migrate.c revision 746b18d421da7f27e948e8af1ad82b6d0309324d
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
18#include <linux/swapops.h>
19#include <linux/pagemap.h>
20#include <linux/buffer_head.h>
21#include <linux/mm_inline.h>
22#include <linux/nsproxy.h>
23#include <linux/pagevec.h>
24#include <linux/ksm.h>
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
29#include <linux/writeback.h>
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
32#include <linux/security.h>
33#include <linux/memcontrol.h>
34#include <linux/syscalls.h>
35#include <linux/hugetlb.h>
36#include <linux/gfp.h>
37
38#include <asm/tlbflush.h>
39
40#include "internal.h"
41
42#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
43
44/*
45 * migrate_prep() needs to be called before we start compiling a list of pages
46 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
47 * undesirable, use migrate_prep_local()
48 */
49int migrate_prep(void)
50{
51	/*
52	 * Clear the LRU lists so pages can be isolated.
53	 * Note that pages may be moved off the LRU after we have
54	 * drained them. Those pages will fail to migrate like other
55	 * pages that may be busy.
56	 */
57	lru_add_drain_all();
58
59	return 0;
60}
61
62/* Do the necessary work of migrate_prep but not if it involves other CPUs */
63int migrate_prep_local(void)
64{
65	lru_add_drain();
66
67	return 0;
68}
69
70/*
71 * Add isolated pages on the list back to the LRU under page lock
72 * to avoid leaking evictable pages back onto unevictable list.
73 */
74void putback_lru_pages(struct list_head *l)
75{
76	struct page *page;
77	struct page *page2;
78
79	list_for_each_entry_safe(page, page2, l, lru) {
80		list_del(&page->lru);
81		dec_zone_page_state(page, NR_ISOLATED_ANON +
82				page_is_file_cache(page));
83		putback_lru_page(page);
84	}
85}
86
87/*
88 * Restore a potential migration pte to a working pte entry
89 */
90static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
91				 unsigned long addr, void *old)
92{
93	struct mm_struct *mm = vma->vm_mm;
94	swp_entry_t entry;
95 	pgd_t *pgd;
96 	pud_t *pud;
97 	pmd_t *pmd;
98	pte_t *ptep, pte;
99 	spinlock_t *ptl;
100
101	if (unlikely(PageHuge(new))) {
102		ptep = huge_pte_offset(mm, addr);
103		if (!ptep)
104			goto out;
105		ptl = &mm->page_table_lock;
106	} else {
107		pgd = pgd_offset(mm, addr);
108		if (!pgd_present(*pgd))
109			goto out;
110
111		pud = pud_offset(pgd, addr);
112		if (!pud_present(*pud))
113			goto out;
114
115		pmd = pmd_offset(pud, addr);
116		if (pmd_trans_huge(*pmd))
117			goto out;
118		if (!pmd_present(*pmd))
119			goto out;
120
121		ptep = pte_offset_map(pmd, addr);
122
123		if (!is_swap_pte(*ptep)) {
124			pte_unmap(ptep);
125			goto out;
126		}
127
128		ptl = pte_lockptr(mm, pmd);
129	}
130
131 	spin_lock(ptl);
132	pte = *ptep;
133	if (!is_swap_pte(pte))
134		goto unlock;
135
136	entry = pte_to_swp_entry(pte);
137
138	if (!is_migration_entry(entry) ||
139	    migration_entry_to_page(entry) != old)
140		goto unlock;
141
142	get_page(new);
143	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
144	if (is_write_migration_entry(entry))
145		pte = pte_mkwrite(pte);
146#ifdef CONFIG_HUGETLB_PAGE
147	if (PageHuge(new))
148		pte = pte_mkhuge(pte);
149#endif
150	flush_cache_page(vma, addr, pte_pfn(pte));
151	set_pte_at(mm, addr, ptep, pte);
152
153	if (PageHuge(new)) {
154		if (PageAnon(new))
155			hugepage_add_anon_rmap(new, vma, addr);
156		else
157			page_dup_rmap(new);
158	} else if (PageAnon(new))
159		page_add_anon_rmap(new, vma, addr);
160	else
161		page_add_file_rmap(new);
162
163	/* No need to invalidate - it was non-present before */
164	update_mmu_cache(vma, addr, ptep);
165unlock:
166	pte_unmap_unlock(ptep, ptl);
167out:
168	return SWAP_AGAIN;
169}
170
171/*
172 * Get rid of all migration entries and replace them by
173 * references to the indicated page.
174 */
175static void remove_migration_ptes(struct page *old, struct page *new)
176{
177	rmap_walk(new, remove_migration_pte, old);
178}
179
180/*
181 * Something used the pte of a page under migration. We need to
182 * get to the page and wait until migration is finished.
183 * When we return from this function the fault will be retried.
184 *
185 * This function is called from do_swap_page().
186 */
187void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
188				unsigned long address)
189{
190	pte_t *ptep, pte;
191	spinlock_t *ptl;
192	swp_entry_t entry;
193	struct page *page;
194
195	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
196	pte = *ptep;
197	if (!is_swap_pte(pte))
198		goto out;
199
200	entry = pte_to_swp_entry(pte);
201	if (!is_migration_entry(entry))
202		goto out;
203
204	page = migration_entry_to_page(entry);
205
206	/*
207	 * Once radix-tree replacement of page migration started, page_count
208	 * *must* be zero. And, we don't want to call wait_on_page_locked()
209	 * against a page without get_page().
210	 * So, we use get_page_unless_zero(), here. Even failed, page fault
211	 * will occur again.
212	 */
213	if (!get_page_unless_zero(page))
214		goto out;
215	pte_unmap_unlock(ptep, ptl);
216	wait_on_page_locked(page);
217	put_page(page);
218	return;
219out:
220	pte_unmap_unlock(ptep, ptl);
221}
222
223/*
224 * Replace the page in the mapping.
225 *
226 * The number of remaining references must be:
227 * 1 for anonymous pages without a mapping
228 * 2 for pages with a mapping
229 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
230 */
231static int migrate_page_move_mapping(struct address_space *mapping,
232		struct page *newpage, struct page *page)
233{
234	int expected_count;
235	void **pslot;
236
237	if (!mapping) {
238		/* Anonymous page without mapping */
239		if (page_count(page) != 1)
240			return -EAGAIN;
241		return 0;
242	}
243
244	spin_lock_irq(&mapping->tree_lock);
245
246	pslot = radix_tree_lookup_slot(&mapping->page_tree,
247 					page_index(page));
248
249	expected_count = 2 + page_has_private(page);
250	if (page_count(page) != expected_count ||
251		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
252		spin_unlock_irq(&mapping->tree_lock);
253		return -EAGAIN;
254	}
255
256	if (!page_freeze_refs(page, expected_count)) {
257		spin_unlock_irq(&mapping->tree_lock);
258		return -EAGAIN;
259	}
260
261	/*
262	 * Now we know that no one else is looking at the page.
263	 */
264	get_page(newpage);	/* add cache reference */
265	if (PageSwapCache(page)) {
266		SetPageSwapCache(newpage);
267		set_page_private(newpage, page_private(page));
268	}
269
270	radix_tree_replace_slot(pslot, newpage);
271
272	page_unfreeze_refs(page, expected_count);
273	/*
274	 * Drop cache reference from old page.
275	 * We know this isn't the last reference.
276	 */
277	__put_page(page);
278
279	/*
280	 * If moved to a different zone then also account
281	 * the page for that zone. Other VM counters will be
282	 * taken care of when we establish references to the
283	 * new page and drop references to the old page.
284	 *
285	 * Note that anonymous pages are accounted for
286	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
287	 * are mapped to swap space.
288	 */
289	__dec_zone_page_state(page, NR_FILE_PAGES);
290	__inc_zone_page_state(newpage, NR_FILE_PAGES);
291	if (PageSwapBacked(page)) {
292		__dec_zone_page_state(page, NR_SHMEM);
293		__inc_zone_page_state(newpage, NR_SHMEM);
294	}
295	spin_unlock_irq(&mapping->tree_lock);
296
297	return 0;
298}
299
300/*
301 * The expected number of remaining references is the same as that
302 * of migrate_page_move_mapping().
303 */
304int migrate_huge_page_move_mapping(struct address_space *mapping,
305				   struct page *newpage, struct page *page)
306{
307	int expected_count;
308	void **pslot;
309
310	if (!mapping) {
311		if (page_count(page) != 1)
312			return -EAGAIN;
313		return 0;
314	}
315
316	spin_lock_irq(&mapping->tree_lock);
317
318	pslot = radix_tree_lookup_slot(&mapping->page_tree,
319					page_index(page));
320
321	expected_count = 2 + page_has_private(page);
322	if (page_count(page) != expected_count ||
323		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
324		spin_unlock_irq(&mapping->tree_lock);
325		return -EAGAIN;
326	}
327
328	if (!page_freeze_refs(page, expected_count)) {
329		spin_unlock_irq(&mapping->tree_lock);
330		return -EAGAIN;
331	}
332
333	get_page(newpage);
334
335	radix_tree_replace_slot(pslot, newpage);
336
337	page_unfreeze_refs(page, expected_count);
338
339	__put_page(page);
340
341	spin_unlock_irq(&mapping->tree_lock);
342	return 0;
343}
344
345/*
346 * Copy the page to its new location
347 */
348void migrate_page_copy(struct page *newpage, struct page *page)
349{
350	if (PageHuge(page))
351		copy_huge_page(newpage, page);
352	else
353		copy_highpage(newpage, page);
354
355	if (PageError(page))
356		SetPageError(newpage);
357	if (PageReferenced(page))
358		SetPageReferenced(newpage);
359	if (PageUptodate(page))
360		SetPageUptodate(newpage);
361	if (TestClearPageActive(page)) {
362		VM_BUG_ON(PageUnevictable(page));
363		SetPageActive(newpage);
364	} else if (TestClearPageUnevictable(page))
365		SetPageUnevictable(newpage);
366	if (PageChecked(page))
367		SetPageChecked(newpage);
368	if (PageMappedToDisk(page))
369		SetPageMappedToDisk(newpage);
370
371	if (PageDirty(page)) {
372		clear_page_dirty_for_io(page);
373		/*
374		 * Want to mark the page and the radix tree as dirty, and
375		 * redo the accounting that clear_page_dirty_for_io undid,
376		 * but we can't use set_page_dirty because that function
377		 * is actually a signal that all of the page has become dirty.
378		 * Whereas only part of our page may be dirty.
379		 */
380		__set_page_dirty_nobuffers(newpage);
381 	}
382
383	mlock_migrate_page(newpage, page);
384	ksm_migrate_page(newpage, page);
385
386	ClearPageSwapCache(page);
387	ClearPagePrivate(page);
388	set_page_private(page, 0);
389	page->mapping = NULL;
390
391	/*
392	 * If any waiters have accumulated on the new page then
393	 * wake them up.
394	 */
395	if (PageWriteback(newpage))
396		end_page_writeback(newpage);
397}
398
399/************************************************************
400 *                    Migration functions
401 ***********************************************************/
402
403/* Always fail migration. Used for mappings that are not movable */
404int fail_migrate_page(struct address_space *mapping,
405			struct page *newpage, struct page *page)
406{
407	return -EIO;
408}
409EXPORT_SYMBOL(fail_migrate_page);
410
411/*
412 * Common logic to directly migrate a single page suitable for
413 * pages that do not use PagePrivate/PagePrivate2.
414 *
415 * Pages are locked upon entry and exit.
416 */
417int migrate_page(struct address_space *mapping,
418		struct page *newpage, struct page *page)
419{
420	int rc;
421
422	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
423
424	rc = migrate_page_move_mapping(mapping, newpage, page);
425
426	if (rc)
427		return rc;
428
429	migrate_page_copy(newpage, page);
430	return 0;
431}
432EXPORT_SYMBOL(migrate_page);
433
434#ifdef CONFIG_BLOCK
435/*
436 * Migration function for pages with buffers. This function can only be used
437 * if the underlying filesystem guarantees that no other references to "page"
438 * exist.
439 */
440int buffer_migrate_page(struct address_space *mapping,
441		struct page *newpage, struct page *page)
442{
443	struct buffer_head *bh, *head;
444	int rc;
445
446	if (!page_has_buffers(page))
447		return migrate_page(mapping, newpage, page);
448
449	head = page_buffers(page);
450
451	rc = migrate_page_move_mapping(mapping, newpage, page);
452
453	if (rc)
454		return rc;
455
456	bh = head;
457	do {
458		get_bh(bh);
459		lock_buffer(bh);
460		bh = bh->b_this_page;
461
462	} while (bh != head);
463
464	ClearPagePrivate(page);
465	set_page_private(newpage, page_private(page));
466	set_page_private(page, 0);
467	put_page(page);
468	get_page(newpage);
469
470	bh = head;
471	do {
472		set_bh_page(bh, newpage, bh_offset(bh));
473		bh = bh->b_this_page;
474
475	} while (bh != head);
476
477	SetPagePrivate(newpage);
478
479	migrate_page_copy(newpage, page);
480
481	bh = head;
482	do {
483		unlock_buffer(bh);
484 		put_bh(bh);
485		bh = bh->b_this_page;
486
487	} while (bh != head);
488
489	return 0;
490}
491EXPORT_SYMBOL(buffer_migrate_page);
492#endif
493
494/*
495 * Writeback a page to clean the dirty state
496 */
497static int writeout(struct address_space *mapping, struct page *page)
498{
499	struct writeback_control wbc = {
500		.sync_mode = WB_SYNC_NONE,
501		.nr_to_write = 1,
502		.range_start = 0,
503		.range_end = LLONG_MAX,
504		.for_reclaim = 1
505	};
506	int rc;
507
508	if (!mapping->a_ops->writepage)
509		/* No write method for the address space */
510		return -EINVAL;
511
512	if (!clear_page_dirty_for_io(page))
513		/* Someone else already triggered a write */
514		return -EAGAIN;
515
516	/*
517	 * A dirty page may imply that the underlying filesystem has
518	 * the page on some queue. So the page must be clean for
519	 * migration. Writeout may mean we loose the lock and the
520	 * page state is no longer what we checked for earlier.
521	 * At this point we know that the migration attempt cannot
522	 * be successful.
523	 */
524	remove_migration_ptes(page, page);
525
526	rc = mapping->a_ops->writepage(page, &wbc);
527
528	if (rc != AOP_WRITEPAGE_ACTIVATE)
529		/* unlocked. Relock */
530		lock_page(page);
531
532	return (rc < 0) ? -EIO : -EAGAIN;
533}
534
535/*
536 * Default handling if a filesystem does not provide a migration function.
537 */
538static int fallback_migrate_page(struct address_space *mapping,
539	struct page *newpage, struct page *page)
540{
541	if (PageDirty(page))
542		return writeout(mapping, page);
543
544	/*
545	 * Buffers may be managed in a filesystem specific way.
546	 * We must have no buffers or drop them.
547	 */
548	if (page_has_private(page) &&
549	    !try_to_release_page(page, GFP_KERNEL))
550		return -EAGAIN;
551
552	return migrate_page(mapping, newpage, page);
553}
554
555/*
556 * Move a page to a newly allocated page
557 * The page is locked and all ptes have been successfully removed.
558 *
559 * The new page will have replaced the old page if this function
560 * is successful.
561 *
562 * Return value:
563 *   < 0 - error code
564 *  == 0 - success
565 */
566static int move_to_new_page(struct page *newpage, struct page *page,
567					int remap_swapcache, bool sync)
568{
569	struct address_space *mapping;
570	int rc;
571
572	/*
573	 * Block others from accessing the page when we get around to
574	 * establishing additional references. We are the only one
575	 * holding a reference to the new page at this point.
576	 */
577	if (!trylock_page(newpage))
578		BUG();
579
580	/* Prepare mapping for the new page.*/
581	newpage->index = page->index;
582	newpage->mapping = page->mapping;
583	if (PageSwapBacked(page))
584		SetPageSwapBacked(newpage);
585
586	mapping = page_mapping(page);
587	if (!mapping)
588		rc = migrate_page(mapping, newpage, page);
589	else {
590		/*
591		 * Do not writeback pages if !sync and migratepage is
592		 * not pointing to migrate_page() which is nonblocking
593		 * (swapcache/tmpfs uses migratepage = migrate_page).
594		 */
595		if (PageDirty(page) && !sync &&
596		    mapping->a_ops->migratepage != migrate_page)
597			rc = -EBUSY;
598		else if (mapping->a_ops->migratepage)
599			/*
600			 * Most pages have a mapping and most filesystems
601			 * should provide a migration function. Anonymous
602			 * pages are part of swap space which also has its
603			 * own migration function. This is the most common
604			 * path for page migration.
605			 */
606			rc = mapping->a_ops->migratepage(mapping,
607							newpage, page);
608		else
609			rc = fallback_migrate_page(mapping, newpage, page);
610	}
611
612	if (rc) {
613		newpage->mapping = NULL;
614	} else {
615		if (remap_swapcache)
616			remove_migration_ptes(page, newpage);
617	}
618
619	unlock_page(newpage);
620
621	return rc;
622}
623
624/*
625 * Obtain the lock on page, remove all ptes and migrate the page
626 * to the newly allocated page in newpage.
627 */
628static int unmap_and_move(new_page_t get_new_page, unsigned long private,
629			struct page *page, int force, bool offlining, bool sync)
630{
631	int rc = 0;
632	int *result = NULL;
633	struct page *newpage = get_new_page(page, private, &result);
634	int remap_swapcache = 1;
635	int charge = 0;
636	struct mem_cgroup *mem;
637	struct anon_vma *anon_vma = NULL;
638
639	if (!newpage)
640		return -ENOMEM;
641
642	if (page_count(page) == 1) {
643		/* page was freed from under us. So we are done. */
644		goto move_newpage;
645	}
646	if (unlikely(PageTransHuge(page)))
647		if (unlikely(split_huge_page(page)))
648			goto move_newpage;
649
650	/* prepare cgroup just returns 0 or -ENOMEM */
651	rc = -EAGAIN;
652
653	if (!trylock_page(page)) {
654		if (!force || !sync)
655			goto move_newpage;
656
657		/*
658		 * It's not safe for direct compaction to call lock_page.
659		 * For example, during page readahead pages are added locked
660		 * to the LRU. Later, when the IO completes the pages are
661		 * marked uptodate and unlocked. However, the queueing
662		 * could be merging multiple pages for one bio (e.g.
663		 * mpage_readpages). If an allocation happens for the
664		 * second or third page, the process can end up locking
665		 * the same page twice and deadlocking. Rather than
666		 * trying to be clever about what pages can be locked,
667		 * avoid the use of lock_page for direct compaction
668		 * altogether.
669		 */
670		if (current->flags & PF_MEMALLOC)
671			goto move_newpage;
672
673		lock_page(page);
674	}
675
676	/*
677	 * Only memory hotplug's offline_pages() caller has locked out KSM,
678	 * and can safely migrate a KSM page.  The other cases have skipped
679	 * PageKsm along with PageReserved - but it is only now when we have
680	 * the page lock that we can be certain it will not go KSM beneath us
681	 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
682	 * its pagecount raised, but only here do we take the page lock which
683	 * serializes that).
684	 */
685	if (PageKsm(page) && !offlining) {
686		rc = -EBUSY;
687		goto unlock;
688	}
689
690	/* charge against new page */
691	charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL);
692	if (charge == -ENOMEM) {
693		rc = -ENOMEM;
694		goto unlock;
695	}
696	BUG_ON(charge);
697
698	if (PageWriteback(page)) {
699		/*
700		 * For !sync, there is no point retrying as the retry loop
701		 * is expected to be too short for PageWriteback to be cleared
702		 */
703		if (!sync) {
704			rc = -EBUSY;
705			goto uncharge;
706		}
707		if (!force)
708			goto uncharge;
709		wait_on_page_writeback(page);
710	}
711	/*
712	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
713	 * we cannot notice that anon_vma is freed while we migrates a page.
714	 * This get_anon_vma() delays freeing anon_vma pointer until the end
715	 * of migration. File cache pages are no problem because of page_lock()
716	 * File Caches may use write_page() or lock_page() in migration, then,
717	 * just care Anon page here.
718	 */
719	if (PageAnon(page)) {
720		/*
721		 * Only page_lock_anon_vma() understands the subtleties of
722		 * getting a hold on an anon_vma from outside one of its mms.
723		 */
724		anon_vma = page_get_anon_vma(page);
725		if (anon_vma) {
726			/*
727			 * Anon page
728			 */
729		} else if (PageSwapCache(page)) {
730			/*
731			 * We cannot be sure that the anon_vma of an unmapped
732			 * swapcache page is safe to use because we don't
733			 * know in advance if the VMA that this page belonged
734			 * to still exists. If the VMA and others sharing the
735			 * data have been freed, then the anon_vma could
736			 * already be invalid.
737			 *
738			 * To avoid this possibility, swapcache pages get
739			 * migrated but are not remapped when migration
740			 * completes
741			 */
742			remap_swapcache = 0;
743		} else {
744			goto uncharge;
745		}
746	}
747
748	/*
749	 * Corner case handling:
750	 * 1. When a new swap-cache page is read into, it is added to the LRU
751	 * and treated as swapcache but it has no rmap yet.
752	 * Calling try_to_unmap() against a page->mapping==NULL page will
753	 * trigger a BUG.  So handle it here.
754	 * 2. An orphaned page (see truncate_complete_page) might have
755	 * fs-private metadata. The page can be picked up due to memory
756	 * offlining.  Everywhere else except page reclaim, the page is
757	 * invisible to the vm, so the page can not be migrated.  So try to
758	 * free the metadata, so the page can be freed.
759	 */
760	if (!page->mapping) {
761		VM_BUG_ON(PageAnon(page));
762		if (page_has_private(page)) {
763			try_to_free_buffers(page);
764			goto uncharge;
765		}
766		goto skip_unmap;
767	}
768
769	/* Establish migration ptes or remove ptes */
770	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
771
772skip_unmap:
773	if (!page_mapped(page))
774		rc = move_to_new_page(newpage, page, remap_swapcache, sync);
775
776	if (rc && remap_swapcache)
777		remove_migration_ptes(page, page);
778
779	/* Drop an anon_vma reference if we took one */
780	if (anon_vma)
781		put_anon_vma(anon_vma);
782
783uncharge:
784	if (!charge)
785		mem_cgroup_end_migration(mem, page, newpage, rc == 0);
786unlock:
787	unlock_page(page);
788
789move_newpage:
790	if (rc != -EAGAIN) {
791 		/*
792 		 * A page that has been migrated has all references
793 		 * removed and will be freed. A page that has not been
794 		 * migrated will have kepts its references and be
795 		 * restored.
796 		 */
797 		list_del(&page->lru);
798		dec_zone_page_state(page, NR_ISOLATED_ANON +
799				page_is_file_cache(page));
800		putback_lru_page(page);
801	}
802
803	/*
804	 * Move the new page to the LRU. If migration was not successful
805	 * then this will free the page.
806	 */
807	putback_lru_page(newpage);
808
809	if (result) {
810		if (rc)
811			*result = rc;
812		else
813			*result = page_to_nid(newpage);
814	}
815	return rc;
816}
817
818/*
819 * Counterpart of unmap_and_move_page() for hugepage migration.
820 *
821 * This function doesn't wait the completion of hugepage I/O
822 * because there is no race between I/O and migration for hugepage.
823 * Note that currently hugepage I/O occurs only in direct I/O
824 * where no lock is held and PG_writeback is irrelevant,
825 * and writeback status of all subpages are counted in the reference
826 * count of the head page (i.e. if all subpages of a 2MB hugepage are
827 * under direct I/O, the reference of the head page is 512 and a bit more.)
828 * This means that when we try to migrate hugepage whose subpages are
829 * doing direct I/O, some references remain after try_to_unmap() and
830 * hugepage migration fails without data corruption.
831 *
832 * There is also no race when direct I/O is issued on the page under migration,
833 * because then pte is replaced with migration swap entry and direct I/O code
834 * will wait in the page fault for migration to complete.
835 */
836static int unmap_and_move_huge_page(new_page_t get_new_page,
837				unsigned long private, struct page *hpage,
838				int force, bool offlining, bool sync)
839{
840	int rc = 0;
841	int *result = NULL;
842	struct page *new_hpage = get_new_page(hpage, private, &result);
843	struct anon_vma *anon_vma = NULL;
844
845	if (!new_hpage)
846		return -ENOMEM;
847
848	rc = -EAGAIN;
849
850	if (!trylock_page(hpage)) {
851		if (!force || !sync)
852			goto out;
853		lock_page(hpage);
854	}
855
856	if (PageAnon(hpage))
857		anon_vma = page_get_anon_vma(hpage);
858
859	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
860
861	if (!page_mapped(hpage))
862		rc = move_to_new_page(new_hpage, hpage, 1, sync);
863
864	if (rc)
865		remove_migration_ptes(hpage, hpage);
866
867	if (anon_vma)
868		put_anon_vma(anon_vma);
869out:
870	unlock_page(hpage);
871
872	if (rc != -EAGAIN) {
873		list_del(&hpage->lru);
874		put_page(hpage);
875	}
876
877	put_page(new_hpage);
878
879	if (result) {
880		if (rc)
881			*result = rc;
882		else
883			*result = page_to_nid(new_hpage);
884	}
885	return rc;
886}
887
888/*
889 * migrate_pages
890 *
891 * The function takes one list of pages to migrate and a function
892 * that determines from the page to be migrated and the private data
893 * the target of the move and allocates the page.
894 *
895 * The function returns after 10 attempts or if no pages
896 * are movable anymore because to has become empty
897 * or no retryable pages exist anymore.
898 * Caller should call putback_lru_pages to return pages to the LRU
899 * or free list only if ret != 0.
900 *
901 * Return: Number of pages not migrated or error code.
902 */
903int migrate_pages(struct list_head *from,
904		new_page_t get_new_page, unsigned long private, bool offlining,
905		bool sync)
906{
907	int retry = 1;
908	int nr_failed = 0;
909	int pass = 0;
910	struct page *page;
911	struct page *page2;
912	int swapwrite = current->flags & PF_SWAPWRITE;
913	int rc;
914
915	if (!swapwrite)
916		current->flags |= PF_SWAPWRITE;
917
918	for(pass = 0; pass < 10 && retry; pass++) {
919		retry = 0;
920
921		list_for_each_entry_safe(page, page2, from, lru) {
922			cond_resched();
923
924			rc = unmap_and_move(get_new_page, private,
925						page, pass > 2, offlining,
926						sync);
927
928			switch(rc) {
929			case -ENOMEM:
930				goto out;
931			case -EAGAIN:
932				retry++;
933				break;
934			case 0:
935				break;
936			default:
937				/* Permanent failure */
938				nr_failed++;
939				break;
940			}
941		}
942	}
943	rc = 0;
944out:
945	if (!swapwrite)
946		current->flags &= ~PF_SWAPWRITE;
947
948	if (rc)
949		return rc;
950
951	return nr_failed + retry;
952}
953
954int migrate_huge_pages(struct list_head *from,
955		new_page_t get_new_page, unsigned long private, bool offlining,
956		bool sync)
957{
958	int retry = 1;
959	int nr_failed = 0;
960	int pass = 0;
961	struct page *page;
962	struct page *page2;
963	int rc;
964
965	for (pass = 0; pass < 10 && retry; pass++) {
966		retry = 0;
967
968		list_for_each_entry_safe(page, page2, from, lru) {
969			cond_resched();
970
971			rc = unmap_and_move_huge_page(get_new_page,
972					private, page, pass > 2, offlining,
973					sync);
974
975			switch(rc) {
976			case -ENOMEM:
977				goto out;
978			case -EAGAIN:
979				retry++;
980				break;
981			case 0:
982				break;
983			default:
984				/* Permanent failure */
985				nr_failed++;
986				break;
987			}
988		}
989	}
990	rc = 0;
991out:
992	if (rc)
993		return rc;
994
995	return nr_failed + retry;
996}
997
998#ifdef CONFIG_NUMA
999/*
1000 * Move a list of individual pages
1001 */
1002struct page_to_node {
1003	unsigned long addr;
1004	struct page *page;
1005	int node;
1006	int status;
1007};
1008
1009static struct page *new_page_node(struct page *p, unsigned long private,
1010		int **result)
1011{
1012	struct page_to_node *pm = (struct page_to_node *)private;
1013
1014	while (pm->node != MAX_NUMNODES && pm->page != p)
1015		pm++;
1016
1017	if (pm->node == MAX_NUMNODES)
1018		return NULL;
1019
1020	*result = &pm->status;
1021
1022	return alloc_pages_exact_node(pm->node,
1023				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1024}
1025
1026/*
1027 * Move a set of pages as indicated in the pm array. The addr
1028 * field must be set to the virtual address of the page to be moved
1029 * and the node number must contain a valid target node.
1030 * The pm array ends with node = MAX_NUMNODES.
1031 */
1032static int do_move_page_to_node_array(struct mm_struct *mm,
1033				      struct page_to_node *pm,
1034				      int migrate_all)
1035{
1036	int err;
1037	struct page_to_node *pp;
1038	LIST_HEAD(pagelist);
1039
1040	down_read(&mm->mmap_sem);
1041
1042	/*
1043	 * Build a list of pages to migrate
1044	 */
1045	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1046		struct vm_area_struct *vma;
1047		struct page *page;
1048
1049		err = -EFAULT;
1050		vma = find_vma(mm, pp->addr);
1051		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1052			goto set_status;
1053
1054		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1055
1056		err = PTR_ERR(page);
1057		if (IS_ERR(page))
1058			goto set_status;
1059
1060		err = -ENOENT;
1061		if (!page)
1062			goto set_status;
1063
1064		/* Use PageReserved to check for zero page */
1065		if (PageReserved(page) || PageKsm(page))
1066			goto put_and_set;
1067
1068		pp->page = page;
1069		err = page_to_nid(page);
1070
1071		if (err == pp->node)
1072			/*
1073			 * Node already in the right place
1074			 */
1075			goto put_and_set;
1076
1077		err = -EACCES;
1078		if (page_mapcount(page) > 1 &&
1079				!migrate_all)
1080			goto put_and_set;
1081
1082		err = isolate_lru_page(page);
1083		if (!err) {
1084			list_add_tail(&page->lru, &pagelist);
1085			inc_zone_page_state(page, NR_ISOLATED_ANON +
1086					    page_is_file_cache(page));
1087		}
1088put_and_set:
1089		/*
1090		 * Either remove the duplicate refcount from
1091		 * isolate_lru_page() or drop the page ref if it was
1092		 * not isolated.
1093		 */
1094		put_page(page);
1095set_status:
1096		pp->status = err;
1097	}
1098
1099	err = 0;
1100	if (!list_empty(&pagelist)) {
1101		err = migrate_pages(&pagelist, new_page_node,
1102				(unsigned long)pm, 0, true);
1103		if (err)
1104			putback_lru_pages(&pagelist);
1105	}
1106
1107	up_read(&mm->mmap_sem);
1108	return err;
1109}
1110
1111/*
1112 * Migrate an array of page address onto an array of nodes and fill
1113 * the corresponding array of status.
1114 */
1115static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1116			 unsigned long nr_pages,
1117			 const void __user * __user *pages,
1118			 const int __user *nodes,
1119			 int __user *status, int flags)
1120{
1121	struct page_to_node *pm;
1122	nodemask_t task_nodes;
1123	unsigned long chunk_nr_pages;
1124	unsigned long chunk_start;
1125	int err;
1126
1127	task_nodes = cpuset_mems_allowed(task);
1128
1129	err = -ENOMEM;
1130	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1131	if (!pm)
1132		goto out;
1133
1134	migrate_prep();
1135
1136	/*
1137	 * Store a chunk of page_to_node array in a page,
1138	 * but keep the last one as a marker
1139	 */
1140	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1141
1142	for (chunk_start = 0;
1143	     chunk_start < nr_pages;
1144	     chunk_start += chunk_nr_pages) {
1145		int j;
1146
1147		if (chunk_start + chunk_nr_pages > nr_pages)
1148			chunk_nr_pages = nr_pages - chunk_start;
1149
1150		/* fill the chunk pm with addrs and nodes from user-space */
1151		for (j = 0; j < chunk_nr_pages; j++) {
1152			const void __user *p;
1153			int node;
1154
1155			err = -EFAULT;
1156			if (get_user(p, pages + j + chunk_start))
1157				goto out_pm;
1158			pm[j].addr = (unsigned long) p;
1159
1160			if (get_user(node, nodes + j + chunk_start))
1161				goto out_pm;
1162
1163			err = -ENODEV;
1164			if (node < 0 || node >= MAX_NUMNODES)
1165				goto out_pm;
1166
1167			if (!node_state(node, N_HIGH_MEMORY))
1168				goto out_pm;
1169
1170			err = -EACCES;
1171			if (!node_isset(node, task_nodes))
1172				goto out_pm;
1173
1174			pm[j].node = node;
1175		}
1176
1177		/* End marker for this chunk */
1178		pm[chunk_nr_pages].node = MAX_NUMNODES;
1179
1180		/* Migrate this chunk */
1181		err = do_move_page_to_node_array(mm, pm,
1182						 flags & MPOL_MF_MOVE_ALL);
1183		if (err < 0)
1184			goto out_pm;
1185
1186		/* Return status information */
1187		for (j = 0; j < chunk_nr_pages; j++)
1188			if (put_user(pm[j].status, status + j + chunk_start)) {
1189				err = -EFAULT;
1190				goto out_pm;
1191			}
1192	}
1193	err = 0;
1194
1195out_pm:
1196	free_page((unsigned long)pm);
1197out:
1198	return err;
1199}
1200
1201/*
1202 * Determine the nodes of an array of pages and store it in an array of status.
1203 */
1204static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1205				const void __user **pages, int *status)
1206{
1207	unsigned long i;
1208
1209	down_read(&mm->mmap_sem);
1210
1211	for (i = 0; i < nr_pages; i++) {
1212		unsigned long addr = (unsigned long)(*pages);
1213		struct vm_area_struct *vma;
1214		struct page *page;
1215		int err = -EFAULT;
1216
1217		vma = find_vma(mm, addr);
1218		if (!vma || addr < vma->vm_start)
1219			goto set_status;
1220
1221		page = follow_page(vma, addr, 0);
1222
1223		err = PTR_ERR(page);
1224		if (IS_ERR(page))
1225			goto set_status;
1226
1227		err = -ENOENT;
1228		/* Use PageReserved to check for zero page */
1229		if (!page || PageReserved(page) || PageKsm(page))
1230			goto set_status;
1231
1232		err = page_to_nid(page);
1233set_status:
1234		*status = err;
1235
1236		pages++;
1237		status++;
1238	}
1239
1240	up_read(&mm->mmap_sem);
1241}
1242
1243/*
1244 * Determine the nodes of a user array of pages and store it in
1245 * a user array of status.
1246 */
1247static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1248			 const void __user * __user *pages,
1249			 int __user *status)
1250{
1251#define DO_PAGES_STAT_CHUNK_NR 16
1252	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1253	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1254
1255	while (nr_pages) {
1256		unsigned long chunk_nr;
1257
1258		chunk_nr = nr_pages;
1259		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1260			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1261
1262		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1263			break;
1264
1265		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1266
1267		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1268			break;
1269
1270		pages += chunk_nr;
1271		status += chunk_nr;
1272		nr_pages -= chunk_nr;
1273	}
1274	return nr_pages ? -EFAULT : 0;
1275}
1276
1277/*
1278 * Move a list of pages in the address space of the currently executing
1279 * process.
1280 */
1281SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1282		const void __user * __user *, pages,
1283		const int __user *, nodes,
1284		int __user *, status, int, flags)
1285{
1286	const struct cred *cred = current_cred(), *tcred;
1287	struct task_struct *task;
1288	struct mm_struct *mm;
1289	int err;
1290
1291	/* Check flags */
1292	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1293		return -EINVAL;
1294
1295	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1296		return -EPERM;
1297
1298	/* Find the mm_struct */
1299	rcu_read_lock();
1300	task = pid ? find_task_by_vpid(pid) : current;
1301	if (!task) {
1302		rcu_read_unlock();
1303		return -ESRCH;
1304	}
1305	mm = get_task_mm(task);
1306	rcu_read_unlock();
1307
1308	if (!mm)
1309		return -EINVAL;
1310
1311	/*
1312	 * Check if this process has the right to modify the specified
1313	 * process. The right exists if the process has administrative
1314	 * capabilities, superuser privileges or the same
1315	 * userid as the target process.
1316	 */
1317	rcu_read_lock();
1318	tcred = __task_cred(task);
1319	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1320	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1321	    !capable(CAP_SYS_NICE)) {
1322		rcu_read_unlock();
1323		err = -EPERM;
1324		goto out;
1325	}
1326	rcu_read_unlock();
1327
1328 	err = security_task_movememory(task);
1329 	if (err)
1330		goto out;
1331
1332	if (nodes) {
1333		err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1334				    flags);
1335	} else {
1336		err = do_pages_stat(mm, nr_pages, pages, status);
1337	}
1338
1339out:
1340	mmput(mm);
1341	return err;
1342}
1343
1344/*
1345 * Call migration functions in the vma_ops that may prepare
1346 * memory in a vm for migration. migration functions may perform
1347 * the migration for vmas that do not have an underlying page struct.
1348 */
1349int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1350	const nodemask_t *from, unsigned long flags)
1351{
1352 	struct vm_area_struct *vma;
1353 	int err = 0;
1354
1355	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1356 		if (vma->vm_ops && vma->vm_ops->migrate) {
1357 			err = vma->vm_ops->migrate(vma, to, from, flags);
1358 			if (err)
1359 				break;
1360 		}
1361 	}
1362 	return err;
1363}
1364#endif
1365