migrate.c revision 28bd65781c848d95ba6a7f58b5c4b8265a804ec6
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
18#include <linux/swapops.h>
19#include <linux/pagemap.h>
20#include <linux/buffer_head.h>
21#include <linux/mm_inline.h>
22#include <linux/nsproxy.h>
23#include <linux/pagevec.h>
24#include <linux/ksm.h>
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
29#include <linux/writeback.h>
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
32#include <linux/security.h>
33#include <linux/memcontrol.h>
34#include <linux/syscalls.h>
35#include <linux/hugetlb.h>
36#include <linux/gfp.h>
37
38#include <asm/tlbflush.h>
39
40#include "internal.h"
41
42#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
43
44/*
45 * migrate_prep() needs to be called before we start compiling a list of pages
46 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
47 * undesirable, use migrate_prep_local()
48 */
49int migrate_prep(void)
50{
51	/*
52	 * Clear the LRU lists so pages can be isolated.
53	 * Note that pages may be moved off the LRU after we have
54	 * drained them. Those pages will fail to migrate like other
55	 * pages that may be busy.
56	 */
57	lru_add_drain_all();
58
59	return 0;
60}
61
62/* Do the necessary work of migrate_prep but not if it involves other CPUs */
63int migrate_prep_local(void)
64{
65	lru_add_drain();
66
67	return 0;
68}
69
70/*
71 * Add isolated pages on the list back to the LRU under page lock
72 * to avoid leaking evictable pages back onto unevictable list.
73 */
74void putback_lru_pages(struct list_head *l)
75{
76	struct page *page;
77	struct page *page2;
78
79	list_for_each_entry_safe(page, page2, l, lru) {
80		list_del(&page->lru);
81		dec_zone_page_state(page, NR_ISOLATED_ANON +
82				page_is_file_cache(page));
83		putback_lru_page(page);
84	}
85}
86
87/*
88 * Restore a potential migration pte to a working pte entry
89 */
90static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
91				 unsigned long addr, void *old)
92{
93	struct mm_struct *mm = vma->vm_mm;
94	swp_entry_t entry;
95 	pgd_t *pgd;
96 	pud_t *pud;
97 	pmd_t *pmd;
98	pte_t *ptep, pte;
99 	spinlock_t *ptl;
100
101	if (unlikely(PageHuge(new))) {
102		ptep = huge_pte_offset(mm, addr);
103		if (!ptep)
104			goto out;
105		ptl = &mm->page_table_lock;
106	} else {
107		pgd = pgd_offset(mm, addr);
108		if (!pgd_present(*pgd))
109			goto out;
110
111		pud = pud_offset(pgd, addr);
112		if (!pud_present(*pud))
113			goto out;
114
115		pmd = pmd_offset(pud, addr);
116		if (pmd_trans_huge(*pmd))
117			goto out;
118		if (!pmd_present(*pmd))
119			goto out;
120
121		ptep = pte_offset_map(pmd, addr);
122
123		if (!is_swap_pte(*ptep)) {
124			pte_unmap(ptep);
125			goto out;
126		}
127
128		ptl = pte_lockptr(mm, pmd);
129	}
130
131 	spin_lock(ptl);
132	pte = *ptep;
133	if (!is_swap_pte(pte))
134		goto unlock;
135
136	entry = pte_to_swp_entry(pte);
137
138	if (!is_migration_entry(entry) ||
139	    migration_entry_to_page(entry) != old)
140		goto unlock;
141
142	get_page(new);
143	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
144	if (is_write_migration_entry(entry))
145		pte = pte_mkwrite(pte);
146#ifdef CONFIG_HUGETLB_PAGE
147	if (PageHuge(new))
148		pte = pte_mkhuge(pte);
149#endif
150	flush_cache_page(vma, addr, pte_pfn(pte));
151	set_pte_at(mm, addr, ptep, pte);
152
153	if (PageHuge(new)) {
154		if (PageAnon(new))
155			hugepage_add_anon_rmap(new, vma, addr);
156		else
157			page_dup_rmap(new);
158	} else if (PageAnon(new))
159		page_add_anon_rmap(new, vma, addr);
160	else
161		page_add_file_rmap(new);
162
163	/* No need to invalidate - it was non-present before */
164	update_mmu_cache(vma, addr, ptep);
165unlock:
166	pte_unmap_unlock(ptep, ptl);
167out:
168	return SWAP_AGAIN;
169}
170
171/*
172 * Get rid of all migration entries and replace them by
173 * references to the indicated page.
174 */
175static void remove_migration_ptes(struct page *old, struct page *new)
176{
177	rmap_walk(new, remove_migration_pte, old);
178}
179
180/*
181 * Something used the pte of a page under migration. We need to
182 * get to the page and wait until migration is finished.
183 * When we return from this function the fault will be retried.
184 *
185 * This function is called from do_swap_page().
186 */
187void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
188				unsigned long address)
189{
190	pte_t *ptep, pte;
191	spinlock_t *ptl;
192	swp_entry_t entry;
193	struct page *page;
194
195	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
196	pte = *ptep;
197	if (!is_swap_pte(pte))
198		goto out;
199
200	entry = pte_to_swp_entry(pte);
201	if (!is_migration_entry(entry))
202		goto out;
203
204	page = migration_entry_to_page(entry);
205
206	/*
207	 * Once radix-tree replacement of page migration started, page_count
208	 * *must* be zero. And, we don't want to call wait_on_page_locked()
209	 * against a page without get_page().
210	 * So, we use get_page_unless_zero(), here. Even failed, page fault
211	 * will occur again.
212	 */
213	if (!get_page_unless_zero(page))
214		goto out;
215	pte_unmap_unlock(ptep, ptl);
216	wait_on_page_locked(page);
217	put_page(page);
218	return;
219out:
220	pte_unmap_unlock(ptep, ptl);
221}
222
223/*
224 * Replace the page in the mapping.
225 *
226 * The number of remaining references must be:
227 * 1 for anonymous pages without a mapping
228 * 2 for pages with a mapping
229 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
230 */
231static int migrate_page_move_mapping(struct address_space *mapping,
232		struct page *newpage, struct page *page)
233{
234	int expected_count;
235	void **pslot;
236
237	if (!mapping) {
238		/* Anonymous page without mapping */
239		if (page_count(page) != 1)
240			return -EAGAIN;
241		return 0;
242	}
243
244	spin_lock_irq(&mapping->tree_lock);
245
246	pslot = radix_tree_lookup_slot(&mapping->page_tree,
247 					page_index(page));
248
249	expected_count = 2 + page_has_private(page);
250	if (page_count(page) != expected_count ||
251		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
252		spin_unlock_irq(&mapping->tree_lock);
253		return -EAGAIN;
254	}
255
256	if (!page_freeze_refs(page, expected_count)) {
257		spin_unlock_irq(&mapping->tree_lock);
258		return -EAGAIN;
259	}
260
261	/*
262	 * Now we know that no one else is looking at the page.
263	 */
264	get_page(newpage);	/* add cache reference */
265	if (PageSwapCache(page)) {
266		SetPageSwapCache(newpage);
267		set_page_private(newpage, page_private(page));
268	}
269
270	radix_tree_replace_slot(pslot, newpage);
271
272	page_unfreeze_refs(page, expected_count);
273	/*
274	 * Drop cache reference from old page.
275	 * We know this isn't the last reference.
276	 */
277	__put_page(page);
278
279	/*
280	 * If moved to a different zone then also account
281	 * the page for that zone. Other VM counters will be
282	 * taken care of when we establish references to the
283	 * new page and drop references to the old page.
284	 *
285	 * Note that anonymous pages are accounted for
286	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
287	 * are mapped to swap space.
288	 */
289	__dec_zone_page_state(page, NR_FILE_PAGES);
290	__inc_zone_page_state(newpage, NR_FILE_PAGES);
291	if (PageSwapBacked(page)) {
292		__dec_zone_page_state(page, NR_SHMEM);
293		__inc_zone_page_state(newpage, NR_SHMEM);
294	}
295	spin_unlock_irq(&mapping->tree_lock);
296
297	return 0;
298}
299
300/*
301 * The expected number of remaining references is the same as that
302 * of migrate_page_move_mapping().
303 */
304int migrate_huge_page_move_mapping(struct address_space *mapping,
305				   struct page *newpage, struct page *page)
306{
307	int expected_count;
308	void **pslot;
309
310	if (!mapping) {
311		if (page_count(page) != 1)
312			return -EAGAIN;
313		return 0;
314	}
315
316	spin_lock_irq(&mapping->tree_lock);
317
318	pslot = radix_tree_lookup_slot(&mapping->page_tree,
319					page_index(page));
320
321	expected_count = 2 + page_has_private(page);
322	if (page_count(page) != expected_count ||
323		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
324		spin_unlock_irq(&mapping->tree_lock);
325		return -EAGAIN;
326	}
327
328	if (!page_freeze_refs(page, expected_count)) {
329		spin_unlock_irq(&mapping->tree_lock);
330		return -EAGAIN;
331	}
332
333	get_page(newpage);
334
335	radix_tree_replace_slot(pslot, newpage);
336
337	page_unfreeze_refs(page, expected_count);
338
339	__put_page(page);
340
341	spin_unlock_irq(&mapping->tree_lock);
342	return 0;
343}
344
345/*
346 * Copy the page to its new location
347 */
348void migrate_page_copy(struct page *newpage, struct page *page)
349{
350	if (PageHuge(page))
351		copy_huge_page(newpage, page);
352	else
353		copy_highpage(newpage, page);
354
355	if (PageError(page))
356		SetPageError(newpage);
357	if (PageReferenced(page))
358		SetPageReferenced(newpage);
359	if (PageUptodate(page))
360		SetPageUptodate(newpage);
361	if (TestClearPageActive(page)) {
362		VM_BUG_ON(PageUnevictable(page));
363		SetPageActive(newpage);
364	} else if (TestClearPageUnevictable(page))
365		SetPageUnevictable(newpage);
366	if (PageChecked(page))
367		SetPageChecked(newpage);
368	if (PageMappedToDisk(page))
369		SetPageMappedToDisk(newpage);
370
371	if (PageDirty(page)) {
372		clear_page_dirty_for_io(page);
373		/*
374		 * Want to mark the page and the radix tree as dirty, and
375		 * redo the accounting that clear_page_dirty_for_io undid,
376		 * but we can't use set_page_dirty because that function
377		 * is actually a signal that all of the page has become dirty.
378		 * Wheras only part of our page may be dirty.
379		 */
380		__set_page_dirty_nobuffers(newpage);
381 	}
382
383	mlock_migrate_page(newpage, page);
384	ksm_migrate_page(newpage, page);
385
386	ClearPageSwapCache(page);
387	ClearPagePrivate(page);
388	set_page_private(page, 0);
389	page->mapping = NULL;
390
391	/*
392	 * If any waiters have accumulated on the new page then
393	 * wake them up.
394	 */
395	if (PageWriteback(newpage))
396		end_page_writeback(newpage);
397}
398
399/************************************************************
400 *                    Migration functions
401 ***********************************************************/
402
403/* Always fail migration. Used for mappings that are not movable */
404int fail_migrate_page(struct address_space *mapping,
405			struct page *newpage, struct page *page)
406{
407	return -EIO;
408}
409EXPORT_SYMBOL(fail_migrate_page);
410
411/*
412 * Common logic to directly migrate a single page suitable for
413 * pages that do not use PagePrivate/PagePrivate2.
414 *
415 * Pages are locked upon entry and exit.
416 */
417int migrate_page(struct address_space *mapping,
418		struct page *newpage, struct page *page)
419{
420	int rc;
421
422	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
423
424	rc = migrate_page_move_mapping(mapping, newpage, page);
425
426	if (rc)
427		return rc;
428
429	migrate_page_copy(newpage, page);
430	return 0;
431}
432EXPORT_SYMBOL(migrate_page);
433
434#ifdef CONFIG_BLOCK
435/*
436 * Migration function for pages with buffers. This function can only be used
437 * if the underlying filesystem guarantees that no other references to "page"
438 * exist.
439 */
440int buffer_migrate_page(struct address_space *mapping,
441		struct page *newpage, struct page *page)
442{
443	struct buffer_head *bh, *head;
444	int rc;
445
446	if (!page_has_buffers(page))
447		return migrate_page(mapping, newpage, page);
448
449	head = page_buffers(page);
450
451	rc = migrate_page_move_mapping(mapping, newpage, page);
452
453	if (rc)
454		return rc;
455
456	bh = head;
457	do {
458		get_bh(bh);
459		lock_buffer(bh);
460		bh = bh->b_this_page;
461
462	} while (bh != head);
463
464	ClearPagePrivate(page);
465	set_page_private(newpage, page_private(page));
466	set_page_private(page, 0);
467	put_page(page);
468	get_page(newpage);
469
470	bh = head;
471	do {
472		set_bh_page(bh, newpage, bh_offset(bh));
473		bh = bh->b_this_page;
474
475	} while (bh != head);
476
477	SetPagePrivate(newpage);
478
479	migrate_page_copy(newpage, page);
480
481	bh = head;
482	do {
483		unlock_buffer(bh);
484 		put_bh(bh);
485		bh = bh->b_this_page;
486
487	} while (bh != head);
488
489	return 0;
490}
491EXPORT_SYMBOL(buffer_migrate_page);
492#endif
493
494/*
495 * Writeback a page to clean the dirty state
496 */
497static int writeout(struct address_space *mapping, struct page *page)
498{
499	struct writeback_control wbc = {
500		.sync_mode = WB_SYNC_NONE,
501		.nr_to_write = 1,
502		.range_start = 0,
503		.range_end = LLONG_MAX,
504		.for_reclaim = 1
505	};
506	int rc;
507
508	if (!mapping->a_ops->writepage)
509		/* No write method for the address space */
510		return -EINVAL;
511
512	if (!clear_page_dirty_for_io(page))
513		/* Someone else already triggered a write */
514		return -EAGAIN;
515
516	/*
517	 * A dirty page may imply that the underlying filesystem has
518	 * the page on some queue. So the page must be clean for
519	 * migration. Writeout may mean we loose the lock and the
520	 * page state is no longer what we checked for earlier.
521	 * At this point we know that the migration attempt cannot
522	 * be successful.
523	 */
524	remove_migration_ptes(page, page);
525
526	rc = mapping->a_ops->writepage(page, &wbc);
527
528	if (rc != AOP_WRITEPAGE_ACTIVATE)
529		/* unlocked. Relock */
530		lock_page(page);
531
532	return (rc < 0) ? -EIO : -EAGAIN;
533}
534
535/*
536 * Default handling if a filesystem does not provide a migration function.
537 */
538static int fallback_migrate_page(struct address_space *mapping,
539	struct page *newpage, struct page *page)
540{
541	if (PageDirty(page))
542		return writeout(mapping, page);
543
544	/*
545	 * Buffers may be managed in a filesystem specific way.
546	 * We must have no buffers or drop them.
547	 */
548	if (page_has_private(page) &&
549	    !try_to_release_page(page, GFP_KERNEL))
550		return -EAGAIN;
551
552	return migrate_page(mapping, newpage, page);
553}
554
555/*
556 * Move a page to a newly allocated page
557 * The page is locked and all ptes have been successfully removed.
558 *
559 * The new page will have replaced the old page if this function
560 * is successful.
561 *
562 * Return value:
563 *   < 0 - error code
564 *  == 0 - success
565 */
566static int move_to_new_page(struct page *newpage, struct page *page,
567						int remap_swapcache)
568{
569	struct address_space *mapping;
570	int rc;
571
572	/*
573	 * Block others from accessing the page when we get around to
574	 * establishing additional references. We are the only one
575	 * holding a reference to the new page at this point.
576	 */
577	if (!trylock_page(newpage))
578		BUG();
579
580	/* Prepare mapping for the new page.*/
581	newpage->index = page->index;
582	newpage->mapping = page->mapping;
583	if (PageSwapBacked(page))
584		SetPageSwapBacked(newpage);
585
586	mapping = page_mapping(page);
587	if (!mapping)
588		rc = migrate_page(mapping, newpage, page);
589	else if (mapping->a_ops->migratepage)
590		/*
591		 * Most pages have a mapping and most filesystems
592		 * should provide a migration function. Anonymous
593		 * pages are part of swap space which also has its
594		 * own migration function. This is the most common
595		 * path for page migration.
596		 */
597		rc = mapping->a_ops->migratepage(mapping,
598						newpage, page);
599	else
600		rc = fallback_migrate_page(mapping, newpage, page);
601
602	if (rc) {
603		newpage->mapping = NULL;
604	} else {
605		if (remap_swapcache)
606			remove_migration_ptes(page, newpage);
607	}
608
609	unlock_page(newpage);
610
611	return rc;
612}
613
614/*
615 * Obtain the lock on page, remove all ptes and migrate the page
616 * to the newly allocated page in newpage.
617 */
618static int unmap_and_move(new_page_t get_new_page, unsigned long private,
619			struct page *page, int force, bool offlining, bool sync)
620{
621	int rc = 0;
622	int *result = NULL;
623	struct page *newpage = get_new_page(page, private, &result);
624	int remap_swapcache = 1;
625	int charge = 0;
626	struct mem_cgroup *mem = NULL;
627	struct anon_vma *anon_vma = NULL;
628
629	if (!newpage)
630		return -ENOMEM;
631
632	if (page_count(page) == 1) {
633		/* page was freed from under us. So we are done. */
634		goto move_newpage;
635	}
636	if (unlikely(PageTransHuge(page)))
637		if (unlikely(split_huge_page(page)))
638			goto move_newpage;
639
640	/* prepare cgroup just returns 0 or -ENOMEM */
641	rc = -EAGAIN;
642
643	if (!trylock_page(page)) {
644		if (!force)
645			goto move_newpage;
646
647		/*
648		 * It's not safe for direct compaction to call lock_page.
649		 * For example, during page readahead pages are added locked
650		 * to the LRU. Later, when the IO completes the pages are
651		 * marked uptodate and unlocked. However, the queueing
652		 * could be merging multiple pages for one bio (e.g.
653		 * mpage_readpages). If an allocation happens for the
654		 * second or third page, the process can end up locking
655		 * the same page twice and deadlocking. Rather than
656		 * trying to be clever about what pages can be locked,
657		 * avoid the use of lock_page for direct compaction
658		 * altogether.
659		 */
660		if (current->flags & PF_MEMALLOC)
661			goto move_newpage;
662
663		lock_page(page);
664	}
665
666	/*
667	 * Only memory hotplug's offline_pages() caller has locked out KSM,
668	 * and can safely migrate a KSM page.  The other cases have skipped
669	 * PageKsm along with PageReserved - but it is only now when we have
670	 * the page lock that we can be certain it will not go KSM beneath us
671	 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
672	 * its pagecount raised, but only here do we take the page lock which
673	 * serializes that).
674	 */
675	if (PageKsm(page) && !offlining) {
676		rc = -EBUSY;
677		goto unlock;
678	}
679
680	/* charge against new page */
681	charge = mem_cgroup_prepare_migration(page, newpage, &mem);
682	if (charge == -ENOMEM) {
683		rc = -ENOMEM;
684		goto unlock;
685	}
686	BUG_ON(charge);
687
688	if (PageWriteback(page)) {
689		if (!force || !sync)
690			goto uncharge;
691		wait_on_page_writeback(page);
692	}
693	/*
694	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
695	 * we cannot notice that anon_vma is freed while we migrates a page.
696	 * This get_anon_vma() delays freeing anon_vma pointer until the end
697	 * of migration. File cache pages are no problem because of page_lock()
698	 * File Caches may use write_page() or lock_page() in migration, then,
699	 * just care Anon page here.
700	 */
701	if (PageAnon(page)) {
702		/*
703		 * Only page_lock_anon_vma() understands the subtleties of
704		 * getting a hold on an anon_vma from outside one of its mms.
705		 */
706		anon_vma = page_lock_anon_vma(page);
707		if (anon_vma) {
708			/*
709			 * Take a reference count on the anon_vma if the
710			 * page is mapped so that it is guaranteed to
711			 * exist when the page is remapped later
712			 */
713			get_anon_vma(anon_vma);
714			page_unlock_anon_vma(anon_vma);
715		} else if (PageSwapCache(page)) {
716			/*
717			 * We cannot be sure that the anon_vma of an unmapped
718			 * swapcache page is safe to use because we don't
719			 * know in advance if the VMA that this page belonged
720			 * to still exists. If the VMA and others sharing the
721			 * data have been freed, then the anon_vma could
722			 * already be invalid.
723			 *
724			 * To avoid this possibility, swapcache pages get
725			 * migrated but are not remapped when migration
726			 * completes
727			 */
728			remap_swapcache = 0;
729		} else {
730			goto uncharge;
731		}
732	}
733
734	/*
735	 * Corner case handling:
736	 * 1. When a new swap-cache page is read into, it is added to the LRU
737	 * and treated as swapcache but it has no rmap yet.
738	 * Calling try_to_unmap() against a page->mapping==NULL page will
739	 * trigger a BUG.  So handle it here.
740	 * 2. An orphaned page (see truncate_complete_page) might have
741	 * fs-private metadata. The page can be picked up due to memory
742	 * offlining.  Everywhere else except page reclaim, the page is
743	 * invisible to the vm, so the page can not be migrated.  So try to
744	 * free the metadata, so the page can be freed.
745	 */
746	if (!page->mapping) {
747		VM_BUG_ON(PageAnon(page));
748		if (page_has_private(page)) {
749			try_to_free_buffers(page);
750			goto uncharge;
751		}
752		goto skip_unmap;
753	}
754
755	/* Establish migration ptes or remove ptes */
756	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
757
758skip_unmap:
759	if (!page_mapped(page))
760		rc = move_to_new_page(newpage, page, remap_swapcache);
761
762	if (rc && remap_swapcache)
763		remove_migration_ptes(page, page);
764
765	/* Drop an anon_vma reference if we took one */
766	if (anon_vma)
767		drop_anon_vma(anon_vma);
768
769uncharge:
770	if (!charge)
771		mem_cgroup_end_migration(mem, page, newpage, rc == 0);
772unlock:
773	unlock_page(page);
774
775	if (rc != -EAGAIN) {
776 		/*
777 		 * A page that has been migrated has all references
778 		 * removed and will be freed. A page that has not been
779 		 * migrated will have kepts its references and be
780 		 * restored.
781 		 */
782 		list_del(&page->lru);
783		dec_zone_page_state(page, NR_ISOLATED_ANON +
784				page_is_file_cache(page));
785		putback_lru_page(page);
786	}
787
788move_newpage:
789
790	/*
791	 * Move the new page to the LRU. If migration was not successful
792	 * then this will free the page.
793	 */
794	putback_lru_page(newpage);
795
796	if (result) {
797		if (rc)
798			*result = rc;
799		else
800			*result = page_to_nid(newpage);
801	}
802	return rc;
803}
804
805/*
806 * Counterpart of unmap_and_move_page() for hugepage migration.
807 *
808 * This function doesn't wait the completion of hugepage I/O
809 * because there is no race between I/O and migration for hugepage.
810 * Note that currently hugepage I/O occurs only in direct I/O
811 * where no lock is held and PG_writeback is irrelevant,
812 * and writeback status of all subpages are counted in the reference
813 * count of the head page (i.e. if all subpages of a 2MB hugepage are
814 * under direct I/O, the reference of the head page is 512 and a bit more.)
815 * This means that when we try to migrate hugepage whose subpages are
816 * doing direct I/O, some references remain after try_to_unmap() and
817 * hugepage migration fails without data corruption.
818 *
819 * There is also no race when direct I/O is issued on the page under migration,
820 * because then pte is replaced with migration swap entry and direct I/O code
821 * will wait in the page fault for migration to complete.
822 */
823static int unmap_and_move_huge_page(new_page_t get_new_page,
824				unsigned long private, struct page *hpage,
825				int force, bool offlining, bool sync)
826{
827	int rc = 0;
828	int *result = NULL;
829	struct page *new_hpage = get_new_page(hpage, private, &result);
830	struct anon_vma *anon_vma = NULL;
831
832	if (!new_hpage)
833		return -ENOMEM;
834
835	rc = -EAGAIN;
836
837	if (!trylock_page(hpage)) {
838		if (!force || !sync)
839			goto out;
840		lock_page(hpage);
841	}
842
843	if (PageAnon(hpage)) {
844		anon_vma = page_lock_anon_vma(hpage);
845		if (anon_vma) {
846			get_anon_vma(anon_vma);
847			page_unlock_anon_vma(anon_vma);
848		}
849	}
850
851	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
852
853	if (!page_mapped(hpage))
854		rc = move_to_new_page(new_hpage, hpage, 1);
855
856	if (rc)
857		remove_migration_ptes(hpage, hpage);
858
859	if (anon_vma)
860		drop_anon_vma(anon_vma);
861out:
862	unlock_page(hpage);
863
864	if (rc != -EAGAIN) {
865		list_del(&hpage->lru);
866		put_page(hpage);
867	}
868
869	put_page(new_hpage);
870
871	if (result) {
872		if (rc)
873			*result = rc;
874		else
875			*result = page_to_nid(new_hpage);
876	}
877	return rc;
878}
879
880/*
881 * migrate_pages
882 *
883 * The function takes one list of pages to migrate and a function
884 * that determines from the page to be migrated and the private data
885 * the target of the move and allocates the page.
886 *
887 * The function returns after 10 attempts or if no pages
888 * are movable anymore because to has become empty
889 * or no retryable pages exist anymore.
890 * Caller should call putback_lru_pages to return pages to the LRU
891 * or free list only if ret != 0.
892 *
893 * Return: Number of pages not migrated or error code.
894 */
895int migrate_pages(struct list_head *from,
896		new_page_t get_new_page, unsigned long private, bool offlining,
897		bool sync)
898{
899	int retry = 1;
900	int nr_failed = 0;
901	int pass = 0;
902	struct page *page;
903	struct page *page2;
904	int swapwrite = current->flags & PF_SWAPWRITE;
905	int rc;
906
907	if (!swapwrite)
908		current->flags |= PF_SWAPWRITE;
909
910	for(pass = 0; pass < 10 && retry; pass++) {
911		retry = 0;
912
913		list_for_each_entry_safe(page, page2, from, lru) {
914			cond_resched();
915
916			rc = unmap_and_move(get_new_page, private,
917						page, pass > 2, offlining,
918						sync);
919
920			switch(rc) {
921			case -ENOMEM:
922				goto out;
923			case -EAGAIN:
924				retry++;
925				break;
926			case 0:
927				break;
928			default:
929				/* Permanent failure */
930				nr_failed++;
931				break;
932			}
933		}
934	}
935	rc = 0;
936out:
937	if (!swapwrite)
938		current->flags &= ~PF_SWAPWRITE;
939
940	if (rc)
941		return rc;
942
943	return nr_failed + retry;
944}
945
946int migrate_huge_pages(struct list_head *from,
947		new_page_t get_new_page, unsigned long private, bool offlining,
948		bool sync)
949{
950	int retry = 1;
951	int nr_failed = 0;
952	int pass = 0;
953	struct page *page;
954	struct page *page2;
955	int rc;
956
957	for (pass = 0; pass < 10 && retry; pass++) {
958		retry = 0;
959
960		list_for_each_entry_safe(page, page2, from, lru) {
961			cond_resched();
962
963			rc = unmap_and_move_huge_page(get_new_page,
964					private, page, pass > 2, offlining,
965					sync);
966
967			switch(rc) {
968			case -ENOMEM:
969				goto out;
970			case -EAGAIN:
971				retry++;
972				break;
973			case 0:
974				break;
975			default:
976				/* Permanent failure */
977				nr_failed++;
978				break;
979			}
980		}
981	}
982	rc = 0;
983out:
984
985	list_for_each_entry_safe(page, page2, from, lru)
986		put_page(page);
987
988	if (rc)
989		return rc;
990
991	return nr_failed + retry;
992}
993
994#ifdef CONFIG_NUMA
995/*
996 * Move a list of individual pages
997 */
998struct page_to_node {
999	unsigned long addr;
1000	struct page *page;
1001	int node;
1002	int status;
1003};
1004
1005static struct page *new_page_node(struct page *p, unsigned long private,
1006		int **result)
1007{
1008	struct page_to_node *pm = (struct page_to_node *)private;
1009
1010	while (pm->node != MAX_NUMNODES && pm->page != p)
1011		pm++;
1012
1013	if (pm->node == MAX_NUMNODES)
1014		return NULL;
1015
1016	*result = &pm->status;
1017
1018	return alloc_pages_exact_node(pm->node,
1019				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1020}
1021
1022/*
1023 * Move a set of pages as indicated in the pm array. The addr
1024 * field must be set to the virtual address of the page to be moved
1025 * and the node number must contain a valid target node.
1026 * The pm array ends with node = MAX_NUMNODES.
1027 */
1028static int do_move_page_to_node_array(struct mm_struct *mm,
1029				      struct page_to_node *pm,
1030				      int migrate_all)
1031{
1032	int err;
1033	struct page_to_node *pp;
1034	LIST_HEAD(pagelist);
1035
1036	down_read(&mm->mmap_sem);
1037
1038	/*
1039	 * Build a list of pages to migrate
1040	 */
1041	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1042		struct vm_area_struct *vma;
1043		struct page *page;
1044
1045		err = -EFAULT;
1046		vma = find_vma(mm, pp->addr);
1047		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1048			goto set_status;
1049
1050		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1051
1052		err = PTR_ERR(page);
1053		if (IS_ERR(page))
1054			goto set_status;
1055
1056		err = -ENOENT;
1057		if (!page)
1058			goto set_status;
1059
1060		/* Use PageReserved to check for zero page */
1061		if (PageReserved(page) || PageKsm(page))
1062			goto put_and_set;
1063
1064		pp->page = page;
1065		err = page_to_nid(page);
1066
1067		if (err == pp->node)
1068			/*
1069			 * Node already in the right place
1070			 */
1071			goto put_and_set;
1072
1073		err = -EACCES;
1074		if (page_mapcount(page) > 1 &&
1075				!migrate_all)
1076			goto put_and_set;
1077
1078		err = isolate_lru_page(page);
1079		if (!err) {
1080			list_add_tail(&page->lru, &pagelist);
1081			inc_zone_page_state(page, NR_ISOLATED_ANON +
1082					    page_is_file_cache(page));
1083		}
1084put_and_set:
1085		/*
1086		 * Either remove the duplicate refcount from
1087		 * isolate_lru_page() or drop the page ref if it was
1088		 * not isolated.
1089		 */
1090		put_page(page);
1091set_status:
1092		pp->status = err;
1093	}
1094
1095	err = 0;
1096	if (!list_empty(&pagelist)) {
1097		err = migrate_pages(&pagelist, new_page_node,
1098				(unsigned long)pm, 0, true);
1099		if (err)
1100			putback_lru_pages(&pagelist);
1101	}
1102
1103	up_read(&mm->mmap_sem);
1104	return err;
1105}
1106
1107/*
1108 * Migrate an array of page address onto an array of nodes and fill
1109 * the corresponding array of status.
1110 */
1111static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1112			 unsigned long nr_pages,
1113			 const void __user * __user *pages,
1114			 const int __user *nodes,
1115			 int __user *status, int flags)
1116{
1117	struct page_to_node *pm;
1118	nodemask_t task_nodes;
1119	unsigned long chunk_nr_pages;
1120	unsigned long chunk_start;
1121	int err;
1122
1123	task_nodes = cpuset_mems_allowed(task);
1124
1125	err = -ENOMEM;
1126	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1127	if (!pm)
1128		goto out;
1129
1130	migrate_prep();
1131
1132	/*
1133	 * Store a chunk of page_to_node array in a page,
1134	 * but keep the last one as a marker
1135	 */
1136	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1137
1138	for (chunk_start = 0;
1139	     chunk_start < nr_pages;
1140	     chunk_start += chunk_nr_pages) {
1141		int j;
1142
1143		if (chunk_start + chunk_nr_pages > nr_pages)
1144			chunk_nr_pages = nr_pages - chunk_start;
1145
1146		/* fill the chunk pm with addrs and nodes from user-space */
1147		for (j = 0; j < chunk_nr_pages; j++) {
1148			const void __user *p;
1149			int node;
1150
1151			err = -EFAULT;
1152			if (get_user(p, pages + j + chunk_start))
1153				goto out_pm;
1154			pm[j].addr = (unsigned long) p;
1155
1156			if (get_user(node, nodes + j + chunk_start))
1157				goto out_pm;
1158
1159			err = -ENODEV;
1160			if (node < 0 || node >= MAX_NUMNODES)
1161				goto out_pm;
1162
1163			if (!node_state(node, N_HIGH_MEMORY))
1164				goto out_pm;
1165
1166			err = -EACCES;
1167			if (!node_isset(node, task_nodes))
1168				goto out_pm;
1169
1170			pm[j].node = node;
1171		}
1172
1173		/* End marker for this chunk */
1174		pm[chunk_nr_pages].node = MAX_NUMNODES;
1175
1176		/* Migrate this chunk */
1177		err = do_move_page_to_node_array(mm, pm,
1178						 flags & MPOL_MF_MOVE_ALL);
1179		if (err < 0)
1180			goto out_pm;
1181
1182		/* Return status information */
1183		for (j = 0; j < chunk_nr_pages; j++)
1184			if (put_user(pm[j].status, status + j + chunk_start)) {
1185				err = -EFAULT;
1186				goto out_pm;
1187			}
1188	}
1189	err = 0;
1190
1191out_pm:
1192	free_page((unsigned long)pm);
1193out:
1194	return err;
1195}
1196
1197/*
1198 * Determine the nodes of an array of pages and store it in an array of status.
1199 */
1200static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1201				const void __user **pages, int *status)
1202{
1203	unsigned long i;
1204
1205	down_read(&mm->mmap_sem);
1206
1207	for (i = 0; i < nr_pages; i++) {
1208		unsigned long addr = (unsigned long)(*pages);
1209		struct vm_area_struct *vma;
1210		struct page *page;
1211		int err = -EFAULT;
1212
1213		vma = find_vma(mm, addr);
1214		if (!vma || addr < vma->vm_start)
1215			goto set_status;
1216
1217		page = follow_page(vma, addr, 0);
1218
1219		err = PTR_ERR(page);
1220		if (IS_ERR(page))
1221			goto set_status;
1222
1223		err = -ENOENT;
1224		/* Use PageReserved to check for zero page */
1225		if (!page || PageReserved(page) || PageKsm(page))
1226			goto set_status;
1227
1228		err = page_to_nid(page);
1229set_status:
1230		*status = err;
1231
1232		pages++;
1233		status++;
1234	}
1235
1236	up_read(&mm->mmap_sem);
1237}
1238
1239/*
1240 * Determine the nodes of a user array of pages and store it in
1241 * a user array of status.
1242 */
1243static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1244			 const void __user * __user *pages,
1245			 int __user *status)
1246{
1247#define DO_PAGES_STAT_CHUNK_NR 16
1248	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1249	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1250
1251	while (nr_pages) {
1252		unsigned long chunk_nr;
1253
1254		chunk_nr = nr_pages;
1255		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1256			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1257
1258		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1259			break;
1260
1261		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1262
1263		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1264			break;
1265
1266		pages += chunk_nr;
1267		status += chunk_nr;
1268		nr_pages -= chunk_nr;
1269	}
1270	return nr_pages ? -EFAULT : 0;
1271}
1272
1273/*
1274 * Move a list of pages in the address space of the currently executing
1275 * process.
1276 */
1277SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1278		const void __user * __user *, pages,
1279		const int __user *, nodes,
1280		int __user *, status, int, flags)
1281{
1282	const struct cred *cred = current_cred(), *tcred;
1283	struct task_struct *task;
1284	struct mm_struct *mm;
1285	int err;
1286
1287	/* Check flags */
1288	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1289		return -EINVAL;
1290
1291	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1292		return -EPERM;
1293
1294	/* Find the mm_struct */
1295	read_lock(&tasklist_lock);
1296	task = pid ? find_task_by_vpid(pid) : current;
1297	if (!task) {
1298		read_unlock(&tasklist_lock);
1299		return -ESRCH;
1300	}
1301	mm = get_task_mm(task);
1302	read_unlock(&tasklist_lock);
1303
1304	if (!mm)
1305		return -EINVAL;
1306
1307	/*
1308	 * Check if this process has the right to modify the specified
1309	 * process. The right exists if the process has administrative
1310	 * capabilities, superuser privileges or the same
1311	 * userid as the target process.
1312	 */
1313	rcu_read_lock();
1314	tcred = __task_cred(task);
1315	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1316	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1317	    !capable(CAP_SYS_NICE)) {
1318		rcu_read_unlock();
1319		err = -EPERM;
1320		goto out;
1321	}
1322	rcu_read_unlock();
1323
1324 	err = security_task_movememory(task);
1325 	if (err)
1326		goto out;
1327
1328	if (nodes) {
1329		err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1330				    flags);
1331	} else {
1332		err = do_pages_stat(mm, nr_pages, pages, status);
1333	}
1334
1335out:
1336	mmput(mm);
1337	return err;
1338}
1339
1340/*
1341 * Call migration functions in the vma_ops that may prepare
1342 * memory in a vm for migration. migration functions may perform
1343 * the migration for vmas that do not have an underlying page struct.
1344 */
1345int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1346	const nodemask_t *from, unsigned long flags)
1347{
1348 	struct vm_area_struct *vma;
1349 	int err = 0;
1350
1351	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1352 		if (vma->vm_ops && vma->vm_ops->migrate) {
1353 			err = vma->vm_ops->migrate(vma, to, from, flags);
1354 			if (err)
1355 				break;
1356 		}
1357 	}
1358 	return err;
1359}
1360#endif
1361