migrate.c revision 938bb9f5e840eddbf54e4f62f6c5ba9b3ae12c9d
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
18#include <linux/swapops.h>
19#include <linux/pagemap.h>
20#include <linux/buffer_head.h>
21#include <linux/mm_inline.h>
22#include <linux/nsproxy.h>
23#include <linux/pagevec.h>
24#include <linux/rmap.h>
25#include <linux/topology.h>
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
28#include <linux/writeback.h>
29#include <linux/mempolicy.h>
30#include <linux/vmalloc.h>
31#include <linux/security.h>
32#include <linux/memcontrol.h>
33#include <linux/syscalls.h>
34
35#include "internal.h"
36
37#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
38
39/*
40 * migrate_prep() needs to be called before we start compiling a list of pages
41 * to be migrated using isolate_lru_page().
42 */
43int migrate_prep(void)
44{
45	/*
46	 * Clear the LRU lists so pages can be isolated.
47	 * Note that pages may be moved off the LRU after we have
48	 * drained them. Those pages will fail to migrate like other
49	 * pages that may be busy.
50	 */
51	lru_add_drain_all();
52
53	return 0;
54}
55
56/*
57 * Add isolated pages on the list back to the LRU under page lock
58 * to avoid leaking evictable pages back onto unevictable list.
59 *
60 * returns the number of pages put back.
61 */
62int putback_lru_pages(struct list_head *l)
63{
64	struct page *page;
65	struct page *page2;
66	int count = 0;
67
68	list_for_each_entry_safe(page, page2, l, lru) {
69		list_del(&page->lru);
70		putback_lru_page(page);
71		count++;
72	}
73	return count;
74}
75
76/*
77 * Restore a potential migration pte to a working pte entry
78 */
79static void remove_migration_pte(struct vm_area_struct *vma,
80		struct page *old, struct page *new)
81{
82	struct mm_struct *mm = vma->vm_mm;
83	swp_entry_t entry;
84 	pgd_t *pgd;
85 	pud_t *pud;
86 	pmd_t *pmd;
87	pte_t *ptep, pte;
88 	spinlock_t *ptl;
89	unsigned long addr = page_address_in_vma(new, vma);
90
91	if (addr == -EFAULT)
92		return;
93
94 	pgd = pgd_offset(mm, addr);
95	if (!pgd_present(*pgd))
96                return;
97
98	pud = pud_offset(pgd, addr);
99	if (!pud_present(*pud))
100                return;
101
102	pmd = pmd_offset(pud, addr);
103	if (!pmd_present(*pmd))
104		return;
105
106	ptep = pte_offset_map(pmd, addr);
107
108	if (!is_swap_pte(*ptep)) {
109		pte_unmap(ptep);
110 		return;
111 	}
112
113 	ptl = pte_lockptr(mm, pmd);
114 	spin_lock(ptl);
115	pte = *ptep;
116	if (!is_swap_pte(pte))
117		goto out;
118
119	entry = pte_to_swp_entry(pte);
120
121	if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
122		goto out;
123
124	get_page(new);
125	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
126	if (is_write_migration_entry(entry))
127		pte = pte_mkwrite(pte);
128	flush_cache_page(vma, addr, pte_pfn(pte));
129	set_pte_at(mm, addr, ptep, pte);
130
131	if (PageAnon(new))
132		page_add_anon_rmap(new, vma, addr);
133	else
134		page_add_file_rmap(new);
135
136	/* No need to invalidate - it was non-present before */
137	update_mmu_cache(vma, addr, pte);
138
139out:
140	pte_unmap_unlock(ptep, ptl);
141}
142
143/*
144 * Note that remove_file_migration_ptes will only work on regular mappings,
145 * Nonlinear mappings do not use migration entries.
146 */
147static void remove_file_migration_ptes(struct page *old, struct page *new)
148{
149	struct vm_area_struct *vma;
150	struct address_space *mapping = page_mapping(new);
151	struct prio_tree_iter iter;
152	pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
153
154	if (!mapping)
155		return;
156
157	spin_lock(&mapping->i_mmap_lock);
158
159	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
160		remove_migration_pte(vma, old, new);
161
162	spin_unlock(&mapping->i_mmap_lock);
163}
164
165/*
166 * Must hold mmap_sem lock on at least one of the vmas containing
167 * the page so that the anon_vma cannot vanish.
168 */
169static void remove_anon_migration_ptes(struct page *old, struct page *new)
170{
171	struct anon_vma *anon_vma;
172	struct vm_area_struct *vma;
173	unsigned long mapping;
174
175	mapping = (unsigned long)new->mapping;
176
177	if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
178		return;
179
180	/*
181	 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
182	 */
183	anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
184	spin_lock(&anon_vma->lock);
185
186	list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
187		remove_migration_pte(vma, old, new);
188
189	spin_unlock(&anon_vma->lock);
190}
191
192/*
193 * Get rid of all migration entries and replace them by
194 * references to the indicated page.
195 */
196static void remove_migration_ptes(struct page *old, struct page *new)
197{
198	if (PageAnon(new))
199		remove_anon_migration_ptes(old, new);
200	else
201		remove_file_migration_ptes(old, new);
202}
203
204/*
205 * Something used the pte of a page under migration. We need to
206 * get to the page and wait until migration is finished.
207 * When we return from this function the fault will be retried.
208 *
209 * This function is called from do_swap_page().
210 */
211void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
212				unsigned long address)
213{
214	pte_t *ptep, pte;
215	spinlock_t *ptl;
216	swp_entry_t entry;
217	struct page *page;
218
219	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
220	pte = *ptep;
221	if (!is_swap_pte(pte))
222		goto out;
223
224	entry = pte_to_swp_entry(pte);
225	if (!is_migration_entry(entry))
226		goto out;
227
228	page = migration_entry_to_page(entry);
229
230	/*
231	 * Once radix-tree replacement of page migration started, page_count
232	 * *must* be zero. And, we don't want to call wait_on_page_locked()
233	 * against a page without get_page().
234	 * So, we use get_page_unless_zero(), here. Even failed, page fault
235	 * will occur again.
236	 */
237	if (!get_page_unless_zero(page))
238		goto out;
239	pte_unmap_unlock(ptep, ptl);
240	wait_on_page_locked(page);
241	put_page(page);
242	return;
243out:
244	pte_unmap_unlock(ptep, ptl);
245}
246
247/*
248 * Replace the page in the mapping.
249 *
250 * The number of remaining references must be:
251 * 1 for anonymous pages without a mapping
252 * 2 for pages with a mapping
253 * 3 for pages with a mapping and PagePrivate set.
254 */
255static int migrate_page_move_mapping(struct address_space *mapping,
256		struct page *newpage, struct page *page)
257{
258	int expected_count;
259	void **pslot;
260
261	if (!mapping) {
262		/* Anonymous page without mapping */
263		if (page_count(page) != 1)
264			return -EAGAIN;
265		return 0;
266	}
267
268	spin_lock_irq(&mapping->tree_lock);
269
270	pslot = radix_tree_lookup_slot(&mapping->page_tree,
271 					page_index(page));
272
273	expected_count = 2 + !!PagePrivate(page);
274	if (page_count(page) != expected_count ||
275			(struct page *)radix_tree_deref_slot(pslot) != page) {
276		spin_unlock_irq(&mapping->tree_lock);
277		return -EAGAIN;
278	}
279
280	if (!page_freeze_refs(page, expected_count)) {
281		spin_unlock_irq(&mapping->tree_lock);
282		return -EAGAIN;
283	}
284
285	/*
286	 * Now we know that no one else is looking at the page.
287	 */
288	get_page(newpage);	/* add cache reference */
289	if (PageSwapCache(page)) {
290		SetPageSwapCache(newpage);
291		set_page_private(newpage, page_private(page));
292	}
293
294	radix_tree_replace_slot(pslot, newpage);
295
296	page_unfreeze_refs(page, expected_count);
297	/*
298	 * Drop cache reference from old page.
299	 * We know this isn't the last reference.
300	 */
301	__put_page(page);
302
303	/*
304	 * If moved to a different zone then also account
305	 * the page for that zone. Other VM counters will be
306	 * taken care of when we establish references to the
307	 * new page and drop references to the old page.
308	 *
309	 * Note that anonymous pages are accounted for
310	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
311	 * are mapped to swap space.
312	 */
313	__dec_zone_page_state(page, NR_FILE_PAGES);
314	__inc_zone_page_state(newpage, NR_FILE_PAGES);
315
316	spin_unlock_irq(&mapping->tree_lock);
317
318	return 0;
319}
320
321/*
322 * Copy the page to its new location
323 */
324static void migrate_page_copy(struct page *newpage, struct page *page)
325{
326	int anon;
327
328	copy_highpage(newpage, page);
329
330	if (PageError(page))
331		SetPageError(newpage);
332	if (PageReferenced(page))
333		SetPageReferenced(newpage);
334	if (PageUptodate(page))
335		SetPageUptodate(newpage);
336	if (TestClearPageActive(page)) {
337		VM_BUG_ON(PageUnevictable(page));
338		SetPageActive(newpage);
339	} else
340		unevictable_migrate_page(newpage, page);
341	if (PageChecked(page))
342		SetPageChecked(newpage);
343	if (PageMappedToDisk(page))
344		SetPageMappedToDisk(newpage);
345
346	if (PageDirty(page)) {
347		clear_page_dirty_for_io(page);
348		/*
349		 * Want to mark the page and the radix tree as dirty, and
350		 * redo the accounting that clear_page_dirty_for_io undid,
351		 * but we can't use set_page_dirty because that function
352		 * is actually a signal that all of the page has become dirty.
353		 * Wheras only part of our page may be dirty.
354		 */
355		__set_page_dirty_nobuffers(newpage);
356 	}
357
358	mlock_migrate_page(newpage, page);
359
360	ClearPageSwapCache(page);
361	ClearPagePrivate(page);
362	set_page_private(page, 0);
363	/* page->mapping contains a flag for PageAnon() */
364	anon = PageAnon(page);
365	page->mapping = NULL;
366
367	/*
368	 * If any waiters have accumulated on the new page then
369	 * wake them up.
370	 */
371	if (PageWriteback(newpage))
372		end_page_writeback(newpage);
373}
374
375/************************************************************
376 *                    Migration functions
377 ***********************************************************/
378
379/* Always fail migration. Used for mappings that are not movable */
380int fail_migrate_page(struct address_space *mapping,
381			struct page *newpage, struct page *page)
382{
383	return -EIO;
384}
385EXPORT_SYMBOL(fail_migrate_page);
386
387/*
388 * Common logic to directly migrate a single page suitable for
389 * pages that do not use PagePrivate.
390 *
391 * Pages are locked upon entry and exit.
392 */
393int migrate_page(struct address_space *mapping,
394		struct page *newpage, struct page *page)
395{
396	int rc;
397
398	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
399
400	rc = migrate_page_move_mapping(mapping, newpage, page);
401
402	if (rc)
403		return rc;
404
405	migrate_page_copy(newpage, page);
406	return 0;
407}
408EXPORT_SYMBOL(migrate_page);
409
410#ifdef CONFIG_BLOCK
411/*
412 * Migration function for pages with buffers. This function can only be used
413 * if the underlying filesystem guarantees that no other references to "page"
414 * exist.
415 */
416int buffer_migrate_page(struct address_space *mapping,
417		struct page *newpage, struct page *page)
418{
419	struct buffer_head *bh, *head;
420	int rc;
421
422	if (!page_has_buffers(page))
423		return migrate_page(mapping, newpage, page);
424
425	head = page_buffers(page);
426
427	rc = migrate_page_move_mapping(mapping, newpage, page);
428
429	if (rc)
430		return rc;
431
432	bh = head;
433	do {
434		get_bh(bh);
435		lock_buffer(bh);
436		bh = bh->b_this_page;
437
438	} while (bh != head);
439
440	ClearPagePrivate(page);
441	set_page_private(newpage, page_private(page));
442	set_page_private(page, 0);
443	put_page(page);
444	get_page(newpage);
445
446	bh = head;
447	do {
448		set_bh_page(bh, newpage, bh_offset(bh));
449		bh = bh->b_this_page;
450
451	} while (bh != head);
452
453	SetPagePrivate(newpage);
454
455	migrate_page_copy(newpage, page);
456
457	bh = head;
458	do {
459		unlock_buffer(bh);
460 		put_bh(bh);
461		bh = bh->b_this_page;
462
463	} while (bh != head);
464
465	return 0;
466}
467EXPORT_SYMBOL(buffer_migrate_page);
468#endif
469
470/*
471 * Writeback a page to clean the dirty state
472 */
473static int writeout(struct address_space *mapping, struct page *page)
474{
475	struct writeback_control wbc = {
476		.sync_mode = WB_SYNC_NONE,
477		.nr_to_write = 1,
478		.range_start = 0,
479		.range_end = LLONG_MAX,
480		.nonblocking = 1,
481		.for_reclaim = 1
482	};
483	int rc;
484
485	if (!mapping->a_ops->writepage)
486		/* No write method for the address space */
487		return -EINVAL;
488
489	if (!clear_page_dirty_for_io(page))
490		/* Someone else already triggered a write */
491		return -EAGAIN;
492
493	/*
494	 * A dirty page may imply that the underlying filesystem has
495	 * the page on some queue. So the page must be clean for
496	 * migration. Writeout may mean we loose the lock and the
497	 * page state is no longer what we checked for earlier.
498	 * At this point we know that the migration attempt cannot
499	 * be successful.
500	 */
501	remove_migration_ptes(page, page);
502
503	rc = mapping->a_ops->writepage(page, &wbc);
504
505	if (rc != AOP_WRITEPAGE_ACTIVATE)
506		/* unlocked. Relock */
507		lock_page(page);
508
509	return (rc < 0) ? -EIO : -EAGAIN;
510}
511
512/*
513 * Default handling if a filesystem does not provide a migration function.
514 */
515static int fallback_migrate_page(struct address_space *mapping,
516	struct page *newpage, struct page *page)
517{
518	if (PageDirty(page))
519		return writeout(mapping, page);
520
521	/*
522	 * Buffers may be managed in a filesystem specific way.
523	 * We must have no buffers or drop them.
524	 */
525	if (PagePrivate(page) &&
526	    !try_to_release_page(page, GFP_KERNEL))
527		return -EAGAIN;
528
529	return migrate_page(mapping, newpage, page);
530}
531
532/*
533 * Move a page to a newly allocated page
534 * The page is locked and all ptes have been successfully removed.
535 *
536 * The new page will have replaced the old page if this function
537 * is successful.
538 *
539 * Return value:
540 *   < 0 - error code
541 *  == 0 - success
542 */
543static int move_to_new_page(struct page *newpage, struct page *page)
544{
545	struct address_space *mapping;
546	int rc;
547
548	/*
549	 * Block others from accessing the page when we get around to
550	 * establishing additional references. We are the only one
551	 * holding a reference to the new page at this point.
552	 */
553	if (!trylock_page(newpage))
554		BUG();
555
556	/* Prepare mapping for the new page.*/
557	newpage->index = page->index;
558	newpage->mapping = page->mapping;
559	if (PageSwapBacked(page))
560		SetPageSwapBacked(newpage);
561
562	mapping = page_mapping(page);
563	if (!mapping)
564		rc = migrate_page(mapping, newpage, page);
565	else if (mapping->a_ops->migratepage)
566		/*
567		 * Most pages have a mapping and most filesystems
568		 * should provide a migration function. Anonymous
569		 * pages are part of swap space which also has its
570		 * own migration function. This is the most common
571		 * path for page migration.
572		 */
573		rc = mapping->a_ops->migratepage(mapping,
574						newpage, page);
575	else
576		rc = fallback_migrate_page(mapping, newpage, page);
577
578	if (!rc) {
579		remove_migration_ptes(page, newpage);
580	} else
581		newpage->mapping = NULL;
582
583	unlock_page(newpage);
584
585	return rc;
586}
587
588/*
589 * Obtain the lock on page, remove all ptes and migrate the page
590 * to the newly allocated page in newpage.
591 */
592static int unmap_and_move(new_page_t get_new_page, unsigned long private,
593			struct page *page, int force)
594{
595	int rc = 0;
596	int *result = NULL;
597	struct page *newpage = get_new_page(page, private, &result);
598	int rcu_locked = 0;
599	int charge = 0;
600	struct mem_cgroup *mem;
601
602	if (!newpage)
603		return -ENOMEM;
604
605	if (page_count(page) == 1) {
606		/* page was freed from under us. So we are done. */
607		goto move_newpage;
608	}
609
610	/* prepare cgroup just returns 0 or -ENOMEM */
611	rc = -EAGAIN;
612
613	if (!trylock_page(page)) {
614		if (!force)
615			goto move_newpage;
616		lock_page(page);
617	}
618
619	/* charge against new page */
620	charge = mem_cgroup_prepare_migration(page, &mem);
621	if (charge == -ENOMEM) {
622		rc = -ENOMEM;
623		goto unlock;
624	}
625	BUG_ON(charge);
626
627	if (PageWriteback(page)) {
628		if (!force)
629			goto uncharge;
630		wait_on_page_writeback(page);
631	}
632	/*
633	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
634	 * we cannot notice that anon_vma is freed while we migrates a page.
635	 * This rcu_read_lock() delays freeing anon_vma pointer until the end
636	 * of migration. File cache pages are no problem because of page_lock()
637	 * File Caches may use write_page() or lock_page() in migration, then,
638	 * just care Anon page here.
639	 */
640	if (PageAnon(page)) {
641		rcu_read_lock();
642		rcu_locked = 1;
643	}
644
645	/*
646	 * Corner case handling:
647	 * 1. When a new swap-cache page is read into, it is added to the LRU
648	 * and treated as swapcache but it has no rmap yet.
649	 * Calling try_to_unmap() against a page->mapping==NULL page will
650	 * trigger a BUG.  So handle it here.
651	 * 2. An orphaned page (see truncate_complete_page) might have
652	 * fs-private metadata. The page can be picked up due to memory
653	 * offlining.  Everywhere else except page reclaim, the page is
654	 * invisible to the vm, so the page can not be migrated.  So try to
655	 * free the metadata, so the page can be freed.
656	 */
657	if (!page->mapping) {
658		if (!PageAnon(page) && PagePrivate(page)) {
659			/*
660			 * Go direct to try_to_free_buffers() here because
661			 * a) that's what try_to_release_page() would do anyway
662			 * b) we may be under rcu_read_lock() here, so we can't
663			 *    use GFP_KERNEL which is what try_to_release_page()
664			 *    needs to be effective.
665			 */
666			try_to_free_buffers(page);
667		}
668		goto rcu_unlock;
669	}
670
671	/* Establish migration ptes or remove ptes */
672	try_to_unmap(page, 1);
673
674	if (!page_mapped(page))
675		rc = move_to_new_page(newpage, page);
676
677	if (rc)
678		remove_migration_ptes(page, page);
679rcu_unlock:
680	if (rcu_locked)
681		rcu_read_unlock();
682uncharge:
683	if (!charge)
684		mem_cgroup_end_migration(mem, page, newpage);
685unlock:
686	unlock_page(page);
687
688	if (rc != -EAGAIN) {
689 		/*
690 		 * A page that has been migrated has all references
691 		 * removed and will be freed. A page that has not been
692 		 * migrated will have kepts its references and be
693 		 * restored.
694 		 */
695 		list_del(&page->lru);
696		putback_lru_page(page);
697	}
698
699move_newpage:
700
701	/*
702	 * Move the new page to the LRU. If migration was not successful
703	 * then this will free the page.
704	 */
705	putback_lru_page(newpage);
706
707	if (result) {
708		if (rc)
709			*result = rc;
710		else
711			*result = page_to_nid(newpage);
712	}
713	return rc;
714}
715
716/*
717 * migrate_pages
718 *
719 * The function takes one list of pages to migrate and a function
720 * that determines from the page to be migrated and the private data
721 * the target of the move and allocates the page.
722 *
723 * The function returns after 10 attempts or if no pages
724 * are movable anymore because to has become empty
725 * or no retryable pages exist anymore. All pages will be
726 * returned to the LRU or freed.
727 *
728 * Return: Number of pages not migrated or error code.
729 */
730int migrate_pages(struct list_head *from,
731		new_page_t get_new_page, unsigned long private)
732{
733	int retry = 1;
734	int nr_failed = 0;
735	int pass = 0;
736	struct page *page;
737	struct page *page2;
738	int swapwrite = current->flags & PF_SWAPWRITE;
739	int rc;
740
741	if (!swapwrite)
742		current->flags |= PF_SWAPWRITE;
743
744	for(pass = 0; pass < 10 && retry; pass++) {
745		retry = 0;
746
747		list_for_each_entry_safe(page, page2, from, lru) {
748			cond_resched();
749
750			rc = unmap_and_move(get_new_page, private,
751						page, pass > 2);
752
753			switch(rc) {
754			case -ENOMEM:
755				goto out;
756			case -EAGAIN:
757				retry++;
758				break;
759			case 0:
760				break;
761			default:
762				/* Permanent failure */
763				nr_failed++;
764				break;
765			}
766		}
767	}
768	rc = 0;
769out:
770	if (!swapwrite)
771		current->flags &= ~PF_SWAPWRITE;
772
773	putback_lru_pages(from);
774
775	if (rc)
776		return rc;
777
778	return nr_failed + retry;
779}
780
781#ifdef CONFIG_NUMA
782/*
783 * Move a list of individual pages
784 */
785struct page_to_node {
786	unsigned long addr;
787	struct page *page;
788	int node;
789	int status;
790};
791
792static struct page *new_page_node(struct page *p, unsigned long private,
793		int **result)
794{
795	struct page_to_node *pm = (struct page_to_node *)private;
796
797	while (pm->node != MAX_NUMNODES && pm->page != p)
798		pm++;
799
800	if (pm->node == MAX_NUMNODES)
801		return NULL;
802
803	*result = &pm->status;
804
805	return alloc_pages_node(pm->node,
806				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
807}
808
809/*
810 * Move a set of pages as indicated in the pm array. The addr
811 * field must be set to the virtual address of the page to be moved
812 * and the node number must contain a valid target node.
813 * The pm array ends with node = MAX_NUMNODES.
814 */
815static int do_move_page_to_node_array(struct mm_struct *mm,
816				      struct page_to_node *pm,
817				      int migrate_all)
818{
819	int err;
820	struct page_to_node *pp;
821	LIST_HEAD(pagelist);
822
823	migrate_prep();
824	down_read(&mm->mmap_sem);
825
826	/*
827	 * Build a list of pages to migrate
828	 */
829	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
830		struct vm_area_struct *vma;
831		struct page *page;
832
833		err = -EFAULT;
834		vma = find_vma(mm, pp->addr);
835		if (!vma || !vma_migratable(vma))
836			goto set_status;
837
838		page = follow_page(vma, pp->addr, FOLL_GET);
839
840		err = PTR_ERR(page);
841		if (IS_ERR(page))
842			goto set_status;
843
844		err = -ENOENT;
845		if (!page)
846			goto set_status;
847
848		if (PageReserved(page))		/* Check for zero page */
849			goto put_and_set;
850
851		pp->page = page;
852		err = page_to_nid(page);
853
854		if (err == pp->node)
855			/*
856			 * Node already in the right place
857			 */
858			goto put_and_set;
859
860		err = -EACCES;
861		if (page_mapcount(page) > 1 &&
862				!migrate_all)
863			goto put_and_set;
864
865		err = isolate_lru_page(page);
866		if (!err)
867			list_add_tail(&page->lru, &pagelist);
868put_and_set:
869		/*
870		 * Either remove the duplicate refcount from
871		 * isolate_lru_page() or drop the page ref if it was
872		 * not isolated.
873		 */
874		put_page(page);
875set_status:
876		pp->status = err;
877	}
878
879	err = 0;
880	if (!list_empty(&pagelist))
881		err = migrate_pages(&pagelist, new_page_node,
882				(unsigned long)pm);
883
884	up_read(&mm->mmap_sem);
885	return err;
886}
887
888/*
889 * Migrate an array of page address onto an array of nodes and fill
890 * the corresponding array of status.
891 */
892static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
893			 unsigned long nr_pages,
894			 const void __user * __user *pages,
895			 const int __user *nodes,
896			 int __user *status, int flags)
897{
898	struct page_to_node *pm;
899	nodemask_t task_nodes;
900	unsigned long chunk_nr_pages;
901	unsigned long chunk_start;
902	int err;
903
904	task_nodes = cpuset_mems_allowed(task);
905
906	err = -ENOMEM;
907	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
908	if (!pm)
909		goto out;
910	/*
911	 * Store a chunk of page_to_node array in a page,
912	 * but keep the last one as a marker
913	 */
914	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
915
916	for (chunk_start = 0;
917	     chunk_start < nr_pages;
918	     chunk_start += chunk_nr_pages) {
919		int j;
920
921		if (chunk_start + chunk_nr_pages > nr_pages)
922			chunk_nr_pages = nr_pages - chunk_start;
923
924		/* fill the chunk pm with addrs and nodes from user-space */
925		for (j = 0; j < chunk_nr_pages; j++) {
926			const void __user *p;
927			int node;
928
929			err = -EFAULT;
930			if (get_user(p, pages + j + chunk_start))
931				goto out_pm;
932			pm[j].addr = (unsigned long) p;
933
934			if (get_user(node, nodes + j + chunk_start))
935				goto out_pm;
936
937			err = -ENODEV;
938			if (!node_state(node, N_HIGH_MEMORY))
939				goto out_pm;
940
941			err = -EACCES;
942			if (!node_isset(node, task_nodes))
943				goto out_pm;
944
945			pm[j].node = node;
946		}
947
948		/* End marker for this chunk */
949		pm[chunk_nr_pages].node = MAX_NUMNODES;
950
951		/* Migrate this chunk */
952		err = do_move_page_to_node_array(mm, pm,
953						 flags & MPOL_MF_MOVE_ALL);
954		if (err < 0)
955			goto out_pm;
956
957		/* Return status information */
958		for (j = 0; j < chunk_nr_pages; j++)
959			if (put_user(pm[j].status, status + j + chunk_start)) {
960				err = -EFAULT;
961				goto out_pm;
962			}
963	}
964	err = 0;
965
966out_pm:
967	free_page((unsigned long)pm);
968out:
969	return err;
970}
971
972/*
973 * Determine the nodes of an array of pages and store it in an array of status.
974 */
975static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
976				const void __user **pages, int *status)
977{
978	unsigned long i;
979
980	down_read(&mm->mmap_sem);
981
982	for (i = 0; i < nr_pages; i++) {
983		unsigned long addr = (unsigned long)(*pages);
984		struct vm_area_struct *vma;
985		struct page *page;
986		int err = -EFAULT;
987
988		vma = find_vma(mm, addr);
989		if (!vma)
990			goto set_status;
991
992		page = follow_page(vma, addr, 0);
993
994		err = PTR_ERR(page);
995		if (IS_ERR(page))
996			goto set_status;
997
998		err = -ENOENT;
999		/* Use PageReserved to check for zero page */
1000		if (!page || PageReserved(page))
1001			goto set_status;
1002
1003		err = page_to_nid(page);
1004set_status:
1005		*status = err;
1006
1007		pages++;
1008		status++;
1009	}
1010
1011	up_read(&mm->mmap_sem);
1012}
1013
1014/*
1015 * Determine the nodes of a user array of pages and store it in
1016 * a user array of status.
1017 */
1018static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1019			 const void __user * __user *pages,
1020			 int __user *status)
1021{
1022#define DO_PAGES_STAT_CHUNK_NR 16
1023	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1024	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1025	unsigned long i, chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1026	int err;
1027
1028	for (i = 0; i < nr_pages; i += chunk_nr) {
1029		if (chunk_nr + i > nr_pages)
1030			chunk_nr = nr_pages - i;
1031
1032		err = copy_from_user(chunk_pages, &pages[i],
1033				     chunk_nr * sizeof(*chunk_pages));
1034		if (err) {
1035			err = -EFAULT;
1036			goto out;
1037		}
1038
1039		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1040
1041		err = copy_to_user(&status[i], chunk_status,
1042				   chunk_nr * sizeof(*chunk_status));
1043		if (err) {
1044			err = -EFAULT;
1045			goto out;
1046		}
1047	}
1048	err = 0;
1049
1050out:
1051	return err;
1052}
1053
1054/*
1055 * Move a list of pages in the address space of the currently executing
1056 * process.
1057 */
1058SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1059		const void __user * __user *, pages,
1060		const int __user *, nodes,
1061		int __user *, status, int, flags)
1062{
1063	const struct cred *cred = current_cred(), *tcred;
1064	struct task_struct *task;
1065	struct mm_struct *mm;
1066	int err;
1067
1068	/* Check flags */
1069	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1070		return -EINVAL;
1071
1072	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1073		return -EPERM;
1074
1075	/* Find the mm_struct */
1076	read_lock(&tasklist_lock);
1077	task = pid ? find_task_by_vpid(pid) : current;
1078	if (!task) {
1079		read_unlock(&tasklist_lock);
1080		return -ESRCH;
1081	}
1082	mm = get_task_mm(task);
1083	read_unlock(&tasklist_lock);
1084
1085	if (!mm)
1086		return -EINVAL;
1087
1088	/*
1089	 * Check if this process has the right to modify the specified
1090	 * process. The right exists if the process has administrative
1091	 * capabilities, superuser privileges or the same
1092	 * userid as the target process.
1093	 */
1094	rcu_read_lock();
1095	tcred = __task_cred(task);
1096	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1097	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1098	    !capable(CAP_SYS_NICE)) {
1099		rcu_read_unlock();
1100		err = -EPERM;
1101		goto out;
1102	}
1103	rcu_read_unlock();
1104
1105 	err = security_task_movememory(task);
1106 	if (err)
1107		goto out;
1108
1109	if (nodes) {
1110		err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1111				    flags);
1112	} else {
1113		err = do_pages_stat(mm, nr_pages, pages, status);
1114	}
1115
1116out:
1117	mmput(mm);
1118	return err;
1119}
1120
1121/*
1122 * Call migration functions in the vma_ops that may prepare
1123 * memory in a vm for migration. migration functions may perform
1124 * the migration for vmas that do not have an underlying page struct.
1125 */
1126int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1127	const nodemask_t *from, unsigned long flags)
1128{
1129 	struct vm_area_struct *vma;
1130 	int err = 0;
1131
1132 	for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1133 		if (vma->vm_ops && vma->vm_ops->migrate) {
1134 			err = vma->vm_ops->migrate(vma, to, from, flags);
1135 			if (err)
1136 				break;
1137 		}
1138 	}
1139 	return err;
1140}
1141#endif
1142