
2348		/* NUL-terminate mode or flags string */
2349		*nodelist++ = '\0';
2350		if (nodelist_parse(nodelist, nodes))
2351			goto out;
2352		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2353			goto out;
2354	} else
2355		nodes_clear(nodes);
2356
2357	if (flags)
2358		*flags++ = '\0';	/* terminate mode string */
2359
2360	for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2361		if (!strcmp(str, policy_modes[mode])) {
2362			break;
2363		}
2364	}
2365	if (mode > MPOL_LOCAL)
2366		goto out;
2367
2368	switch (mode) {
2369	case MPOL_PREFERRED:
2370		/*
2371		 * Insist on a nodelist of one node only
2372		 */
2373		if (nodelist) {
2374			char *rest = nodelist;
2375			while (isdigit(*rest))
2376				rest++;
2377			if (*rest)
2378				goto out;
2379		}
2380		break;
2381	case MPOL_INTERLEAVE:
2382		/*
2383		 * Default to online nodes with memory if no nodelist
2384		 */
2385		if (!nodelist)
2386			nodes = node_states[N_HIGH_MEMORY];
2387		break;
2388	case MPOL_LOCAL:
2389		/*
2390		 * Don't allow a nodelist;  mpol_new() checks flags
2391		 */
2392		if (nodelist)
2393			goto out;
2394		mode = MPOL_PREFERRED;
2395		break;
2396	case MPOL_DEFAULT:
2397		/*
2398		 * Insist on a empty nodelist
2399		 */
2400		if (!nodelist)
2401			err = 0;
2402		goto out;
2403	case MPOL_BIND:
2404		/*
2405		 * Insist on a nodelist
2406		 */
2407		if (!nodelist)
2408			goto out;
2409	}
2410
2411	mode_flags = 0;
2412	if (flags) {
2413		/*
2414		 * Currently, we only support two mutually exclusive
2415		 * mode flags.
2416		 */
2417		if (!strcmp(flags, "static"))
2418			mode_flags |= MPOL_F_STATIC_NODES;
2419		else if (!strcmp(flags, "relative"))
2420			mode_flags |= MPOL_F_RELATIVE_NODES;
2421		else
2422			goto out;
2423	}
2424
2425	new = mpol_new(mode, mode_flags, &nodes);
2426	if (IS_ERR(new))
2427		goto out;
2428
2429	if (no_context) {
2430		/* save for contextualization */
2431		new->w.user_nodemask = nodes;
2432	} else {
2433		int ret;
2434		NODEMASK_SCRATCH(scratch);
2435		if (scratch) {
2436			task_lock(current);
2437			ret = mpol_set_nodemask(new, &nodes, scratch);
2438			task_unlock(current);
2439		} else
2440			ret = -ENOMEM;
2441		NODEMASK_SCRATCH_FREE(scratch);
2442		if (ret) {
2443			mpol_put(new);
2444			goto out;
2445		}
2446	}
2447	err = 0;
2448
2449out:
2450	/* Restore string for error message */
2451	if (nodelist)
2452		*--nodelist = ':';
2453	if (flags)
2454		*--flags = '=';
2455	if (!err)
2456		*mpol = new;
2457	return err;
2458}
2459#endif /* CONFIG_TMPFS */
2460
2461/**
2462 * mpol_to_str - format a mempolicy structure for printing
2463 * @buffer:  to contain formatted mempolicy string
2464 * @maxlen:  length of @buffer
2465 * @pol:  pointer to mempolicy to be formatted
2466 * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2467 *
2468 * Convert a mempolicy into a string.
2469 * Returns the number of characters in buffer (if positive)
2470 * or an error (negative)
2471 */
2472int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2473{
2474	char *p = buffer;
2475	int l;
2476	nodemask_t nodes;
2477	unsigned short mode;
2478	unsigned short flags = pol ? pol->flags : 0;
2479
2480	/*
2481	 * Sanity check:  room for longest mode, flag and some nodes
2482	 */
2483	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2484
2485	if (!pol || pol == &default_policy)
2486		mode = MPOL_DEFAULT;
2487	else
2488		mode = pol->mode;
2489
2490	switch (mode) {
2491	case MPOL_DEFAULT:
2492		nodes_clear(nodes);
2493		break;
2494
2495	case MPOL_PREFERRED:
2496		nodes_clear(nodes);
2497		if (flags & MPOL_F_LOCAL)
2498			mode = MPOL_LOCAL;	/* pseudo-policy */
2499		else
2500			node_set(pol->v.preferred_node, nodes);
2501		break;
2502
2503	case MPOL_BIND:
2504		/* Fall through */
2505	case MPOL_INTERLEAVE:
2506		if (no_context)
2507			nodes = pol->w.user_nodemask;
2508		else
2509			nodes = pol->v.nodes;
2510		break;
2511
2512	default:
2513		BUG();
2514	}
2515
2516	l = strlen(policy_modes[mode]);
2517	if (buffer + maxlen < p + l + 1)
2518		return -ENOSPC;
2519
2520	strcpy(p, policy_modes[mode]);
2521	p += l;
2522
2523	if (flags & MPOL_MODE_FLAGS) {
2524		if (buffer + maxlen < p + 2)
2525			return -ENOSPC;
2526		*p++ = '=';
2527
2528		/*
2529		 * Currently, the only defined flags are mutually exclusive
2530		 */
2531		if (flags & MPOL_F_STATIC_NODES)
2532			p += snprintf(p, buffer + maxlen - p, "static");
2533		else if (flags & MPOL_F_RELATIVE_NODES)
2534			p += snprintf(p, buffer + maxlen - p, "relative");
2535	}
2536
2537	if (!nodes_empty(nodes)) {
2538		if (buffer + maxlen < p + 2)
2539			return -ENOSPC;
2540		*p++ = ':';
2541	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2542	}
2543	return p - buffer;
2544}
2545