mlock.c revision d5b562330ec766292a3ac54ae5e0673610bd5b3d
1/*
2 *	linux/mm/mlock.c
3 *
4 *  (C) Copyright 1995 Linus Torvalds
5 *  (C) Copyright 2002 Christoph Hellwig
6 */
7
8#include <linux/capability.h>
9#include <linux/mman.h>
10#include <linux/mm.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13#include <linux/pagemap.h>
14#include <linux/mempolicy.h>
15#include <linux/syscalls.h>
16#include <linux/sched.h>
17#include <linux/module.h>
18#include <linux/rmap.h>
19#include <linux/mmzone.h>
20#include <linux/hugetlb.h>
21
22#include "internal.h"
23
24int can_do_mlock(void)
25{
26	if (capable(CAP_IPC_LOCK))
27		return 1;
28	if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
29		return 1;
30	return 0;
31}
32EXPORT_SYMBOL(can_do_mlock);
33
34#ifdef CONFIG_UNEVICTABLE_LRU
35/*
36 * Mlocked pages are marked with PageMlocked() flag for efficient testing
37 * in vmscan and, possibly, the fault path; and to support semi-accurate
38 * statistics.
39 *
40 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
41 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
42 * The unevictable list is an LRU sibling list to the [in]active lists.
43 * PageUnevictable is set to indicate the unevictable state.
44 *
45 * When lazy mlocking via vmscan, it is important to ensure that the
46 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
47 * may have mlocked a page that is being munlocked. So lazy mlock must take
48 * the mmap_sem for read, and verify that the vma really is locked
49 * (see mm/rmap.c).
50 */
51
52/*
53 *  LRU accounting for clear_page_mlock()
54 */
55void __clear_page_mlock(struct page *page)
56{
57	VM_BUG_ON(!PageLocked(page));
58
59	if (!page->mapping) {	/* truncated ? */
60		return;
61	}
62
63	dec_zone_page_state(page, NR_MLOCK);
64	count_vm_event(UNEVICTABLE_PGCLEARED);
65	if (!isolate_lru_page(page)) {
66		putback_lru_page(page);
67	} else {
68		/*
69		 * We lost the race. the page already moved to evictable list.
70		 */
71		if (PageUnevictable(page))
72			count_vm_event(UNEVICTABLE_PGSTRANDED);
73	}
74}
75
76/*
77 * Mark page as mlocked if not already.
78 * If page on LRU, isolate and putback to move to unevictable list.
79 */
80void mlock_vma_page(struct page *page)
81{
82	BUG_ON(!PageLocked(page));
83
84	if (!TestSetPageMlocked(page)) {
85		inc_zone_page_state(page, NR_MLOCK);
86		count_vm_event(UNEVICTABLE_PGMLOCKED);
87		if (!isolate_lru_page(page))
88			putback_lru_page(page);
89	}
90}
91
92/*
93 * called from munlock()/munmap() path with page supposedly on the LRU.
94 *
95 * Note:  unlike mlock_vma_page(), we can't just clear the PageMlocked
96 * [in try_to_munlock()] and then attempt to isolate the page.  We must
97 * isolate the page to keep others from messing with its unevictable
98 * and mlocked state while trying to munlock.  However, we pre-clear the
99 * mlocked state anyway as we might lose the isolation race and we might
100 * not get another chance to clear PageMlocked.  If we successfully
101 * isolate the page and try_to_munlock() detects other VM_LOCKED vmas
102 * mapping the page, it will restore the PageMlocked state, unless the page
103 * is mapped in a non-linear vma.  So, we go ahead and SetPageMlocked(),
104 * perhaps redundantly.
105 * If we lose the isolation race, and the page is mapped by other VM_LOCKED
106 * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
107 * either of which will restore the PageMlocked state by calling
108 * mlock_vma_page() above, if it can grab the vma's mmap sem.
109 */
110static void munlock_vma_page(struct page *page)
111{
112	BUG_ON(!PageLocked(page));
113
114	if (TestClearPageMlocked(page)) {
115		dec_zone_page_state(page, NR_MLOCK);
116		if (!isolate_lru_page(page)) {
117			int ret = try_to_munlock(page);
118			/*
119			 * did try_to_unlock() succeed or punt?
120			 */
121			if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN)
122				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
123
124			putback_lru_page(page);
125		} else {
126			/*
127			 * We lost the race.  let try_to_unmap() deal
128			 * with it.  At least we get the page state and
129			 * mlock stats right.  However, page is still on
130			 * the noreclaim list.  We'll fix that up when
131			 * the page is eventually freed or we scan the
132			 * noreclaim list.
133			 */
134			if (PageUnevictable(page))
135				count_vm_event(UNEVICTABLE_PGSTRANDED);
136			else
137				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
138		}
139	}
140}
141
142/**
143 * __mlock_vma_pages_range() -  mlock/munlock a range of pages in the vma.
144 * @vma:   target vma
145 * @start: start address
146 * @end:   end address
147 * @mlock: 0 indicate munlock, otherwise mlock.
148 *
149 * If @mlock == 0, unlock an mlocked range;
150 * else mlock the range of pages.  This takes care of making the pages present ,
151 * too.
152 *
153 * return 0 on success, negative error code on error.
154 *
155 * vma->vm_mm->mmap_sem must be held for at least read.
156 */
157static long __mlock_vma_pages_range(struct vm_area_struct *vma,
158				   unsigned long start, unsigned long end,
159				   int mlock)
160{
161	struct mm_struct *mm = vma->vm_mm;
162	unsigned long addr = start;
163	struct page *pages[16]; /* 16 gives a reasonable batch */
164	int nr_pages = (end - start) / PAGE_SIZE;
165	int ret = 0;
166	int gup_flags = 0;
167
168	VM_BUG_ON(start & ~PAGE_MASK);
169	VM_BUG_ON(end   & ~PAGE_MASK);
170	VM_BUG_ON(start < vma->vm_start);
171	VM_BUG_ON(end   > vma->vm_end);
172	VM_BUG_ON((!rwsem_is_locked(&mm->mmap_sem)) &&
173		  (atomic_read(&mm->mm_users) != 0));
174
175	/*
176	 * mlock:   don't page populate if vma has PROT_NONE permission.
177	 * munlock: always do munlock although the vma has PROT_NONE
178	 *          permission, or SIGKILL is pending.
179	 */
180	if (!mlock)
181		gup_flags |= GUP_FLAGS_IGNORE_VMA_PERMISSIONS |
182			     GUP_FLAGS_IGNORE_SIGKILL;
183
184	if (vma->vm_flags & VM_WRITE)
185		gup_flags |= GUP_FLAGS_WRITE;
186
187	while (nr_pages > 0) {
188		int i;
189
190		cond_resched();
191
192		/*
193		 * get_user_pages makes pages present if we are
194		 * setting mlock. and this extra reference count will
195		 * disable migration of this page.  However, page may
196		 * still be truncated out from under us.
197		 */
198		ret = __get_user_pages(current, mm, addr,
199				min_t(int, nr_pages, ARRAY_SIZE(pages)),
200				gup_flags, pages, NULL);
201		/*
202		 * This can happen for, e.g., VM_NONLINEAR regions before
203		 * a page has been allocated and mapped at a given offset,
204		 * or for addresses that map beyond end of a file.
205		 * We'll mlock the the pages if/when they get faulted in.
206		 */
207		if (ret < 0)
208			break;
209		if (ret == 0) {
210			/*
211			 * We know the vma is there, so the only time
212			 * we cannot get a single page should be an
213			 * error (ret < 0) case.
214			 */
215			WARN_ON(1);
216			break;
217		}
218
219		lru_add_drain();	/* push cached pages to LRU */
220
221		for (i = 0; i < ret; i++) {
222			struct page *page = pages[i];
223
224			lock_page(page);
225			/*
226			 * Because we lock page here and migration is blocked
227			 * by the elevated reference, we need only check for
228			 * page truncation (file-cache only).
229			 */
230			if (page->mapping) {
231				if (mlock)
232					mlock_vma_page(page);
233				else
234					munlock_vma_page(page);
235			}
236			unlock_page(page);
237			put_page(page);		/* ref from get_user_pages() */
238
239			/*
240			 * here we assume that get_user_pages() has given us
241			 * a list of virtually contiguous pages.
242			 */
243			addr += PAGE_SIZE;	/* for next get_user_pages() */
244			nr_pages--;
245		}
246		ret = 0;
247	}
248
249	return ret;	/* count entire vma as locked_vm */
250}
251
252/*
253 * convert get_user_pages() return value to posix mlock() error
254 */
255static int __mlock_posix_error_return(long retval)
256{
257	if (retval == -EFAULT)
258		retval = -ENOMEM;
259	else if (retval == -ENOMEM)
260		retval = -EAGAIN;
261	return retval;
262}
263
264#else /* CONFIG_UNEVICTABLE_LRU */
265
266/*
267 * Just make pages present if VM_LOCKED.  No-op if unlocking.
268 */
269static long __mlock_vma_pages_range(struct vm_area_struct *vma,
270				   unsigned long start, unsigned long end,
271				   int mlock)
272{
273	if (mlock && (vma->vm_flags & VM_LOCKED))
274		return make_pages_present(start, end);
275	return 0;
276}
277
278static inline int __mlock_posix_error_return(long retval)
279{
280	return 0;
281}
282
283#endif /* CONFIG_UNEVICTABLE_LRU */
284
285/**
286 * mlock_vma_pages_range() - mlock pages in specified vma range.
287 * @vma - the vma containing the specfied address range
288 * @start - starting address in @vma to mlock
289 * @end   - end address [+1] in @vma to mlock
290 *
291 * For mmap()/mremap()/expansion of mlocked vma.
292 *
293 * return 0 on success for "normal" vmas.
294 *
295 * return number of pages [> 0] to be removed from locked_vm on success
296 * of "special" vmas.
297 */
298long mlock_vma_pages_range(struct vm_area_struct *vma,
299			unsigned long start, unsigned long end)
300{
301	int nr_pages = (end - start) / PAGE_SIZE;
302	BUG_ON(!(vma->vm_flags & VM_LOCKED));
303
304	/*
305	 * filter unlockable vmas
306	 */
307	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
308		goto no_mlock;
309
310	if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
311			is_vm_hugetlb_page(vma) ||
312			vma == get_gate_vma(current))) {
313
314		__mlock_vma_pages_range(vma, start, end, 1);
315
316		/* Hide errors from mmap() and other callers */
317		return 0;
318	}
319
320	/*
321	 * User mapped kernel pages or huge pages:
322	 * make these pages present to populate the ptes, but
323	 * fall thru' to reset VM_LOCKED--no need to unlock, and
324	 * return nr_pages so these don't get counted against task's
325	 * locked limit.  huge pages are already counted against
326	 * locked vm limit.
327	 */
328	make_pages_present(start, end);
329
330no_mlock:
331	vma->vm_flags &= ~VM_LOCKED;	/* and don't come back! */
332	return nr_pages;		/* error or pages NOT mlocked */
333}
334
335
336/*
337 * munlock_vma_pages_range() - munlock all pages in the vma range.'
338 * @vma - vma containing range to be munlock()ed.
339 * @start - start address in @vma of the range
340 * @end - end of range in @vma.
341 *
342 *  For mremap(), munmap() and exit().
343 *
344 * Called with @vma VM_LOCKED.
345 *
346 * Returns with VM_LOCKED cleared.  Callers must be prepared to
347 * deal with this.
348 *
349 * We don't save and restore VM_LOCKED here because pages are
350 * still on lru.  In unmap path, pages might be scanned by reclaim
351 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
352 * free them.  This will result in freeing mlocked pages.
353 */
354void munlock_vma_pages_range(struct vm_area_struct *vma,
355			   unsigned long start, unsigned long end)
356{
357	vma->vm_flags &= ~VM_LOCKED;
358	__mlock_vma_pages_range(vma, start, end, 0);
359}
360
361/*
362 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
363 *
364 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
365 * munlock is a no-op.  However, for some special vmas, we go ahead and
366 * populate the ptes via make_pages_present().
367 *
368 * For vmas that pass the filters, merge/split as appropriate.
369 */
370static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
371	unsigned long start, unsigned long end, unsigned int newflags)
372{
373	struct mm_struct *mm = vma->vm_mm;
374	pgoff_t pgoff;
375	int nr_pages;
376	int ret = 0;
377	int lock = newflags & VM_LOCKED;
378
379	if (newflags == vma->vm_flags ||
380			(vma->vm_flags & (VM_IO | VM_PFNMAP)))
381		goto out;	/* don't set VM_LOCKED,  don't count */
382
383	if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
384			is_vm_hugetlb_page(vma) ||
385			vma == get_gate_vma(current)) {
386		if (lock)
387			make_pages_present(start, end);
388		goto out;	/* don't set VM_LOCKED,  don't count */
389	}
390
391	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
392	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
393			  vma->vm_file, pgoff, vma_policy(vma));
394	if (*prev) {
395		vma = *prev;
396		goto success;
397	}
398
399	if (start != vma->vm_start) {
400		ret = split_vma(mm, vma, start, 1);
401		if (ret)
402			goto out;
403	}
404
405	if (end != vma->vm_end) {
406		ret = split_vma(mm, vma, end, 0);
407		if (ret)
408			goto out;
409	}
410
411success:
412	/*
413	 * Keep track of amount of locked VM.
414	 */
415	nr_pages = (end - start) >> PAGE_SHIFT;
416	if (!lock)
417		nr_pages = -nr_pages;
418	mm->locked_vm += nr_pages;
419
420	/*
421	 * vm_flags is protected by the mmap_sem held in write mode.
422	 * It's okay if try_to_unmap_one unmaps a page just after we
423	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
424	 */
425	vma->vm_flags = newflags;
426
427	if (lock) {
428		ret = __mlock_vma_pages_range(vma, start, end, 1);
429
430		if (ret > 0) {
431			mm->locked_vm -= ret;
432			ret = 0;
433		} else
434			ret = __mlock_posix_error_return(ret); /* translate if needed */
435	} else {
436		__mlock_vma_pages_range(vma, start, end, 0);
437	}
438
439out:
440	*prev = vma;
441	return ret;
442}
443
444static int do_mlock(unsigned long start, size_t len, int on)
445{
446	unsigned long nstart, end, tmp;
447	struct vm_area_struct * vma, * prev;
448	int error;
449
450	len = PAGE_ALIGN(len);
451	end = start + len;
452	if (end < start)
453		return -EINVAL;
454	if (end == start)
455		return 0;
456	vma = find_vma_prev(current->mm, start, &prev);
457	if (!vma || vma->vm_start > start)
458		return -ENOMEM;
459
460	if (start > vma->vm_start)
461		prev = vma;
462
463	for (nstart = start ; ; ) {
464		unsigned int newflags;
465
466		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
467
468		newflags = vma->vm_flags | VM_LOCKED;
469		if (!on)
470			newflags &= ~VM_LOCKED;
471
472		tmp = vma->vm_end;
473		if (tmp > end)
474			tmp = end;
475		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
476		if (error)
477			break;
478		nstart = tmp;
479		if (nstart < prev->vm_end)
480			nstart = prev->vm_end;
481		if (nstart >= end)
482			break;
483
484		vma = prev->vm_next;
485		if (!vma || vma->vm_start != nstart) {
486			error = -ENOMEM;
487			break;
488		}
489	}
490	return error;
491}
492
493SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
494{
495	unsigned long locked;
496	unsigned long lock_limit;
497	int error = -ENOMEM;
498
499	if (!can_do_mlock())
500		return -EPERM;
501
502	lru_add_drain_all();	/* flush pagevec */
503
504	down_write(&current->mm->mmap_sem);
505	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
506	start &= PAGE_MASK;
507
508	locked = len >> PAGE_SHIFT;
509	locked += current->mm->locked_vm;
510
511	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
512	lock_limit >>= PAGE_SHIFT;
513
514	/* check against resource limits */
515	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
516		error = do_mlock(start, len, 1);
517	up_write(&current->mm->mmap_sem);
518	return error;
519}
520
521SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
522{
523	int ret;
524
525	down_write(&current->mm->mmap_sem);
526	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
527	start &= PAGE_MASK;
528	ret = do_mlock(start, len, 0);
529	up_write(&current->mm->mmap_sem);
530	return ret;
531}
532
533static int do_mlockall(int flags)
534{
535	struct vm_area_struct * vma, * prev = NULL;
536	unsigned int def_flags = 0;
537
538	if (flags & MCL_FUTURE)
539		def_flags = VM_LOCKED;
540	current->mm->def_flags = def_flags;
541	if (flags == MCL_FUTURE)
542		goto out;
543
544	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
545		unsigned int newflags;
546
547		newflags = vma->vm_flags | VM_LOCKED;
548		if (!(flags & MCL_CURRENT))
549			newflags &= ~VM_LOCKED;
550
551		/* Ignore errors */
552		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
553	}
554out:
555	return 0;
556}
557
558SYSCALL_DEFINE1(mlockall, int, flags)
559{
560	unsigned long lock_limit;
561	int ret = -EINVAL;
562
563	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
564		goto out;
565
566	ret = -EPERM;
567	if (!can_do_mlock())
568		goto out;
569
570	lru_add_drain_all();	/* flush pagevec */
571
572	down_write(&current->mm->mmap_sem);
573
574	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
575	lock_limit >>= PAGE_SHIFT;
576
577	ret = -ENOMEM;
578	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
579	    capable(CAP_IPC_LOCK))
580		ret = do_mlockall(flags);
581	up_write(&current->mm->mmap_sem);
582out:
583	return ret;
584}
585
586SYSCALL_DEFINE0(munlockall)
587{
588	int ret;
589
590	down_write(&current->mm->mmap_sem);
591	ret = do_mlockall(0);
592	up_write(&current->mm->mmap_sem);
593	return ret;
594}
595
596/*
597 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
598 * shm segments) get accounted against the user_struct instead.
599 */
600static DEFINE_SPINLOCK(shmlock_user_lock);
601
602int user_shm_lock(size_t size, struct user_struct *user)
603{
604	unsigned long lock_limit, locked;
605	int allowed = 0;
606
607	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
608	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
609	if (lock_limit == RLIM_INFINITY)
610		allowed = 1;
611	lock_limit >>= PAGE_SHIFT;
612	spin_lock(&shmlock_user_lock);
613	if (!allowed &&
614	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
615		goto out;
616	get_uid(user);
617	user->locked_shm += locked;
618	allowed = 1;
619out:
620	spin_unlock(&shmlock_user_lock);
621	return allowed;
622}
623
624void user_shm_unlock(size_t size, struct user_struct *user)
625{
626	spin_lock(&shmlock_user_lock);
627	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
628	spin_unlock(&shmlock_user_lock);
629	free_uid(user);
630}
631
632void *alloc_locked_buffer(size_t size)
633{
634	unsigned long rlim, vm, pgsz;
635	void *buffer = NULL;
636
637	pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
638
639	down_write(&current->mm->mmap_sem);
640
641	rlim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
642	vm   = current->mm->total_vm + pgsz;
643	if (rlim < vm)
644		goto out;
645
646	rlim = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
647	vm   = current->mm->locked_vm + pgsz;
648	if (rlim < vm)
649		goto out;
650
651	buffer = kzalloc(size, GFP_KERNEL);
652	if (!buffer)
653		goto out;
654
655	current->mm->total_vm  += pgsz;
656	current->mm->locked_vm += pgsz;
657
658 out:
659	up_write(&current->mm->mmap_sem);
660	return buffer;
661}
662
663void free_locked_buffer(void *buffer, size_t size)
664{
665	unsigned long pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
666
667	down_write(&current->mm->mmap_sem);
668
669	current->mm->total_vm  -= pgsz;
670	current->mm->locked_vm -= pgsz;
671
672	up_write(&current->mm->mmap_sem);
673
674	kfree(buffer);
675}
676