migrate.c revision 3ef8fd7f720fc4f462fcdcae2fcde6f1c0536bfe
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
18#include <linux/swapops.h>
19#include <linux/pagemap.h>
20#include <linux/buffer_head.h>
21#include <linux/mm_inline.h>
22#include <linux/nsproxy.h>
23#include <linux/pagevec.h>
24#include <linux/ksm.h>
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
29#include <linux/writeback.h>
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
32#include <linux/security.h>
33#include <linux/memcontrol.h>
34#include <linux/syscalls.h>
35#include <linux/hugetlb.h>
36#include <linux/gfp.h>
37
38#include "internal.h"
39
40#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
41
42/*
43 * migrate_prep() needs to be called before we start compiling a list of pages
44 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
45 * undesirable, use migrate_prep_local()
46 */
47int migrate_prep(void)
48{
49	/*
50	 * Clear the LRU lists so pages can be isolated.
51	 * Note that pages may be moved off the LRU after we have
52	 * drained them. Those pages will fail to migrate like other
53	 * pages that may be busy.
54	 */
55	lru_add_drain_all();
56
57	return 0;
58}
59
60/* Do the necessary work of migrate_prep but not if it involves other CPUs */
61int migrate_prep_local(void)
62{
63	lru_add_drain();
64
65	return 0;
66}
67
68/*
69 * Add isolated pages on the list back to the LRU under page lock
70 * to avoid leaking evictable pages back onto unevictable list.
71 */
72void putback_lru_pages(struct list_head *l)
73{
74	struct page *page;
75	struct page *page2;
76
77	list_for_each_entry_safe(page, page2, l, lru) {
78		list_del(&page->lru);
79		dec_zone_page_state(page, NR_ISOLATED_ANON +
80				page_is_file_cache(page));
81		putback_lru_page(page);
82	}
83}
84
85/*
86 * Restore a potential migration pte to a working pte entry
87 */
88static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
89				 unsigned long addr, void *old)
90{
91	struct mm_struct *mm = vma->vm_mm;
92	swp_entry_t entry;
93 	pgd_t *pgd;
94 	pud_t *pud;
95 	pmd_t *pmd;
96	pte_t *ptep, pte;
97 	spinlock_t *ptl;
98
99	if (unlikely(PageHuge(new))) {
100		ptep = huge_pte_offset(mm, addr);
101		if (!ptep)
102			goto out;
103		ptl = &mm->page_table_lock;
104	} else {
105		pgd = pgd_offset(mm, addr);
106		if (!pgd_present(*pgd))
107			goto out;
108
109		pud = pud_offset(pgd, addr);
110		if (!pud_present(*pud))
111			goto out;
112
113		pmd = pmd_offset(pud, addr);
114		if (!pmd_present(*pmd))
115			goto out;
116
117		ptep = pte_offset_map(pmd, addr);
118
119		if (!is_swap_pte(*ptep)) {
120			pte_unmap(ptep);
121			goto out;
122		}
123
124		ptl = pte_lockptr(mm, pmd);
125	}
126
127 	spin_lock(ptl);
128	pte = *ptep;
129	if (!is_swap_pte(pte))
130		goto unlock;
131
132	entry = pte_to_swp_entry(pte);
133
134	if (!is_migration_entry(entry) ||
135	    migration_entry_to_page(entry) != old)
136		goto unlock;
137
138	get_page(new);
139	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
140	if (is_write_migration_entry(entry))
141		pte = pte_mkwrite(pte);
142#ifdef CONFIG_HUGETLB_PAGE
143	if (PageHuge(new))
144		pte = pte_mkhuge(pte);
145#endif
146	flush_cache_page(vma, addr, pte_pfn(pte));
147	set_pte_at(mm, addr, ptep, pte);
148
149	if (PageHuge(new)) {
150		if (PageAnon(new))
151			hugepage_add_anon_rmap(new, vma, addr);
152		else
153			page_dup_rmap(new);
154	} else if (PageAnon(new))
155		page_add_anon_rmap(new, vma, addr);
156	else
157		page_add_file_rmap(new);
158
159	/* No need to invalidate - it was non-present before */
160	update_mmu_cache(vma, addr, ptep);
161unlock:
162	pte_unmap_unlock(ptep, ptl);
163out:
164	return SWAP_AGAIN;
165}
166
167/*
168 * Get rid of all migration entries and replace them by
169 * references to the indicated page.
170 */
171static void remove_migration_ptes(struct page *old, struct page *new)
172{
173	rmap_walk(new, remove_migration_pte, old);
174}
175
176/*
177 * Something used the pte of a page under migration. We need to
178 * get to the page and wait until migration is finished.
179 * When we return from this function the fault will be retried.
180 *
181 * This function is called from do_swap_page().
182 */
183void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
184				unsigned long address)
185{
186	pte_t *ptep, pte;
187	spinlock_t *ptl;
188	swp_entry_t entry;
189	struct page *page;
190
191	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
192	pte = *ptep;
193	if (!is_swap_pte(pte))
194		goto out;
195
196	entry = pte_to_swp_entry(pte);
197	if (!is_migration_entry(entry))
198		goto out;
199
200	page = migration_entry_to_page(entry);
201
202	/*
203	 * Once radix-tree replacement of page migration started, page_count
204	 * *must* be zero. And, we don't want to call wait_on_page_locked()
205	 * against a page without get_page().
206	 * So, we use get_page_unless_zero(), here. Even failed, page fault
207	 * will occur again.
208	 */
209	if (!get_page_unless_zero(page))
210		goto out;
211	pte_unmap_unlock(ptep, ptl);
212	wait_on_page_locked(page);
213	put_page(page);
214	return;
215out:
216	pte_unmap_unlock(ptep, ptl);
217}
218
219/*
220 * Replace the page in the mapping.
221 *
222 * The number of remaining references must be:
223 * 1 for anonymous pages without a mapping
224 * 2 for pages with a mapping
225 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
226 */
227static int migrate_page_move_mapping(struct address_space *mapping,
228		struct page *newpage, struct page *page)
229{
230	int expected_count;
231	void **pslot;
232
233	if (!mapping) {
234		/* Anonymous page without mapping */
235		if (page_count(page) != 1)
236			return -EAGAIN;
237		return 0;
238	}
239
240	spin_lock_irq(&mapping->tree_lock);
241
242	pslot = radix_tree_lookup_slot(&mapping->page_tree,
243 					page_index(page));
244
245	expected_count = 2 + page_has_private(page);
246	if (page_count(page) != expected_count ||
247			(struct page *)radix_tree_deref_slot(pslot) != page) {
248		spin_unlock_irq(&mapping->tree_lock);
249		return -EAGAIN;
250	}
251
252	if (!page_freeze_refs(page, expected_count)) {
253		spin_unlock_irq(&mapping->tree_lock);
254		return -EAGAIN;
255	}
256
257	/*
258	 * Now we know that no one else is looking at the page.
259	 */
260	get_page(newpage);	/* add cache reference */
261	if (PageSwapCache(page)) {
262		SetPageSwapCache(newpage);
263		set_page_private(newpage, page_private(page));
264	}
265
266	radix_tree_replace_slot(pslot, newpage);
267
268	page_unfreeze_refs(page, expected_count);
269	/*
270	 * Drop cache reference from old page.
271	 * We know this isn't the last reference.
272	 */
273	__put_page(page);
274
275	/*
276	 * If moved to a different zone then also account
277	 * the page for that zone. Other VM counters will be
278	 * taken care of when we establish references to the
279	 * new page and drop references to the old page.
280	 *
281	 * Note that anonymous pages are accounted for
282	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
283	 * are mapped to swap space.
284	 */
285	__dec_zone_page_state(page, NR_FILE_PAGES);
286	__inc_zone_page_state(newpage, NR_FILE_PAGES);
287	if (PageSwapBacked(page)) {
288		__dec_zone_page_state(page, NR_SHMEM);
289		__inc_zone_page_state(newpage, NR_SHMEM);
290	}
291	spin_unlock_irq(&mapping->tree_lock);
292
293	return 0;
294}
295
296/*
297 * The expected number of remaining references is the same as that
298 * of migrate_page_move_mapping().
299 */
300int migrate_huge_page_move_mapping(struct address_space *mapping,
301				   struct page *newpage, struct page *page)
302{
303	int expected_count;
304	void **pslot;
305
306	if (!mapping) {
307		if (page_count(page) != 1)
308			return -EAGAIN;
309		return 0;
310	}
311
312	spin_lock_irq(&mapping->tree_lock);
313
314	pslot = radix_tree_lookup_slot(&mapping->page_tree,
315					page_index(page));
316
317	expected_count = 2 + page_has_private(page);
318	if (page_count(page) != expected_count ||
319	    (struct page *)radix_tree_deref_slot(pslot) != page) {
320		spin_unlock_irq(&mapping->tree_lock);
321		return -EAGAIN;
322	}
323
324	if (!page_freeze_refs(page, expected_count)) {
325		spin_unlock_irq(&mapping->tree_lock);
326		return -EAGAIN;
327	}
328
329	get_page(newpage);
330
331	radix_tree_replace_slot(pslot, newpage);
332
333	page_unfreeze_refs(page, expected_count);
334
335	__put_page(page);
336
337	spin_unlock_irq(&mapping->tree_lock);
338	return 0;
339}
340
341/*
342 * Copy the page to its new location
343 */
344void migrate_page_copy(struct page *newpage, struct page *page)
345{
346	if (PageHuge(page))
347		copy_huge_page(newpage, page);
348	else
349		copy_highpage(newpage, page);
350
351	if (PageError(page))
352		SetPageError(newpage);
353	if (PageReferenced(page))
354		SetPageReferenced(newpage);
355	if (PageUptodate(page))
356		SetPageUptodate(newpage);
357	if (TestClearPageActive(page)) {
358		VM_BUG_ON(PageUnevictable(page));
359		SetPageActive(newpage);
360	} else if (TestClearPageUnevictable(page))
361		SetPageUnevictable(newpage);
362	if (PageChecked(page))
363		SetPageChecked(newpage);
364	if (PageMappedToDisk(page))
365		SetPageMappedToDisk(newpage);
366
367	if (PageDirty(page)) {
368		clear_page_dirty_for_io(page);
369		/*
370		 * Want to mark the page and the radix tree as dirty, and
371		 * redo the accounting that clear_page_dirty_for_io undid,
372		 * but we can't use set_page_dirty because that function
373		 * is actually a signal that all of the page has become dirty.
374		 * Wheras only part of our page may be dirty.
375		 */
376		__set_page_dirty_nobuffers(newpage);
377 	}
378
379	mlock_migrate_page(newpage, page);
380	ksm_migrate_page(newpage, page);
381
382	ClearPageSwapCache(page);
383	ClearPagePrivate(page);
384	set_page_private(page, 0);
385	page->mapping = NULL;
386
387	/*
388	 * If any waiters have accumulated on the new page then
389	 * wake them up.
390	 */
391	if (PageWriteback(newpage))
392		end_page_writeback(newpage);
393}
394
395/************************************************************
396 *                    Migration functions
397 ***********************************************************/
398
399/* Always fail migration. Used for mappings that are not movable */
400int fail_migrate_page(struct address_space *mapping,
401			struct page *newpage, struct page *page)
402{
403	return -EIO;
404}
405EXPORT_SYMBOL(fail_migrate_page);
406
407/*
408 * Common logic to directly migrate a single page suitable for
409 * pages that do not use PagePrivate/PagePrivate2.
410 *
411 * Pages are locked upon entry and exit.
412 */
413int migrate_page(struct address_space *mapping,
414		struct page *newpage, struct page *page)
415{
416	int rc;
417
418	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
419
420	rc = migrate_page_move_mapping(mapping, newpage, page);
421
422	if (rc)
423		return rc;
424
425	migrate_page_copy(newpage, page);
426	return 0;
427}
428EXPORT_SYMBOL(migrate_page);
429
430#ifdef CONFIG_BLOCK
431/*
432 * Migration function for pages with buffers. This function can only be used
433 * if the underlying filesystem guarantees that no other references to "page"
434 * exist.
435 */
436int buffer_migrate_page(struct address_space *mapping,
437		struct page *newpage, struct page *page)
438{
439	struct buffer_head *bh, *head;
440	int rc;
441
442	if (!page_has_buffers(page))
443		return migrate_page(mapping, newpage, page);
444
445	head = page_buffers(page);
446
447	rc = migrate_page_move_mapping(mapping, newpage, page);
448
449	if (rc)
450		return rc;
451
452	bh = head;
453	do {
454		get_bh(bh);
455		lock_buffer(bh);
456		bh = bh->b_this_page;
457
458	} while (bh != head);
459
460	ClearPagePrivate(page);
461	set_page_private(newpage, page_private(page));
462	set_page_private(page, 0);
463	put_page(page);
464	get_page(newpage);
465
466	bh = head;
467	do {
468		set_bh_page(bh, newpage, bh_offset(bh));
469		bh = bh->b_this_page;
470
471	} while (bh != head);
472
473	SetPagePrivate(newpage);
474
475	migrate_page_copy(newpage, page);
476
477	bh = head;
478	do {
479		unlock_buffer(bh);
480 		put_bh(bh);
481		bh = bh->b_this_page;
482
483	} while (bh != head);
484
485	return 0;
486}
487EXPORT_SYMBOL(buffer_migrate_page);
488#endif
489
490/*
491 * Writeback a page to clean the dirty state
492 */
493static int writeout(struct address_space *mapping, struct page *page)
494{
495	struct writeback_control wbc = {
496		.sync_mode = WB_SYNC_NONE,
497		.nr_to_write = 1,
498		.range_start = 0,
499		.range_end = LLONG_MAX,
500		.nonblocking = 1,
501		.for_reclaim = 1
502	};
503	int rc;
504
505	if (!mapping->a_ops->writepage)
506		/* No write method for the address space */
507		return -EINVAL;
508
509	if (!clear_page_dirty_for_io(page))
510		/* Someone else already triggered a write */
511		return -EAGAIN;
512
513	/*
514	 * A dirty page may imply that the underlying filesystem has
515	 * the page on some queue. So the page must be clean for
516	 * migration. Writeout may mean we loose the lock and the
517	 * page state is no longer what we checked for earlier.
518	 * At this point we know that the migration attempt cannot
519	 * be successful.
520	 */
521	remove_migration_ptes(page, page);
522
523	rc = mapping->a_ops->writepage(page, &wbc);
524
525	if (rc != AOP_WRITEPAGE_ACTIVATE)
526		/* unlocked. Relock */
527		lock_page(page);
528
529	return (rc < 0) ? -EIO : -EAGAIN;
530}
531
532/*
533 * Default handling if a filesystem does not provide a migration function.
534 */
535static int fallback_migrate_page(struct address_space *mapping,
536	struct page *newpage, struct page *page)
537{
538	if (PageDirty(page))
539		return writeout(mapping, page);
540
541	/*
542	 * Buffers may be managed in a filesystem specific way.
543	 * We must have no buffers or drop them.
544	 */
545	if (page_has_private(page) &&
546	    !try_to_release_page(page, GFP_KERNEL))
547		return -EAGAIN;
548
549	return migrate_page(mapping, newpage, page);
550}
551
552/*
553 * Move a page to a newly allocated page
554 * The page is locked and all ptes have been successfully removed.
555 *
556 * The new page will have replaced the old page if this function
557 * is successful.
558 *
559 * Return value:
560 *   < 0 - error code
561 *  == 0 - success
562 */
563static int move_to_new_page(struct page *newpage, struct page *page,
564						int remap_swapcache)
565{
566	struct address_space *mapping;
567	int rc;
568
569	/*
570	 * Block others from accessing the page when we get around to
571	 * establishing additional references. We are the only one
572	 * holding a reference to the new page at this point.
573	 */
574	if (!trylock_page(newpage))
575		BUG();
576
577	/* Prepare mapping for the new page.*/
578	newpage->index = page->index;
579	newpage->mapping = page->mapping;
580	if (PageSwapBacked(page))
581		SetPageSwapBacked(newpage);
582
583	mapping = page_mapping(page);
584	if (!mapping)
585		rc = migrate_page(mapping, newpage, page);
586	else if (mapping->a_ops->migratepage)
587		/*
588		 * Most pages have a mapping and most filesystems
589		 * should provide a migration function. Anonymous
590		 * pages are part of swap space which also has its
591		 * own migration function. This is the most common
592		 * path for page migration.
593		 */
594		rc = mapping->a_ops->migratepage(mapping,
595						newpage, page);
596	else
597		rc = fallback_migrate_page(mapping, newpage, page);
598
599	if (rc) {
600		newpage->mapping = NULL;
601	} else {
602		if (remap_swapcache)
603			remove_migration_ptes(page, newpage);
604	}
605
606	unlock_page(newpage);
607
608	return rc;
609}
610
611/*
612 * Obtain the lock on page, remove all ptes and migrate the page
613 * to the newly allocated page in newpage.
614 */
615static int unmap_and_move(new_page_t get_new_page, unsigned long private,
616			struct page *page, int force, int offlining)
617{
618	int rc = 0;
619	int *result = NULL;
620	struct page *newpage = get_new_page(page, private, &result);
621	int remap_swapcache = 1;
622	int rcu_locked = 0;
623	int charge = 0;
624	struct mem_cgroup *mem = NULL;
625	struct anon_vma *anon_vma = NULL;
626
627	if (!newpage)
628		return -ENOMEM;
629
630	if (page_count(page) == 1) {
631		/* page was freed from under us. So we are done. */
632		goto move_newpage;
633	}
634
635	/* prepare cgroup just returns 0 or -ENOMEM */
636	rc = -EAGAIN;
637
638	if (!trylock_page(page)) {
639		if (!force)
640			goto move_newpage;
641		lock_page(page);
642	}
643
644	/*
645	 * Only memory hotplug's offline_pages() caller has locked out KSM,
646	 * and can safely migrate a KSM page.  The other cases have skipped
647	 * PageKsm along with PageReserved - but it is only now when we have
648	 * the page lock that we can be certain it will not go KSM beneath us
649	 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
650	 * its pagecount raised, but only here do we take the page lock which
651	 * serializes that).
652	 */
653	if (PageKsm(page) && !offlining) {
654		rc = -EBUSY;
655		goto unlock;
656	}
657
658	/* charge against new page */
659	charge = mem_cgroup_prepare_migration(page, newpage, &mem);
660	if (charge == -ENOMEM) {
661		rc = -ENOMEM;
662		goto unlock;
663	}
664	BUG_ON(charge);
665
666	if (PageWriteback(page)) {
667		if (!force)
668			goto uncharge;
669		wait_on_page_writeback(page);
670	}
671	/*
672	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
673	 * we cannot notice that anon_vma is freed while we migrates a page.
674	 * This rcu_read_lock() delays freeing anon_vma pointer until the end
675	 * of migration. File cache pages are no problem because of page_lock()
676	 * File Caches may use write_page() or lock_page() in migration, then,
677	 * just care Anon page here.
678	 */
679	if (PageAnon(page)) {
680		rcu_read_lock();
681		rcu_locked = 1;
682
683		/* Determine how to safely use anon_vma */
684		if (!page_mapped(page)) {
685			if (!PageSwapCache(page))
686				goto rcu_unlock;
687
688			/*
689			 * We cannot be sure that the anon_vma of an unmapped
690			 * swapcache page is safe to use because we don't
691			 * know in advance if the VMA that this page belonged
692			 * to still exists. If the VMA and others sharing the
693			 * data have been freed, then the anon_vma could
694			 * already be invalid.
695			 *
696			 * To avoid this possibility, swapcache pages get
697			 * migrated but are not remapped when migration
698			 * completes
699			 */
700			remap_swapcache = 0;
701		} else {
702			/*
703			 * Take a reference count on the anon_vma if the
704			 * page is mapped so that it is guaranteed to
705			 * exist when the page is remapped later
706			 */
707			anon_vma = page_anon_vma(page);
708			get_anon_vma(anon_vma);
709		}
710	}
711
712	/*
713	 * Corner case handling:
714	 * 1. When a new swap-cache page is read into, it is added to the LRU
715	 * and treated as swapcache but it has no rmap yet.
716	 * Calling try_to_unmap() against a page->mapping==NULL page will
717	 * trigger a BUG.  So handle it here.
718	 * 2. An orphaned page (see truncate_complete_page) might have
719	 * fs-private metadata. The page can be picked up due to memory
720	 * offlining.  Everywhere else except page reclaim, the page is
721	 * invisible to the vm, so the page can not be migrated.  So try to
722	 * free the metadata, so the page can be freed.
723	 */
724	if (!page->mapping) {
725		if (!PageAnon(page) && page_has_private(page)) {
726			/*
727			 * Go direct to try_to_free_buffers() here because
728			 * a) that's what try_to_release_page() would do anyway
729			 * b) we may be under rcu_read_lock() here, so we can't
730			 *    use GFP_KERNEL which is what try_to_release_page()
731			 *    needs to be effective.
732			 */
733			try_to_free_buffers(page);
734			goto rcu_unlock;
735		}
736		goto skip_unmap;
737	}
738
739	/* Establish migration ptes or remove ptes */
740	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
741
742skip_unmap:
743	if (!page_mapped(page))
744		rc = move_to_new_page(newpage, page, remap_swapcache);
745
746	if (rc && remap_swapcache)
747		remove_migration_ptes(page, page);
748rcu_unlock:
749
750	/* Drop an anon_vma reference if we took one */
751	if (anon_vma)
752		drop_anon_vma(anon_vma);
753
754	if (rcu_locked)
755		rcu_read_unlock();
756uncharge:
757	if (!charge)
758		mem_cgroup_end_migration(mem, page, newpage);
759unlock:
760	unlock_page(page);
761
762	if (rc != -EAGAIN) {
763 		/*
764 		 * A page that has been migrated has all references
765 		 * removed and will be freed. A page that has not been
766 		 * migrated will have kepts its references and be
767 		 * restored.
768 		 */
769 		list_del(&page->lru);
770		dec_zone_page_state(page, NR_ISOLATED_ANON +
771				page_is_file_cache(page));
772		putback_lru_page(page);
773	}
774
775move_newpage:
776
777	/*
778	 * Move the new page to the LRU. If migration was not successful
779	 * then this will free the page.
780	 */
781	putback_lru_page(newpage);
782
783	if (result) {
784		if (rc)
785			*result = rc;
786		else
787			*result = page_to_nid(newpage);
788	}
789	return rc;
790}
791
792/*
793 * Counterpart of unmap_and_move_page() for hugepage migration.
794 *
795 * This function doesn't wait the completion of hugepage I/O
796 * because there is no race between I/O and migration for hugepage.
797 * Note that currently hugepage I/O occurs only in direct I/O
798 * where no lock is held and PG_writeback is irrelevant,
799 * and writeback status of all subpages are counted in the reference
800 * count of the head page (i.e. if all subpages of a 2MB hugepage are
801 * under direct I/O, the reference of the head page is 512 and a bit more.)
802 * This means that when we try to migrate hugepage whose subpages are
803 * doing direct I/O, some references remain after try_to_unmap() and
804 * hugepage migration fails without data corruption.
805 *
806 * There is also no race when direct I/O is issued on the page under migration,
807 * because then pte is replaced with migration swap entry and direct I/O code
808 * will wait in the page fault for migration to complete.
809 */
810static int unmap_and_move_huge_page(new_page_t get_new_page,
811				unsigned long private, struct page *hpage,
812				int force, int offlining)
813{
814	int rc = 0;
815	int *result = NULL;
816	struct page *new_hpage = get_new_page(hpage, private, &result);
817	int rcu_locked = 0;
818	struct anon_vma *anon_vma = NULL;
819
820	if (!new_hpage)
821		return -ENOMEM;
822
823	rc = -EAGAIN;
824
825	if (!trylock_page(hpage)) {
826		if (!force)
827			goto out;
828		lock_page(hpage);
829	}
830
831	if (PageAnon(hpage)) {
832		rcu_read_lock();
833		rcu_locked = 1;
834
835		if (page_mapped(hpage)) {
836			anon_vma = page_anon_vma(hpage);
837			atomic_inc(&anon_vma->external_refcount);
838		}
839	}
840
841	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
842
843	if (!page_mapped(hpage))
844		rc = move_to_new_page(new_hpage, hpage, 1);
845
846	if (rc)
847		remove_migration_ptes(hpage, hpage);
848
849	if (anon_vma && atomic_dec_and_lock(&anon_vma->external_refcount,
850					    &anon_vma->lock)) {
851		int empty = list_empty(&anon_vma->head);
852		spin_unlock(&anon_vma->lock);
853		if (empty)
854			anon_vma_free(anon_vma);
855	}
856
857	if (rcu_locked)
858		rcu_read_unlock();
859out:
860	unlock_page(hpage);
861
862	if (rc != -EAGAIN) {
863		list_del(&hpage->lru);
864		put_page(hpage);
865	}
866
867	put_page(new_hpage);
868
869	if (result) {
870		if (rc)
871			*result = rc;
872		else
873			*result = page_to_nid(new_hpage);
874	}
875	return rc;
876}
877
878/*
879 * migrate_pages
880 *
881 * The function takes one list of pages to migrate and a function
882 * that determines from the page to be migrated and the private data
883 * the target of the move and allocates the page.
884 *
885 * The function returns after 10 attempts or if no pages
886 * are movable anymore because to has become empty
887 * or no retryable pages exist anymore. All pages will be
888 * returned to the LRU or freed.
889 *
890 * Return: Number of pages not migrated or error code.
891 */
892int migrate_pages(struct list_head *from,
893		new_page_t get_new_page, unsigned long private, int offlining)
894{
895	int retry = 1;
896	int nr_failed = 0;
897	int pass = 0;
898	struct page *page;
899	struct page *page2;
900	int swapwrite = current->flags & PF_SWAPWRITE;
901	int rc;
902
903	if (!swapwrite)
904		current->flags |= PF_SWAPWRITE;
905
906	for(pass = 0; pass < 10 && retry; pass++) {
907		retry = 0;
908
909		list_for_each_entry_safe(page, page2, from, lru) {
910			cond_resched();
911
912			rc = unmap_and_move(get_new_page, private,
913						page, pass > 2, offlining);
914
915			switch(rc) {
916			case -ENOMEM:
917				goto out;
918			case -EAGAIN:
919				retry++;
920				break;
921			case 0:
922				break;
923			default:
924				/* Permanent failure */
925				nr_failed++;
926				break;
927			}
928		}
929	}
930	rc = 0;
931out:
932	if (!swapwrite)
933		current->flags &= ~PF_SWAPWRITE;
934
935	putback_lru_pages(from);
936
937	if (rc)
938		return rc;
939
940	return nr_failed + retry;
941}
942
943int migrate_huge_pages(struct list_head *from,
944		new_page_t get_new_page, unsigned long private, int offlining)
945{
946	int retry = 1;
947	int nr_failed = 0;
948	int pass = 0;
949	struct page *page;
950	struct page *page2;
951	int rc;
952
953	for (pass = 0; pass < 10 && retry; pass++) {
954		retry = 0;
955
956		list_for_each_entry_safe(page, page2, from, lru) {
957			cond_resched();
958
959			rc = unmap_and_move_huge_page(get_new_page,
960					private, page, pass > 2, offlining);
961
962			switch(rc) {
963			case -ENOMEM:
964				goto out;
965			case -EAGAIN:
966				retry++;
967				break;
968			case 0:
969				break;
970			default:
971				/* Permanent failure */
972				nr_failed++;
973				break;
974			}
975		}
976	}
977	rc = 0;
978out:
979
980	list_for_each_entry_safe(page, page2, from, lru)
981		put_page(page);
982
983	if (rc)
984		return rc;
985
986	return nr_failed + retry;
987}
988
989#ifdef CONFIG_NUMA
990/*
991 * Move a list of individual pages
992 */
993struct page_to_node {
994	unsigned long addr;
995	struct page *page;
996	int node;
997	int status;
998};
999
1000static struct page *new_page_node(struct page *p, unsigned long private,
1001		int **result)
1002{
1003	struct page_to_node *pm = (struct page_to_node *)private;
1004
1005	while (pm->node != MAX_NUMNODES && pm->page != p)
1006		pm++;
1007
1008	if (pm->node == MAX_NUMNODES)
1009		return NULL;
1010
1011	*result = &pm->status;
1012
1013	return alloc_pages_exact_node(pm->node,
1014				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1015}
1016
1017/*
1018 * Move a set of pages as indicated in the pm array. The addr
1019 * field must be set to the virtual address of the page to be moved
1020 * and the node number must contain a valid target node.
1021 * The pm array ends with node = MAX_NUMNODES.
1022 */
1023static int do_move_page_to_node_array(struct mm_struct *mm,
1024				      struct page_to_node *pm,
1025				      int migrate_all)
1026{
1027	int err;
1028	struct page_to_node *pp;
1029	LIST_HEAD(pagelist);
1030
1031	down_read(&mm->mmap_sem);
1032
1033	/*
1034	 * Build a list of pages to migrate
1035	 */
1036	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1037		struct vm_area_struct *vma;
1038		struct page *page;
1039
1040		err = -EFAULT;
1041		vma = find_vma(mm, pp->addr);
1042		if (!vma || !vma_migratable(vma))
1043			goto set_status;
1044
1045		page = follow_page(vma, pp->addr, FOLL_GET);
1046
1047		err = PTR_ERR(page);
1048		if (IS_ERR(page))
1049			goto set_status;
1050
1051		err = -ENOENT;
1052		if (!page)
1053			goto set_status;
1054
1055		/* Use PageReserved to check for zero page */
1056		if (PageReserved(page) || PageKsm(page))
1057			goto put_and_set;
1058
1059		pp->page = page;
1060		err = page_to_nid(page);
1061
1062		if (err == pp->node)
1063			/*
1064			 * Node already in the right place
1065			 */
1066			goto put_and_set;
1067
1068		err = -EACCES;
1069		if (page_mapcount(page) > 1 &&
1070				!migrate_all)
1071			goto put_and_set;
1072
1073		err = isolate_lru_page(page);
1074		if (!err) {
1075			list_add_tail(&page->lru, &pagelist);
1076			inc_zone_page_state(page, NR_ISOLATED_ANON +
1077					    page_is_file_cache(page));
1078		}
1079put_and_set:
1080		/*
1081		 * Either remove the duplicate refcount from
1082		 * isolate_lru_page() or drop the page ref if it was
1083		 * not isolated.
1084		 */
1085		put_page(page);
1086set_status:
1087		pp->status = err;
1088	}
1089
1090	err = 0;
1091	if (!list_empty(&pagelist))
1092		err = migrate_pages(&pagelist, new_page_node,
1093				(unsigned long)pm, 0);
1094
1095	up_read(&mm->mmap_sem);
1096	return err;
1097}
1098
1099/*
1100 * Migrate an array of page address onto an array of nodes and fill
1101 * the corresponding array of status.
1102 */
1103static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1104			 unsigned long nr_pages,
1105			 const void __user * __user *pages,
1106			 const int __user *nodes,
1107			 int __user *status, int flags)
1108{
1109	struct page_to_node *pm;
1110	nodemask_t task_nodes;
1111	unsigned long chunk_nr_pages;
1112	unsigned long chunk_start;
1113	int err;
1114
1115	task_nodes = cpuset_mems_allowed(task);
1116
1117	err = -ENOMEM;
1118	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1119	if (!pm)
1120		goto out;
1121
1122	migrate_prep();
1123
1124	/*
1125	 * Store a chunk of page_to_node array in a page,
1126	 * but keep the last one as a marker
1127	 */
1128	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1129
1130	for (chunk_start = 0;
1131	     chunk_start < nr_pages;
1132	     chunk_start += chunk_nr_pages) {
1133		int j;
1134
1135		if (chunk_start + chunk_nr_pages > nr_pages)
1136			chunk_nr_pages = nr_pages - chunk_start;
1137
1138		/* fill the chunk pm with addrs and nodes from user-space */
1139		for (j = 0; j < chunk_nr_pages; j++) {
1140			const void __user *p;
1141			int node;
1142
1143			err = -EFAULT;
1144			if (get_user(p, pages + j + chunk_start))
1145				goto out_pm;
1146			pm[j].addr = (unsigned long) p;
1147
1148			if (get_user(node, nodes + j + chunk_start))
1149				goto out_pm;
1150
1151			err = -ENODEV;
1152			if (node < 0 || node >= MAX_NUMNODES)
1153				goto out_pm;
1154
1155			if (!node_state(node, N_HIGH_MEMORY))
1156				goto out_pm;
1157
1158			err = -EACCES;
1159			if (!node_isset(node, task_nodes))
1160				goto out_pm;
1161
1162			pm[j].node = node;
1163		}
1164
1165		/* End marker for this chunk */
1166		pm[chunk_nr_pages].node = MAX_NUMNODES;
1167
1168		/* Migrate this chunk */
1169		err = do_move_page_to_node_array(mm, pm,
1170						 flags & MPOL_MF_MOVE_ALL);
1171		if (err < 0)
1172			goto out_pm;
1173
1174		/* Return status information */
1175		for (j = 0; j < chunk_nr_pages; j++)
1176			if (put_user(pm[j].status, status + j + chunk_start)) {
1177				err = -EFAULT;
1178				goto out_pm;
1179			}
1180	}
1181	err = 0;
1182
1183out_pm:
1184	free_page((unsigned long)pm);
1185out:
1186	return err;
1187}
1188
1189/*
1190 * Determine the nodes of an array of pages and store it in an array of status.
1191 */
1192static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1193				const void __user **pages, int *status)
1194{
1195	unsigned long i;
1196
1197	down_read(&mm->mmap_sem);
1198
1199	for (i = 0; i < nr_pages; i++) {
1200		unsigned long addr = (unsigned long)(*pages);
1201		struct vm_area_struct *vma;
1202		struct page *page;
1203		int err = -EFAULT;
1204
1205		vma = find_vma(mm, addr);
1206		if (!vma)
1207			goto set_status;
1208
1209		page = follow_page(vma, addr, 0);
1210
1211		err = PTR_ERR(page);
1212		if (IS_ERR(page))
1213			goto set_status;
1214
1215		err = -ENOENT;
1216		/* Use PageReserved to check for zero page */
1217		if (!page || PageReserved(page) || PageKsm(page))
1218			goto set_status;
1219
1220		err = page_to_nid(page);
1221set_status:
1222		*status = err;
1223
1224		pages++;
1225		status++;
1226	}
1227
1228	up_read(&mm->mmap_sem);
1229}
1230
1231/*
1232 * Determine the nodes of a user array of pages and store it in
1233 * a user array of status.
1234 */
1235static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1236			 const void __user * __user *pages,
1237			 int __user *status)
1238{
1239#define DO_PAGES_STAT_CHUNK_NR 16
1240	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1241	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1242
1243	while (nr_pages) {
1244		unsigned long chunk_nr;
1245
1246		chunk_nr = nr_pages;
1247		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1248			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1249
1250		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1251			break;
1252
1253		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1254
1255		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1256			break;
1257
1258		pages += chunk_nr;
1259		status += chunk_nr;
1260		nr_pages -= chunk_nr;
1261	}
1262	return nr_pages ? -EFAULT : 0;
1263}
1264
1265/*
1266 * Move a list of pages in the address space of the currently executing
1267 * process.
1268 */
1269SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1270		const void __user * __user *, pages,
1271		const int __user *, nodes,
1272		int __user *, status, int, flags)
1273{
1274	const struct cred *cred = current_cred(), *tcred;
1275	struct task_struct *task;
1276	struct mm_struct *mm;
1277	int err;
1278
1279	/* Check flags */
1280	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1281		return -EINVAL;
1282
1283	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1284		return -EPERM;
1285
1286	/* Find the mm_struct */
1287	read_lock(&tasklist_lock);
1288	task = pid ? find_task_by_vpid(pid) : current;
1289	if (!task) {
1290		read_unlock(&tasklist_lock);
1291		return -ESRCH;
1292	}
1293	mm = get_task_mm(task);
1294	read_unlock(&tasklist_lock);
1295
1296	if (!mm)
1297		return -EINVAL;
1298
1299	/*
1300	 * Check if this process has the right to modify the specified
1301	 * process. The right exists if the process has administrative
1302	 * capabilities, superuser privileges or the same
1303	 * userid as the target process.
1304	 */
1305	rcu_read_lock();
1306	tcred = __task_cred(task);
1307	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1308	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1309	    !capable(CAP_SYS_NICE)) {
1310		rcu_read_unlock();
1311		err = -EPERM;
1312		goto out;
1313	}
1314	rcu_read_unlock();
1315
1316 	err = security_task_movememory(task);
1317 	if (err)
1318		goto out;
1319
1320	if (nodes) {
1321		err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1322				    flags);
1323	} else {
1324		err = do_pages_stat(mm, nr_pages, pages, status);
1325	}
1326
1327out:
1328	mmput(mm);
1329	return err;
1330}
1331
1332/*
1333 * Call migration functions in the vma_ops that may prepare
1334 * memory in a vm for migration. migration functions may perform
1335 * the migration for vmas that do not have an underlying page struct.
1336 */
1337int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1338	const nodemask_t *from, unsigned long flags)
1339{
1340 	struct vm_area_struct *vma;
1341 	int err = 0;
1342
1343	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1344 		if (vma->vm_ops && vma->vm_ops->migrate) {
1345 			err = vma->vm_ops->migrate(vma, to, from, flags);
1346 			if (err)
1347 				break;
1348 		}
1349 	}
1350 	return err;
1351}
1352#endif
1353