migrate.c revision dc386d4d1e98bb39fb967ee156cd456c802fc692
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter <clameter@sgi.com>
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
18#include <linux/swapops.h>
19#include <linux/pagemap.h>
20#include <linux/buffer_head.h>
21#include <linux/mm_inline.h>
22#include <linux/pagevec.h>
23#include <linux/rmap.h>
24#include <linux/topology.h>
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/writeback.h>
28#include <linux/mempolicy.h>
29#include <linux/vmalloc.h>
30#include <linux/security.h>
31
32#include "internal.h"
33
34#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
35
36/*
37 * Isolate one page from the LRU lists. If successful put it onto
38 * the indicated list with elevated page count.
39 *
40 * Result:
41 *  -EBUSY: page not on LRU list
42 *  0: page removed from LRU list and added to the specified list.
43 */
44int isolate_lru_page(struct page *page, struct list_head *pagelist)
45{
46	int ret = -EBUSY;
47
48	if (PageLRU(page)) {
49		struct zone *zone = page_zone(page);
50
51		spin_lock_irq(&zone->lru_lock);
52		if (PageLRU(page)) {
53			ret = 0;
54			get_page(page);
55			ClearPageLRU(page);
56			if (PageActive(page))
57				del_page_from_active_list(zone, page);
58			else
59				del_page_from_inactive_list(zone, page);
60			list_add_tail(&page->lru, pagelist);
61		}
62		spin_unlock_irq(&zone->lru_lock);
63	}
64	return ret;
65}
66
67/*
68 * migrate_prep() needs to be called before we start compiling a list of pages
69 * to be migrated using isolate_lru_page().
70 */
71int migrate_prep(void)
72{
73	/*
74	 * Clear the LRU lists so pages can be isolated.
75	 * Note that pages may be moved off the LRU after we have
76	 * drained them. Those pages will fail to migrate like other
77	 * pages that may be busy.
78	 */
79	lru_add_drain_all();
80
81	return 0;
82}
83
84static inline void move_to_lru(struct page *page)
85{
86	if (PageActive(page)) {
87		/*
88		 * lru_cache_add_active checks that
89		 * the PG_active bit is off.
90		 */
91		ClearPageActive(page);
92		lru_cache_add_active(page);
93	} else {
94		lru_cache_add(page);
95	}
96	put_page(page);
97}
98
99/*
100 * Add isolated pages on the list back to the LRU.
101 *
102 * returns the number of pages put back.
103 */
104int putback_lru_pages(struct list_head *l)
105{
106	struct page *page;
107	struct page *page2;
108	int count = 0;
109
110	list_for_each_entry_safe(page, page2, l, lru) {
111		list_del(&page->lru);
112		move_to_lru(page);
113		count++;
114	}
115	return count;
116}
117
118static inline int is_swap_pte(pte_t pte)
119{
120	return !pte_none(pte) && !pte_present(pte) && !pte_file(pte);
121}
122
123/*
124 * Restore a potential migration pte to a working pte entry
125 */
126static void remove_migration_pte(struct vm_area_struct *vma,
127		struct page *old, struct page *new)
128{
129	struct mm_struct *mm = vma->vm_mm;
130	swp_entry_t entry;
131 	pgd_t *pgd;
132 	pud_t *pud;
133 	pmd_t *pmd;
134	pte_t *ptep, pte;
135 	spinlock_t *ptl;
136	unsigned long addr = page_address_in_vma(new, vma);
137
138	if (addr == -EFAULT)
139		return;
140
141 	pgd = pgd_offset(mm, addr);
142	if (!pgd_present(*pgd))
143                return;
144
145	pud = pud_offset(pgd, addr);
146	if (!pud_present(*pud))
147                return;
148
149	pmd = pmd_offset(pud, addr);
150	if (!pmd_present(*pmd))
151		return;
152
153	ptep = pte_offset_map(pmd, addr);
154
155	if (!is_swap_pte(*ptep)) {
156		pte_unmap(ptep);
157 		return;
158 	}
159
160 	ptl = pte_lockptr(mm, pmd);
161 	spin_lock(ptl);
162	pte = *ptep;
163	if (!is_swap_pte(pte))
164		goto out;
165
166	entry = pte_to_swp_entry(pte);
167
168	if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
169		goto out;
170
171	get_page(new);
172	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
173	if (is_write_migration_entry(entry))
174		pte = pte_mkwrite(pte);
175	set_pte_at(mm, addr, ptep, pte);
176
177	if (PageAnon(new))
178		page_add_anon_rmap(new, vma, addr);
179	else
180		page_add_file_rmap(new);
181
182	/* No need to invalidate - it was non-present before */
183	update_mmu_cache(vma, addr, pte);
184	lazy_mmu_prot_update(pte);
185
186out:
187	pte_unmap_unlock(ptep, ptl);
188}
189
190/*
191 * Note that remove_file_migration_ptes will only work on regular mappings,
192 * Nonlinear mappings do not use migration entries.
193 */
194static void remove_file_migration_ptes(struct page *old, struct page *new)
195{
196	struct vm_area_struct *vma;
197	struct address_space *mapping = page_mapping(new);
198	struct prio_tree_iter iter;
199	pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
200
201	if (!mapping)
202		return;
203
204	spin_lock(&mapping->i_mmap_lock);
205
206	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
207		remove_migration_pte(vma, old, new);
208
209	spin_unlock(&mapping->i_mmap_lock);
210}
211
212/*
213 * Must hold mmap_sem lock on at least one of the vmas containing
214 * the page so that the anon_vma cannot vanish.
215 */
216static void remove_anon_migration_ptes(struct page *old, struct page *new)
217{
218	struct anon_vma *anon_vma;
219	struct vm_area_struct *vma;
220	unsigned long mapping;
221
222	mapping = (unsigned long)new->mapping;
223
224	if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
225		return;
226
227	/*
228	 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
229	 */
230	anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
231	spin_lock(&anon_vma->lock);
232
233	list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
234		remove_migration_pte(vma, old, new);
235
236	spin_unlock(&anon_vma->lock);
237}
238
239/*
240 * Get rid of all migration entries and replace them by
241 * references to the indicated page.
242 */
243static void remove_migration_ptes(struct page *old, struct page *new)
244{
245	if (PageAnon(new))
246		remove_anon_migration_ptes(old, new);
247	else
248		remove_file_migration_ptes(old, new);
249}
250
251/*
252 * Something used the pte of a page under migration. We need to
253 * get to the page and wait until migration is finished.
254 * When we return from this function the fault will be retried.
255 *
256 * This function is called from do_swap_page().
257 */
258void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
259				unsigned long address)
260{
261	pte_t *ptep, pte;
262	spinlock_t *ptl;
263	swp_entry_t entry;
264	struct page *page;
265
266	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
267	pte = *ptep;
268	if (!is_swap_pte(pte))
269		goto out;
270
271	entry = pte_to_swp_entry(pte);
272	if (!is_migration_entry(entry))
273		goto out;
274
275	page = migration_entry_to_page(entry);
276
277	get_page(page);
278	pte_unmap_unlock(ptep, ptl);
279	wait_on_page_locked(page);
280	put_page(page);
281	return;
282out:
283	pte_unmap_unlock(ptep, ptl);
284}
285
286/*
287 * Replace the page in the mapping.
288 *
289 * The number of remaining references must be:
290 * 1 for anonymous pages without a mapping
291 * 2 for pages with a mapping
292 * 3 for pages with a mapping and PagePrivate set.
293 */
294static int migrate_page_move_mapping(struct address_space *mapping,
295		struct page *newpage, struct page *page)
296{
297	void **pslot;
298
299	if (!mapping) {
300		/* Anonymous page without mapping */
301		if (page_count(page) != 1)
302			return -EAGAIN;
303		return 0;
304	}
305
306	write_lock_irq(&mapping->tree_lock);
307
308	pslot = radix_tree_lookup_slot(&mapping->page_tree,
309 					page_index(page));
310
311	if (page_count(page) != 2 + !!PagePrivate(page) ||
312			(struct page *)radix_tree_deref_slot(pslot) != page) {
313		write_unlock_irq(&mapping->tree_lock);
314		return -EAGAIN;
315	}
316
317	/*
318	 * Now we know that no one else is looking at the page.
319	 */
320	get_page(newpage);	/* add cache reference */
321#ifdef CONFIG_SWAP
322	if (PageSwapCache(page)) {
323		SetPageSwapCache(newpage);
324		set_page_private(newpage, page_private(page));
325	}
326#endif
327
328	radix_tree_replace_slot(pslot, newpage);
329
330	/*
331	 * Drop cache reference from old page.
332	 * We know this isn't the last reference.
333	 */
334	__put_page(page);
335
336	/*
337	 * If moved to a different zone then also account
338	 * the page for that zone. Other VM counters will be
339	 * taken care of when we establish references to the
340	 * new page and drop references to the old page.
341	 *
342	 * Note that anonymous pages are accounted for
343	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
344	 * are mapped to swap space.
345	 */
346	__dec_zone_page_state(page, NR_FILE_PAGES);
347	__inc_zone_page_state(newpage, NR_FILE_PAGES);
348
349	write_unlock_irq(&mapping->tree_lock);
350
351	return 0;
352}
353
354/*
355 * Copy the page to its new location
356 */
357static void migrate_page_copy(struct page *newpage, struct page *page)
358{
359	copy_highpage(newpage, page);
360
361	if (PageError(page))
362		SetPageError(newpage);
363	if (PageReferenced(page))
364		SetPageReferenced(newpage);
365	if (PageUptodate(page))
366		SetPageUptodate(newpage);
367	if (PageActive(page))
368		SetPageActive(newpage);
369	if (PageChecked(page))
370		SetPageChecked(newpage);
371	if (PageMappedToDisk(page))
372		SetPageMappedToDisk(newpage);
373
374	if (PageDirty(page)) {
375		clear_page_dirty_for_io(page);
376		set_page_dirty(newpage);
377 	}
378
379#ifdef CONFIG_SWAP
380	ClearPageSwapCache(page);
381#endif
382	ClearPageActive(page);
383	ClearPagePrivate(page);
384	set_page_private(page, 0);
385	page->mapping = NULL;
386
387	/*
388	 * If any waiters have accumulated on the new page then
389	 * wake them up.
390	 */
391	if (PageWriteback(newpage))
392		end_page_writeback(newpage);
393}
394
395/************************************************************
396 *                    Migration functions
397 ***********************************************************/
398
399/* Always fail migration. Used for mappings that are not movable */
400int fail_migrate_page(struct address_space *mapping,
401			struct page *newpage, struct page *page)
402{
403	return -EIO;
404}
405EXPORT_SYMBOL(fail_migrate_page);
406
407/*
408 * Common logic to directly migrate a single page suitable for
409 * pages that do not use PagePrivate.
410 *
411 * Pages are locked upon entry and exit.
412 */
413int migrate_page(struct address_space *mapping,
414		struct page *newpage, struct page *page)
415{
416	int rc;
417
418	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
419
420	rc = migrate_page_move_mapping(mapping, newpage, page);
421
422	if (rc)
423		return rc;
424
425	migrate_page_copy(newpage, page);
426	return 0;
427}
428EXPORT_SYMBOL(migrate_page);
429
430#ifdef CONFIG_BLOCK
431/*
432 * Migration function for pages with buffers. This function can only be used
433 * if the underlying filesystem guarantees that no other references to "page"
434 * exist.
435 */
436int buffer_migrate_page(struct address_space *mapping,
437		struct page *newpage, struct page *page)
438{
439	struct buffer_head *bh, *head;
440	int rc;
441
442	if (!page_has_buffers(page))
443		return migrate_page(mapping, newpage, page);
444
445	head = page_buffers(page);
446
447	rc = migrate_page_move_mapping(mapping, newpage, page);
448
449	if (rc)
450		return rc;
451
452	bh = head;
453	do {
454		get_bh(bh);
455		lock_buffer(bh);
456		bh = bh->b_this_page;
457
458	} while (bh != head);
459
460	ClearPagePrivate(page);
461	set_page_private(newpage, page_private(page));
462	set_page_private(page, 0);
463	put_page(page);
464	get_page(newpage);
465
466	bh = head;
467	do {
468		set_bh_page(bh, newpage, bh_offset(bh));
469		bh = bh->b_this_page;
470
471	} while (bh != head);
472
473	SetPagePrivate(newpage);
474
475	migrate_page_copy(newpage, page);
476
477	bh = head;
478	do {
479		unlock_buffer(bh);
480 		put_bh(bh);
481		bh = bh->b_this_page;
482
483	} while (bh != head);
484
485	return 0;
486}
487EXPORT_SYMBOL(buffer_migrate_page);
488#endif
489
490/*
491 * Writeback a page to clean the dirty state
492 */
493static int writeout(struct address_space *mapping, struct page *page)
494{
495	struct writeback_control wbc = {
496		.sync_mode = WB_SYNC_NONE,
497		.nr_to_write = 1,
498		.range_start = 0,
499		.range_end = LLONG_MAX,
500		.nonblocking = 1,
501		.for_reclaim = 1
502	};
503	int rc;
504
505	if (!mapping->a_ops->writepage)
506		/* No write method for the address space */
507		return -EINVAL;
508
509	if (!clear_page_dirty_for_io(page))
510		/* Someone else already triggered a write */
511		return -EAGAIN;
512
513	/*
514	 * A dirty page may imply that the underlying filesystem has
515	 * the page on some queue. So the page must be clean for
516	 * migration. Writeout may mean we loose the lock and the
517	 * page state is no longer what we checked for earlier.
518	 * At this point we know that the migration attempt cannot
519	 * be successful.
520	 */
521	remove_migration_ptes(page, page);
522
523	rc = mapping->a_ops->writepage(page, &wbc);
524	if (rc < 0)
525		/* I/O Error writing */
526		return -EIO;
527
528	if (rc != AOP_WRITEPAGE_ACTIVATE)
529		/* unlocked. Relock */
530		lock_page(page);
531
532	return -EAGAIN;
533}
534
535/*
536 * Default handling if a filesystem does not provide a migration function.
537 */
538static int fallback_migrate_page(struct address_space *mapping,
539	struct page *newpage, struct page *page)
540{
541	if (PageDirty(page))
542		return writeout(mapping, page);
543
544	/*
545	 * Buffers may be managed in a filesystem specific way.
546	 * We must have no buffers or drop them.
547	 */
548	if (PagePrivate(page) &&
549	    !try_to_release_page(page, GFP_KERNEL))
550		return -EAGAIN;
551
552	return migrate_page(mapping, newpage, page);
553}
554
555/*
556 * Move a page to a newly allocated page
557 * The page is locked and all ptes have been successfully removed.
558 *
559 * The new page will have replaced the old page if this function
560 * is successful.
561 */
562static int move_to_new_page(struct page *newpage, struct page *page)
563{
564	struct address_space *mapping;
565	int rc;
566
567	/*
568	 * Block others from accessing the page when we get around to
569	 * establishing additional references. We are the only one
570	 * holding a reference to the new page at this point.
571	 */
572	if (TestSetPageLocked(newpage))
573		BUG();
574
575	/* Prepare mapping for the new page.*/
576	newpage->index = page->index;
577	newpage->mapping = page->mapping;
578
579	mapping = page_mapping(page);
580	if (!mapping)
581		rc = migrate_page(mapping, newpage, page);
582	else if (mapping->a_ops->migratepage)
583		/*
584		 * Most pages have a mapping and most filesystems
585		 * should provide a migration function. Anonymous
586		 * pages are part of swap space which also has its
587		 * own migration function. This is the most common
588		 * path for page migration.
589		 */
590		rc = mapping->a_ops->migratepage(mapping,
591						newpage, page);
592	else
593		rc = fallback_migrate_page(mapping, newpage, page);
594
595	if (!rc)
596		remove_migration_ptes(page, newpage);
597	else
598		newpage->mapping = NULL;
599
600	unlock_page(newpage);
601
602	return rc;
603}
604
605/*
606 * Obtain the lock on page, remove all ptes and migrate the page
607 * to the newly allocated page in newpage.
608 */
609static int unmap_and_move(new_page_t get_new_page, unsigned long private,
610			struct page *page, int force)
611{
612	int rc = 0;
613	int *result = NULL;
614	struct page *newpage = get_new_page(page, private, &result);
615
616	if (!newpage)
617		return -ENOMEM;
618
619	if (page_count(page) == 1)
620		/* page was freed from under us. So we are done. */
621		goto move_newpage;
622
623	rc = -EAGAIN;
624	if (TestSetPageLocked(page)) {
625		if (!force)
626			goto move_newpage;
627		lock_page(page);
628	}
629
630	if (PageWriteback(page)) {
631		if (!force)
632			goto unlock;
633		wait_on_page_writeback(page);
634	}
635	/*
636	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
637	 * we cannot notice that anon_vma is freed while we migrates a page.
638	 * This rcu_read_lock() delays freeing anon_vma pointer until the end
639	 * of migration. File cache pages are no problem because of page_lock()
640	 */
641	rcu_read_lock();
642	/*
643	 * This is a corner case handling.
644	 * When a new swap-cache is read into, it is linked to LRU
645	 * and treated as swapcache but has no rmap yet.
646	 * Calling try_to_unmap() against a page->mapping==NULL page is
647	 * BUG. So handle it here.
648	 */
649	if (!page->mapping)
650		goto rcu_unlock;
651	/* Establish migration ptes or remove ptes */
652	try_to_unmap(page, 1);
653
654	if (!page_mapped(page))
655		rc = move_to_new_page(newpage, page);
656
657	if (rc)
658		remove_migration_ptes(page, page);
659rcu_unlock:
660	rcu_read_unlock();
661
662unlock:
663
664	unlock_page(page);
665
666	if (rc != -EAGAIN) {
667 		/*
668 		 * A page that has been migrated has all references
669 		 * removed and will be freed. A page that has not been
670 		 * migrated will have kepts its references and be
671 		 * restored.
672 		 */
673 		list_del(&page->lru);
674 		move_to_lru(page);
675	}
676
677move_newpage:
678	/*
679	 * Move the new page to the LRU. If migration was not successful
680	 * then this will free the page.
681	 */
682	move_to_lru(newpage);
683	if (result) {
684		if (rc)
685			*result = rc;
686		else
687			*result = page_to_nid(newpage);
688	}
689	return rc;
690}
691
692/*
693 * migrate_pages
694 *
695 * The function takes one list of pages to migrate and a function
696 * that determines from the page to be migrated and the private data
697 * the target of the move and allocates the page.
698 *
699 * The function returns after 10 attempts or if no pages
700 * are movable anymore because to has become empty
701 * or no retryable pages exist anymore. All pages will be
702 * retruned to the LRU or freed.
703 *
704 * Return: Number of pages not migrated or error code.
705 */
706int migrate_pages(struct list_head *from,
707		new_page_t get_new_page, unsigned long private)
708{
709	int retry = 1;
710	int nr_failed = 0;
711	int pass = 0;
712	struct page *page;
713	struct page *page2;
714	int swapwrite = current->flags & PF_SWAPWRITE;
715	int rc;
716
717	if (!swapwrite)
718		current->flags |= PF_SWAPWRITE;
719
720	for(pass = 0; pass < 10 && retry; pass++) {
721		retry = 0;
722
723		list_for_each_entry_safe(page, page2, from, lru) {
724			cond_resched();
725
726			rc = unmap_and_move(get_new_page, private,
727						page, pass > 2);
728
729			switch(rc) {
730			case -ENOMEM:
731				goto out;
732			case -EAGAIN:
733				retry++;
734				break;
735			case 0:
736				break;
737			default:
738				/* Permanent failure */
739				nr_failed++;
740				break;
741			}
742		}
743	}
744	rc = 0;
745out:
746	if (!swapwrite)
747		current->flags &= ~PF_SWAPWRITE;
748
749	putback_lru_pages(from);
750
751	if (rc)
752		return rc;
753
754	return nr_failed + retry;
755}
756
757#ifdef CONFIG_NUMA
758/*
759 * Move a list of individual pages
760 */
761struct page_to_node {
762	unsigned long addr;
763	struct page *page;
764	int node;
765	int status;
766};
767
768static struct page *new_page_node(struct page *p, unsigned long private,
769		int **result)
770{
771	struct page_to_node *pm = (struct page_to_node *)private;
772
773	while (pm->node != MAX_NUMNODES && pm->page != p)
774		pm++;
775
776	if (pm->node == MAX_NUMNODES)
777		return NULL;
778
779	*result = &pm->status;
780
781	return alloc_pages_node(pm->node,
782				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
783}
784
785/*
786 * Move a set of pages as indicated in the pm array. The addr
787 * field must be set to the virtual address of the page to be moved
788 * and the node number must contain a valid target node.
789 */
790static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
791				int migrate_all)
792{
793	int err;
794	struct page_to_node *pp;
795	LIST_HEAD(pagelist);
796
797	down_read(&mm->mmap_sem);
798
799	/*
800	 * Build a list of pages to migrate
801	 */
802	migrate_prep();
803	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
804		struct vm_area_struct *vma;
805		struct page *page;
806
807		/*
808		 * A valid page pointer that will not match any of the
809		 * pages that will be moved.
810		 */
811		pp->page = ZERO_PAGE(0);
812
813		err = -EFAULT;
814		vma = find_vma(mm, pp->addr);
815		if (!vma || !vma_migratable(vma))
816			goto set_status;
817
818		page = follow_page(vma, pp->addr, FOLL_GET);
819		err = -ENOENT;
820		if (!page)
821			goto set_status;
822
823		if (PageReserved(page))		/* Check for zero page */
824			goto put_and_set;
825
826		pp->page = page;
827		err = page_to_nid(page);
828
829		if (err == pp->node)
830			/*
831			 * Node already in the right place
832			 */
833			goto put_and_set;
834
835		err = -EACCES;
836		if (page_mapcount(page) > 1 &&
837				!migrate_all)
838			goto put_and_set;
839
840		err = isolate_lru_page(page, &pagelist);
841put_and_set:
842		/*
843		 * Either remove the duplicate refcount from
844		 * isolate_lru_page() or drop the page ref if it was
845		 * not isolated.
846		 */
847		put_page(page);
848set_status:
849		pp->status = err;
850	}
851
852	if (!list_empty(&pagelist))
853		err = migrate_pages(&pagelist, new_page_node,
854				(unsigned long)pm);
855	else
856		err = -ENOENT;
857
858	up_read(&mm->mmap_sem);
859	return err;
860}
861
862/*
863 * Determine the nodes of a list of pages. The addr in the pm array
864 * must have been set to the virtual address of which we want to determine
865 * the node number.
866 */
867static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
868{
869	down_read(&mm->mmap_sem);
870
871	for ( ; pm->node != MAX_NUMNODES; pm++) {
872		struct vm_area_struct *vma;
873		struct page *page;
874		int err;
875
876		err = -EFAULT;
877		vma = find_vma(mm, pm->addr);
878		if (!vma)
879			goto set_status;
880
881		page = follow_page(vma, pm->addr, 0);
882		err = -ENOENT;
883		/* Use PageReserved to check for zero page */
884		if (!page || PageReserved(page))
885			goto set_status;
886
887		err = page_to_nid(page);
888set_status:
889		pm->status = err;
890	}
891
892	up_read(&mm->mmap_sem);
893	return 0;
894}
895
896/*
897 * Move a list of pages in the address space of the currently executing
898 * process.
899 */
900asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
901			const void __user * __user *pages,
902			const int __user *nodes,
903			int __user *status, int flags)
904{
905	int err = 0;
906	int i;
907	struct task_struct *task;
908	nodemask_t task_nodes;
909	struct mm_struct *mm;
910	struct page_to_node *pm = NULL;
911
912	/* Check flags */
913	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
914		return -EINVAL;
915
916	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
917		return -EPERM;
918
919	/* Find the mm_struct */
920	read_lock(&tasklist_lock);
921	task = pid ? find_task_by_pid(pid) : current;
922	if (!task) {
923		read_unlock(&tasklist_lock);
924		return -ESRCH;
925	}
926	mm = get_task_mm(task);
927	read_unlock(&tasklist_lock);
928
929	if (!mm)
930		return -EINVAL;
931
932	/*
933	 * Check if this process has the right to modify the specified
934	 * process. The right exists if the process has administrative
935	 * capabilities, superuser privileges or the same
936	 * userid as the target process.
937	 */
938	if ((current->euid != task->suid) && (current->euid != task->uid) &&
939	    (current->uid != task->suid) && (current->uid != task->uid) &&
940	    !capable(CAP_SYS_NICE)) {
941		err = -EPERM;
942		goto out2;
943	}
944
945 	err = security_task_movememory(task);
946 	if (err)
947 		goto out2;
948
949
950	task_nodes = cpuset_mems_allowed(task);
951
952	/* Limit nr_pages so that the multiplication may not overflow */
953	if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
954		err = -E2BIG;
955		goto out2;
956	}
957
958	pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
959	if (!pm) {
960		err = -ENOMEM;
961		goto out2;
962	}
963
964	/*
965	 * Get parameters from user space and initialize the pm
966	 * array. Return various errors if the user did something wrong.
967	 */
968	for (i = 0; i < nr_pages; i++) {
969		const void *p;
970
971		err = -EFAULT;
972		if (get_user(p, pages + i))
973			goto out;
974
975		pm[i].addr = (unsigned long)p;
976		if (nodes) {
977			int node;
978
979			if (get_user(node, nodes + i))
980				goto out;
981
982			err = -ENODEV;
983			if (!node_online(node))
984				goto out;
985
986			err = -EACCES;
987			if (!node_isset(node, task_nodes))
988				goto out;
989
990			pm[i].node = node;
991		} else
992			pm[i].node = 0;	/* anything to not match MAX_NUMNODES */
993	}
994	/* End marker */
995	pm[nr_pages].node = MAX_NUMNODES;
996
997	if (nodes)
998		err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
999	else
1000		err = do_pages_stat(mm, pm);
1001
1002	if (err >= 0)
1003		/* Return status information */
1004		for (i = 0; i < nr_pages; i++)
1005			if (put_user(pm[i].status, status + i))
1006				err = -EFAULT;
1007
1008out:
1009	vfree(pm);
1010out2:
1011	mmput(mm);
1012	return err;
1013}
1014#endif
1015
1016/*
1017 * Call migration functions in the vma_ops that may prepare
1018 * memory in a vm for migration. migration functions may perform
1019 * the migration for vmas that do not have an underlying page struct.
1020 */
1021int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1022	const nodemask_t *from, unsigned long flags)
1023{
1024 	struct vm_area_struct *vma;
1025 	int err = 0;
1026
1027 	for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1028 		if (vma->vm_ops && vma->vm_ops->migrate) {
1029 			err = vma->vm_ops->migrate(vma, to, from, flags);
1030 			if (err)
1031 				break;
1032 		}
1033 	}
1034 	return err;
1035}
1036