mmap.c revision 05fa199d45c54a9bda7aa3ae6537253d6f097aa9
1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7 */
8
9#include <linux/slab.h>
10#include <linux/backing-dev.h>
11#include <linux/mm.h>
12#include <linux/shm.h>
13#include <linux/mman.h>
14#include <linux/pagemap.h>
15#include <linux/swap.h>
16#include <linux/syscalls.h>
17#include <linux/capability.h>
18#include <linux/init.h>
19#include <linux/file.h>
20#include <linux/fs.h>
21#include <linux/personality.h>
22#include <linux/security.h>
23#include <linux/ima.h>
24#include <linux/hugetlb.h>
25#include <linux/profile.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/mempolicy.h>
29#include <linux/rmap.h>
30#include <linux/mmu_notifier.h>
31
32#include <asm/uaccess.h>
33#include <asm/cacheflush.h>
34#include <asm/tlb.h>
35#include <asm/mmu_context.h>
36
37#include "internal.h"
38
39#ifndef arch_mmap_check
40#define arch_mmap_check(addr, len, flags)	(0)
41#endif
42
43#ifndef arch_rebalance_pgtables
44#define arch_rebalance_pgtables(addr, len)		(addr)
45#endif
46
47static void unmap_region(struct mm_struct *mm,
48		struct vm_area_struct *vma, struct vm_area_struct *prev,
49		unsigned long start, unsigned long end);
50
51/*
52 * WARNING: the debugging will use recursive algorithms so never enable this
53 * unless you know what you are doing.
54 */
55#undef DEBUG_MM_RB
56
57/* description of effects of mapping type and prot in current implementation.
58 * this is due to the limited x86 page protection hardware.  The expected
59 * behavior is in parens:
60 *
61 * map_type	prot
62 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
63 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
64 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
65 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
66 *
67 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
68 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
69 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
70 *
71 */
72pgprot_t protection_map[16] = {
73	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
74	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
75};
76
77pgprot_t vm_get_page_prot(unsigned long vm_flags)
78{
79	return __pgprot(pgprot_val(protection_map[vm_flags &
80				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
81			pgprot_val(arch_vm_get_page_prot(vm_flags)));
82}
83EXPORT_SYMBOL(vm_get_page_prot);
84
85int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
86int sysctl_overcommit_ratio = 50;	/* default is 50% */
87int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
88atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0);
89
90/*
91 * Check that a process has enough memory to allocate a new virtual
92 * mapping. 0 means there is enough memory for the allocation to
93 * succeed and -ENOMEM implies there is not.
94 *
95 * We currently support three overcommit policies, which are set via the
96 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
97 *
98 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
99 * Additional code 2002 Jul 20 by Robert Love.
100 *
101 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
102 *
103 * Note this is a helper function intended to be used by LSMs which
104 * wish to use this logic.
105 */
106int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
107{
108	unsigned long free, allowed;
109
110	vm_acct_memory(pages);
111
112	/*
113	 * Sometimes we want to use more memory than we have
114	 */
115	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
116		return 0;
117
118	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
119		unsigned long n;
120
121		free = global_page_state(NR_FILE_PAGES);
122		free += nr_swap_pages;
123
124		/*
125		 * Any slabs which are created with the
126		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
127		 * which are reclaimable, under pressure.  The dentry
128		 * cache and most inode caches should fall into this
129		 */
130		free += global_page_state(NR_SLAB_RECLAIMABLE);
131
132		/*
133		 * Leave the last 3% for root
134		 */
135		if (!cap_sys_admin)
136			free -= free / 32;
137
138		if (free > pages)
139			return 0;
140
141		/*
142		 * nr_free_pages() is very expensive on large systems,
143		 * only call if we're about to fail.
144		 */
145		n = nr_free_pages();
146
147		/*
148		 * Leave reserved pages. The pages are not for anonymous pages.
149		 */
150		if (n <= totalreserve_pages)
151			goto error;
152		else
153			n -= totalreserve_pages;
154
155		/*
156		 * Leave the last 3% for root
157		 */
158		if (!cap_sys_admin)
159			n -= n / 32;
160		free += n;
161
162		if (free > pages)
163			return 0;
164
165		goto error;
166	}
167
168	allowed = (totalram_pages - hugetlb_total_pages())
169	       	* sysctl_overcommit_ratio / 100;
170	/*
171	 * Leave the last 3% for root
172	 */
173	if (!cap_sys_admin)
174		allowed -= allowed / 32;
175	allowed += total_swap_pages;
176
177	/* Don't let a single process grow too big:
178	   leave 3% of the size of this process for other processes */
179	if (mm)
180		allowed -= mm->total_vm / 32;
181
182	/*
183	 * cast `allowed' as a signed long because vm_committed_space
184	 * sometimes has a negative value
185	 */
186	if (atomic_long_read(&vm_committed_space) < (long)allowed)
187		return 0;
188error:
189	vm_unacct_memory(pages);
190
191	return -ENOMEM;
192}
193
194/*
195 * Requires inode->i_mapping->i_mmap_lock
196 */
197static void __remove_shared_vm_struct(struct vm_area_struct *vma,
198		struct file *file, struct address_space *mapping)
199{
200	if (vma->vm_flags & VM_DENYWRITE)
201		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
202	if (vma->vm_flags & VM_SHARED)
203		mapping->i_mmap_writable--;
204
205	flush_dcache_mmap_lock(mapping);
206	if (unlikely(vma->vm_flags & VM_NONLINEAR))
207		list_del_init(&vma->shared.vm_set.list);
208	else
209		vma_prio_tree_remove(vma, &mapping->i_mmap);
210	flush_dcache_mmap_unlock(mapping);
211}
212
213/*
214 * Unlink a file-based vm structure from its prio_tree, to hide
215 * vma from rmap and vmtruncate before freeing its page tables.
216 */
217void unlink_file_vma(struct vm_area_struct *vma)
218{
219	struct file *file = vma->vm_file;
220
221	if (file) {
222		struct address_space *mapping = file->f_mapping;
223		spin_lock(&mapping->i_mmap_lock);
224		__remove_shared_vm_struct(vma, file, mapping);
225		spin_unlock(&mapping->i_mmap_lock);
226	}
227}
228
229/*
230 * Close a vm structure and free it, returning the next.
231 */
232static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
233{
234	struct vm_area_struct *next = vma->vm_next;
235
236	might_sleep();
237	if (vma->vm_ops && vma->vm_ops->close)
238		vma->vm_ops->close(vma);
239	if (vma->vm_file) {
240		fput(vma->vm_file);
241		if (vma->vm_flags & VM_EXECUTABLE)
242			removed_exe_file_vma(vma->vm_mm);
243	}
244	mpol_put(vma_policy(vma));
245	kmem_cache_free(vm_area_cachep, vma);
246	return next;
247}
248
249SYSCALL_DEFINE1(brk, unsigned long, brk)
250{
251	unsigned long rlim, retval;
252	unsigned long newbrk, oldbrk;
253	struct mm_struct *mm = current->mm;
254	unsigned long min_brk;
255
256	down_write(&mm->mmap_sem);
257
258#ifdef CONFIG_COMPAT_BRK
259	min_brk = mm->end_code;
260#else
261	min_brk = mm->start_brk;
262#endif
263	if (brk < min_brk)
264		goto out;
265
266	/*
267	 * Check against rlimit here. If this check is done later after the test
268	 * of oldbrk with newbrk then it can escape the test and let the data
269	 * segment grow beyond its set limit the in case where the limit is
270	 * not page aligned -Ram Gupta
271	 */
272	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
273	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
274			(mm->end_data - mm->start_data) > rlim)
275		goto out;
276
277	newbrk = PAGE_ALIGN(brk);
278	oldbrk = PAGE_ALIGN(mm->brk);
279	if (oldbrk == newbrk)
280		goto set_brk;
281
282	/* Always allow shrinking brk. */
283	if (brk <= mm->brk) {
284		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
285			goto set_brk;
286		goto out;
287	}
288
289	/* Check against existing mmap mappings. */
290	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
291		goto out;
292
293	/* Ok, looks good - let it rip. */
294	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
295		goto out;
296set_brk:
297	mm->brk = brk;
298out:
299	retval = mm->brk;
300	up_write(&mm->mmap_sem);
301	return retval;
302}
303
304#ifdef DEBUG_MM_RB
305static int browse_rb(struct rb_root *root)
306{
307	int i = 0, j;
308	struct rb_node *nd, *pn = NULL;
309	unsigned long prev = 0, pend = 0;
310
311	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
312		struct vm_area_struct *vma;
313		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
314		if (vma->vm_start < prev)
315			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
316		if (vma->vm_start < pend)
317			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
318		if (vma->vm_start > vma->vm_end)
319			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
320		i++;
321		pn = nd;
322		prev = vma->vm_start;
323		pend = vma->vm_end;
324	}
325	j = 0;
326	for (nd = pn; nd; nd = rb_prev(nd)) {
327		j++;
328	}
329	if (i != j)
330		printk("backwards %d, forwards %d\n", j, i), i = 0;
331	return i;
332}
333
334void validate_mm(struct mm_struct *mm)
335{
336	int bug = 0;
337	int i = 0;
338	struct vm_area_struct *tmp = mm->mmap;
339	while (tmp) {
340		tmp = tmp->vm_next;
341		i++;
342	}
343	if (i != mm->map_count)
344		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
345	i = browse_rb(&mm->mm_rb);
346	if (i != mm->map_count)
347		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
348	BUG_ON(bug);
349}
350#else
351#define validate_mm(mm) do { } while (0)
352#endif
353
354static struct vm_area_struct *
355find_vma_prepare(struct mm_struct *mm, unsigned long addr,
356		struct vm_area_struct **pprev, struct rb_node ***rb_link,
357		struct rb_node ** rb_parent)
358{
359	struct vm_area_struct * vma;
360	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
361
362	__rb_link = &mm->mm_rb.rb_node;
363	rb_prev = __rb_parent = NULL;
364	vma = NULL;
365
366	while (*__rb_link) {
367		struct vm_area_struct *vma_tmp;
368
369		__rb_parent = *__rb_link;
370		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
371
372		if (vma_tmp->vm_end > addr) {
373			vma = vma_tmp;
374			if (vma_tmp->vm_start <= addr)
375				break;
376			__rb_link = &__rb_parent->rb_left;
377		} else {
378			rb_prev = __rb_parent;
379			__rb_link = &__rb_parent->rb_right;
380		}
381	}
382
383	*pprev = NULL;
384	if (rb_prev)
385		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
386	*rb_link = __rb_link;
387	*rb_parent = __rb_parent;
388	return vma;
389}
390
391static inline void
392__vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
393		struct vm_area_struct *prev, struct rb_node *rb_parent)
394{
395	if (prev) {
396		vma->vm_next = prev->vm_next;
397		prev->vm_next = vma;
398	} else {
399		mm->mmap = vma;
400		if (rb_parent)
401			vma->vm_next = rb_entry(rb_parent,
402					struct vm_area_struct, vm_rb);
403		else
404			vma->vm_next = NULL;
405	}
406}
407
408void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
409		struct rb_node **rb_link, struct rb_node *rb_parent)
410{
411	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
412	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
413}
414
415static void __vma_link_file(struct vm_area_struct *vma)
416{
417	struct file *file;
418
419	file = vma->vm_file;
420	if (file) {
421		struct address_space *mapping = file->f_mapping;
422
423		if (vma->vm_flags & VM_DENYWRITE)
424			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
425		if (vma->vm_flags & VM_SHARED)
426			mapping->i_mmap_writable++;
427
428		flush_dcache_mmap_lock(mapping);
429		if (unlikely(vma->vm_flags & VM_NONLINEAR))
430			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
431		else
432			vma_prio_tree_insert(vma, &mapping->i_mmap);
433		flush_dcache_mmap_unlock(mapping);
434	}
435}
436
437static void
438__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
439	struct vm_area_struct *prev, struct rb_node **rb_link,
440	struct rb_node *rb_parent)
441{
442	__vma_link_list(mm, vma, prev, rb_parent);
443	__vma_link_rb(mm, vma, rb_link, rb_parent);
444	__anon_vma_link(vma);
445}
446
447static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
448			struct vm_area_struct *prev, struct rb_node **rb_link,
449			struct rb_node *rb_parent)
450{
451	struct address_space *mapping = NULL;
452
453	if (vma->vm_file)
454		mapping = vma->vm_file->f_mapping;
455
456	if (mapping) {
457		spin_lock(&mapping->i_mmap_lock);
458		vma->vm_truncate_count = mapping->truncate_count;
459	}
460	anon_vma_lock(vma);
461
462	__vma_link(mm, vma, prev, rb_link, rb_parent);
463	__vma_link_file(vma);
464
465	anon_vma_unlock(vma);
466	if (mapping)
467		spin_unlock(&mapping->i_mmap_lock);
468
469	mm->map_count++;
470	validate_mm(mm);
471}
472
473/*
474 * Helper for vma_adjust in the split_vma insert case:
475 * insert vm structure into list and rbtree and anon_vma,
476 * but it has already been inserted into prio_tree earlier.
477 */
478static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
479{
480	struct vm_area_struct *__vma, *prev;
481	struct rb_node **rb_link, *rb_parent;
482
483	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
484	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
485	__vma_link(mm, vma, prev, rb_link, rb_parent);
486	mm->map_count++;
487}
488
489static inline void
490__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
491		struct vm_area_struct *prev)
492{
493	prev->vm_next = vma->vm_next;
494	rb_erase(&vma->vm_rb, &mm->mm_rb);
495	if (mm->mmap_cache == vma)
496		mm->mmap_cache = prev;
497}
498
499/*
500 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
501 * is already present in an i_mmap tree without adjusting the tree.
502 * The following helper function should be used when such adjustments
503 * are necessary.  The "insert" vma (if any) is to be inserted
504 * before we drop the necessary locks.
505 */
506void vma_adjust(struct vm_area_struct *vma, unsigned long start,
507	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
508{
509	struct mm_struct *mm = vma->vm_mm;
510	struct vm_area_struct *next = vma->vm_next;
511	struct vm_area_struct *importer = NULL;
512	struct address_space *mapping = NULL;
513	struct prio_tree_root *root = NULL;
514	struct file *file = vma->vm_file;
515	struct anon_vma *anon_vma = NULL;
516	long adjust_next = 0;
517	int remove_next = 0;
518
519	if (next && !insert) {
520		if (end >= next->vm_end) {
521			/*
522			 * vma expands, overlapping all the next, and
523			 * perhaps the one after too (mprotect case 6).
524			 */
525again:			remove_next = 1 + (end > next->vm_end);
526			end = next->vm_end;
527			anon_vma = next->anon_vma;
528			importer = vma;
529		} else if (end > next->vm_start) {
530			/*
531			 * vma expands, overlapping part of the next:
532			 * mprotect case 5 shifting the boundary up.
533			 */
534			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
535			anon_vma = next->anon_vma;
536			importer = vma;
537		} else if (end < vma->vm_end) {
538			/*
539			 * vma shrinks, and !insert tells it's not
540			 * split_vma inserting another: so it must be
541			 * mprotect case 4 shifting the boundary down.
542			 */
543			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
544			anon_vma = next->anon_vma;
545			importer = next;
546		}
547	}
548
549	if (file) {
550		mapping = file->f_mapping;
551		if (!(vma->vm_flags & VM_NONLINEAR))
552			root = &mapping->i_mmap;
553		spin_lock(&mapping->i_mmap_lock);
554		if (importer &&
555		    vma->vm_truncate_count != next->vm_truncate_count) {
556			/*
557			 * unmap_mapping_range might be in progress:
558			 * ensure that the expanding vma is rescanned.
559			 */
560			importer->vm_truncate_count = 0;
561		}
562		if (insert) {
563			insert->vm_truncate_count = vma->vm_truncate_count;
564			/*
565			 * Put into prio_tree now, so instantiated pages
566			 * are visible to arm/parisc __flush_dcache_page
567			 * throughout; but we cannot insert into address
568			 * space until vma start or end is updated.
569			 */
570			__vma_link_file(insert);
571		}
572	}
573
574	/*
575	 * When changing only vma->vm_end, we don't really need
576	 * anon_vma lock: but is that case worth optimizing out?
577	 */
578	if (vma->anon_vma)
579		anon_vma = vma->anon_vma;
580	if (anon_vma) {
581		spin_lock(&anon_vma->lock);
582		/*
583		 * Easily overlooked: when mprotect shifts the boundary,
584		 * make sure the expanding vma has anon_vma set if the
585		 * shrinking vma had, to cover any anon pages imported.
586		 */
587		if (importer && !importer->anon_vma) {
588			importer->anon_vma = anon_vma;
589			__anon_vma_link(importer);
590		}
591	}
592
593	if (root) {
594		flush_dcache_mmap_lock(mapping);
595		vma_prio_tree_remove(vma, root);
596		if (adjust_next)
597			vma_prio_tree_remove(next, root);
598	}
599
600	vma->vm_start = start;
601	vma->vm_end = end;
602	vma->vm_pgoff = pgoff;
603	if (adjust_next) {
604		next->vm_start += adjust_next << PAGE_SHIFT;
605		next->vm_pgoff += adjust_next;
606	}
607
608	if (root) {
609		if (adjust_next)
610			vma_prio_tree_insert(next, root);
611		vma_prio_tree_insert(vma, root);
612		flush_dcache_mmap_unlock(mapping);
613	}
614
615	if (remove_next) {
616		/*
617		 * vma_merge has merged next into vma, and needs
618		 * us to remove next before dropping the locks.
619		 */
620		__vma_unlink(mm, next, vma);
621		if (file)
622			__remove_shared_vm_struct(next, file, mapping);
623		if (next->anon_vma)
624			__anon_vma_merge(vma, next);
625	} else if (insert) {
626		/*
627		 * split_vma has split insert from vma, and needs
628		 * us to insert it before dropping the locks
629		 * (it may either follow vma or precede it).
630		 */
631		__insert_vm_struct(mm, insert);
632	}
633
634	if (anon_vma)
635		spin_unlock(&anon_vma->lock);
636	if (mapping)
637		spin_unlock(&mapping->i_mmap_lock);
638
639	if (remove_next) {
640		if (file) {
641			fput(file);
642			if (next->vm_flags & VM_EXECUTABLE)
643				removed_exe_file_vma(mm);
644		}
645		mm->map_count--;
646		mpol_put(vma_policy(next));
647		kmem_cache_free(vm_area_cachep, next);
648		/*
649		 * In mprotect's case 6 (see comments on vma_merge),
650		 * we must remove another next too. It would clutter
651		 * up the code too much to do both in one go.
652		 */
653		if (remove_next == 2) {
654			next = vma->vm_next;
655			goto again;
656		}
657	}
658
659	validate_mm(mm);
660}
661
662/* Flags that can be inherited from an existing mapping when merging */
663#define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR)
664
665/*
666 * If the vma has a ->close operation then the driver probably needs to release
667 * per-vma resources, so we don't attempt to merge those.
668 */
669static inline int is_mergeable_vma(struct vm_area_struct *vma,
670			struct file *file, unsigned long vm_flags)
671{
672	if ((vma->vm_flags ^ vm_flags) & ~VM_MERGEABLE_FLAGS)
673		return 0;
674	if (vma->vm_file != file)
675		return 0;
676	if (vma->vm_ops && vma->vm_ops->close)
677		return 0;
678	return 1;
679}
680
681static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
682					struct anon_vma *anon_vma2)
683{
684	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
685}
686
687/*
688 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
689 * in front of (at a lower virtual address and file offset than) the vma.
690 *
691 * We cannot merge two vmas if they have differently assigned (non-NULL)
692 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
693 *
694 * We don't check here for the merged mmap wrapping around the end of pagecache
695 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
696 * wrap, nor mmaps which cover the final page at index -1UL.
697 */
698static int
699can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
700	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
701{
702	if (is_mergeable_vma(vma, file, vm_flags) &&
703	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
704		if (vma->vm_pgoff == vm_pgoff)
705			return 1;
706	}
707	return 0;
708}
709
710/*
711 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
712 * beyond (at a higher virtual address and file offset than) the vma.
713 *
714 * We cannot merge two vmas if they have differently assigned (non-NULL)
715 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
716 */
717static int
718can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
719	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
720{
721	if (is_mergeable_vma(vma, file, vm_flags) &&
722	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
723		pgoff_t vm_pglen;
724		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
725		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
726			return 1;
727	}
728	return 0;
729}
730
731/*
732 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
733 * whether that can be merged with its predecessor or its successor.
734 * Or both (it neatly fills a hole).
735 *
736 * In most cases - when called for mmap, brk or mremap - [addr,end) is
737 * certain not to be mapped by the time vma_merge is called; but when
738 * called for mprotect, it is certain to be already mapped (either at
739 * an offset within prev, or at the start of next), and the flags of
740 * this area are about to be changed to vm_flags - and the no-change
741 * case has already been eliminated.
742 *
743 * The following mprotect cases have to be considered, where AAAA is
744 * the area passed down from mprotect_fixup, never extending beyond one
745 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
746 *
747 *     AAAA             AAAA                AAAA          AAAA
748 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
749 *    cannot merge    might become    might become    might become
750 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
751 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
752 *    mremap move:                                    PPPPNNNNNNNN 8
753 *        AAAA
754 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
755 *    might become    case 1 below    case 2 below    case 3 below
756 *
757 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
758 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
759 */
760struct vm_area_struct *vma_merge(struct mm_struct *mm,
761			struct vm_area_struct *prev, unsigned long addr,
762			unsigned long end, unsigned long vm_flags,
763		     	struct anon_vma *anon_vma, struct file *file,
764			pgoff_t pgoff, struct mempolicy *policy)
765{
766	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
767	struct vm_area_struct *area, *next;
768
769	/*
770	 * We later require that vma->vm_flags == vm_flags,
771	 * so this tests vma->vm_flags & VM_SPECIAL, too.
772	 */
773	if (vm_flags & VM_SPECIAL)
774		return NULL;
775
776	if (prev)
777		next = prev->vm_next;
778	else
779		next = mm->mmap;
780	area = next;
781	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
782		next = next->vm_next;
783
784	/*
785	 * Can it merge with the predecessor?
786	 */
787	if (prev && prev->vm_end == addr &&
788  			mpol_equal(vma_policy(prev), policy) &&
789			can_vma_merge_after(prev, vm_flags,
790						anon_vma, file, pgoff)) {
791		/*
792		 * OK, it can.  Can we now merge in the successor as well?
793		 */
794		if (next && end == next->vm_start &&
795				mpol_equal(policy, vma_policy(next)) &&
796				can_vma_merge_before(next, vm_flags,
797					anon_vma, file, pgoff+pglen) &&
798				is_mergeable_anon_vma(prev->anon_vma,
799						      next->anon_vma)) {
800							/* cases 1, 6 */
801			vma_adjust(prev, prev->vm_start,
802				next->vm_end, prev->vm_pgoff, NULL);
803		} else					/* cases 2, 5, 7 */
804			vma_adjust(prev, prev->vm_start,
805				end, prev->vm_pgoff, NULL);
806		return prev;
807	}
808
809	/*
810	 * Can this new request be merged in front of next?
811	 */
812	if (next && end == next->vm_start &&
813 			mpol_equal(policy, vma_policy(next)) &&
814			can_vma_merge_before(next, vm_flags,
815					anon_vma, file, pgoff+pglen)) {
816		if (prev && addr < prev->vm_end)	/* case 4 */
817			vma_adjust(prev, prev->vm_start,
818				addr, prev->vm_pgoff, NULL);
819		else					/* cases 3, 8 */
820			vma_adjust(area, addr, next->vm_end,
821				next->vm_pgoff - pglen, NULL);
822		return area;
823	}
824
825	return NULL;
826}
827
828/*
829 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
830 * neighbouring vmas for a suitable anon_vma, before it goes off
831 * to allocate a new anon_vma.  It checks because a repetitive
832 * sequence of mprotects and faults may otherwise lead to distinct
833 * anon_vmas being allocated, preventing vma merge in subsequent
834 * mprotect.
835 */
836struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
837{
838	struct vm_area_struct *near;
839	unsigned long vm_flags;
840
841	near = vma->vm_next;
842	if (!near)
843		goto try_prev;
844
845	/*
846	 * Since only mprotect tries to remerge vmas, match flags
847	 * which might be mprotected into each other later on.
848	 * Neither mlock nor madvise tries to remerge at present,
849	 * so leave their flags as obstructing a merge.
850	 */
851	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
852	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
853
854	if (near->anon_vma && vma->vm_end == near->vm_start &&
855 			mpol_equal(vma_policy(vma), vma_policy(near)) &&
856			can_vma_merge_before(near, vm_flags,
857				NULL, vma->vm_file, vma->vm_pgoff +
858				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
859		return near->anon_vma;
860try_prev:
861	/*
862	 * It is potentially slow to have to call find_vma_prev here.
863	 * But it's only on the first write fault on the vma, not
864	 * every time, and we could devise a way to avoid it later
865	 * (e.g. stash info in next's anon_vma_node when assigning
866	 * an anon_vma, or when trying vma_merge).  Another time.
867	 */
868	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
869	if (!near)
870		goto none;
871
872	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
873	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
874
875	if (near->anon_vma && near->vm_end == vma->vm_start &&
876  			mpol_equal(vma_policy(near), vma_policy(vma)) &&
877			can_vma_merge_after(near, vm_flags,
878				NULL, vma->vm_file, vma->vm_pgoff))
879		return near->anon_vma;
880none:
881	/*
882	 * There's no absolute need to look only at touching neighbours:
883	 * we could search further afield for "compatible" anon_vmas.
884	 * But it would probably just be a waste of time searching,
885	 * or lead to too many vmas hanging off the same anon_vma.
886	 * We're trying to allow mprotect remerging later on,
887	 * not trying to minimize memory used for anon_vmas.
888	 */
889	return NULL;
890}
891
892#ifdef CONFIG_PROC_FS
893void vm_stat_account(struct mm_struct *mm, unsigned long flags,
894						struct file *file, long pages)
895{
896	const unsigned long stack_flags
897		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
898
899	if (file) {
900		mm->shared_vm += pages;
901		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
902			mm->exec_vm += pages;
903	} else if (flags & stack_flags)
904		mm->stack_vm += pages;
905	if (flags & (VM_RESERVED|VM_IO))
906		mm->reserved_vm += pages;
907}
908#endif /* CONFIG_PROC_FS */
909
910/*
911 * The caller must hold down_write(current->mm->mmap_sem).
912 */
913
914unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
915			unsigned long len, unsigned long prot,
916			unsigned long flags, unsigned long pgoff)
917{
918	struct mm_struct * mm = current->mm;
919	struct inode *inode;
920	unsigned int vm_flags;
921	int error;
922	unsigned long reqprot = prot;
923
924	/*
925	 * Does the application expect PROT_READ to imply PROT_EXEC?
926	 *
927	 * (the exception is when the underlying filesystem is noexec
928	 *  mounted, in which case we dont add PROT_EXEC.)
929	 */
930	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
931		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
932			prot |= PROT_EXEC;
933
934	if (!len)
935		return -EINVAL;
936
937	if (!(flags & MAP_FIXED))
938		addr = round_hint_to_min(addr);
939
940	error = arch_mmap_check(addr, len, flags);
941	if (error)
942		return error;
943
944	/* Careful about overflows.. */
945	len = PAGE_ALIGN(len);
946	if (!len || len > TASK_SIZE)
947		return -ENOMEM;
948
949	/* offset overflow? */
950	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
951               return -EOVERFLOW;
952
953	/* Too many mappings? */
954	if (mm->map_count > sysctl_max_map_count)
955		return -ENOMEM;
956
957	/* Obtain the address to map to. we verify (or select) it and ensure
958	 * that it represents a valid section of the address space.
959	 */
960	addr = get_unmapped_area(file, addr, len, pgoff, flags);
961	if (addr & ~PAGE_MASK)
962		return addr;
963
964	/* Do simple checking here so the lower-level routines won't have
965	 * to. we assume access permissions have been handled by the open
966	 * of the memory object, so we don't do any here.
967	 */
968	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
969			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
970
971	if (flags & MAP_LOCKED) {
972		if (!can_do_mlock())
973			return -EPERM;
974		vm_flags |= VM_LOCKED;
975	}
976
977	/* mlock MCL_FUTURE? */
978	if (vm_flags & VM_LOCKED) {
979		unsigned long locked, lock_limit;
980		locked = len >> PAGE_SHIFT;
981		locked += mm->locked_vm;
982		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
983		lock_limit >>= PAGE_SHIFT;
984		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
985			return -EAGAIN;
986	}
987
988	inode = file ? file->f_path.dentry->d_inode : NULL;
989
990	if (file) {
991		switch (flags & MAP_TYPE) {
992		case MAP_SHARED:
993			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
994				return -EACCES;
995
996			/*
997			 * Make sure we don't allow writing to an append-only
998			 * file..
999			 */
1000			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1001				return -EACCES;
1002
1003			/*
1004			 * Make sure there are no mandatory locks on the file.
1005			 */
1006			if (locks_verify_locked(inode))
1007				return -EAGAIN;
1008
1009			vm_flags |= VM_SHARED | VM_MAYSHARE;
1010			if (!(file->f_mode & FMODE_WRITE))
1011				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1012
1013			/* fall through */
1014		case MAP_PRIVATE:
1015			if (!(file->f_mode & FMODE_READ))
1016				return -EACCES;
1017			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1018				if (vm_flags & VM_EXEC)
1019					return -EPERM;
1020				vm_flags &= ~VM_MAYEXEC;
1021			}
1022
1023			if (!file->f_op || !file->f_op->mmap)
1024				return -ENODEV;
1025			break;
1026
1027		default:
1028			return -EINVAL;
1029		}
1030	} else {
1031		switch (flags & MAP_TYPE) {
1032		case MAP_SHARED:
1033			/*
1034			 * Ignore pgoff.
1035			 */
1036			pgoff = 0;
1037			vm_flags |= VM_SHARED | VM_MAYSHARE;
1038			break;
1039		case MAP_PRIVATE:
1040			/*
1041			 * Set pgoff according to addr for anon_vma.
1042			 */
1043			pgoff = addr >> PAGE_SHIFT;
1044			break;
1045		default:
1046			return -EINVAL;
1047		}
1048	}
1049
1050	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1051	if (error)
1052		return error;
1053	error = ima_file_mmap(file, prot);
1054	if (error)
1055		return error;
1056
1057	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1058}
1059EXPORT_SYMBOL(do_mmap_pgoff);
1060
1061/*
1062 * Some shared mappigns will want the pages marked read-only
1063 * to track write events. If so, we'll downgrade vm_page_prot
1064 * to the private version (using protection_map[] without the
1065 * VM_SHARED bit).
1066 */
1067int vma_wants_writenotify(struct vm_area_struct *vma)
1068{
1069	unsigned int vm_flags = vma->vm_flags;
1070
1071	/* If it was private or non-writable, the write bit is already clear */
1072	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1073		return 0;
1074
1075	/* The backer wishes to know when pages are first written to? */
1076	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1077		return 1;
1078
1079	/* The open routine did something to the protections already? */
1080	if (pgprot_val(vma->vm_page_prot) !=
1081	    pgprot_val(vm_get_page_prot(vm_flags)))
1082		return 0;
1083
1084	/* Specialty mapping? */
1085	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1086		return 0;
1087
1088	/* Can the mapping track the dirty pages? */
1089	return vma->vm_file && vma->vm_file->f_mapping &&
1090		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1091}
1092
1093/*
1094 * We account for memory if it's a private writeable mapping,
1095 * not hugepages and VM_NORESERVE wasn't set.
1096 */
1097static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1098{
1099	/*
1100	 * hugetlb has its own accounting separate from the core VM
1101	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1102	 */
1103	if (file && is_file_hugepages(file))
1104		return 0;
1105
1106	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1107}
1108
1109unsigned long mmap_region(struct file *file, unsigned long addr,
1110			  unsigned long len, unsigned long flags,
1111			  unsigned int vm_flags, unsigned long pgoff)
1112{
1113	struct mm_struct *mm = current->mm;
1114	struct vm_area_struct *vma, *prev;
1115	int correct_wcount = 0;
1116	int error;
1117	struct rb_node **rb_link, *rb_parent;
1118	unsigned long charged = 0;
1119	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1120
1121	/* Clear old maps */
1122	error = -ENOMEM;
1123munmap_back:
1124	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1125	if (vma && vma->vm_start < addr + len) {
1126		if (do_munmap(mm, addr, len))
1127			return -ENOMEM;
1128		goto munmap_back;
1129	}
1130
1131	/* Check against address space limit. */
1132	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1133		return -ENOMEM;
1134
1135	/*
1136	 * Set 'VM_NORESERVE' if we should not account for the
1137	 * memory use of this mapping.
1138	 */
1139	if ((flags & MAP_NORESERVE)) {
1140		/* We honor MAP_NORESERVE if allowed to overcommit */
1141		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1142			vm_flags |= VM_NORESERVE;
1143
1144		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1145		if (file && is_file_hugepages(file))
1146			vm_flags |= VM_NORESERVE;
1147	}
1148
1149	/*
1150	 * Private writable mapping: check memory availability
1151	 */
1152	if (accountable_mapping(file, vm_flags)) {
1153		charged = len >> PAGE_SHIFT;
1154		if (security_vm_enough_memory(charged))
1155			return -ENOMEM;
1156		vm_flags |= VM_ACCOUNT;
1157	}
1158
1159	/*
1160	 * Can we just expand an old mapping?
1161	 */
1162	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1163	if (vma)
1164		goto out;
1165
1166	/*
1167	 * Determine the object being mapped and call the appropriate
1168	 * specific mapper. the address has already been validated, but
1169	 * not unmapped, but the maps are removed from the list.
1170	 */
1171	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1172	if (!vma) {
1173		error = -ENOMEM;
1174		goto unacct_error;
1175	}
1176
1177	vma->vm_mm = mm;
1178	vma->vm_start = addr;
1179	vma->vm_end = addr + len;
1180	vma->vm_flags = vm_flags;
1181	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1182	vma->vm_pgoff = pgoff;
1183
1184	if (file) {
1185		error = -EINVAL;
1186		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1187			goto free_vma;
1188		if (vm_flags & VM_DENYWRITE) {
1189			error = deny_write_access(file);
1190			if (error)
1191				goto free_vma;
1192			correct_wcount = 1;
1193		}
1194		vma->vm_file = file;
1195		get_file(file);
1196		error = file->f_op->mmap(file, vma);
1197		if (error)
1198			goto unmap_and_free_vma;
1199		if (vm_flags & VM_EXECUTABLE)
1200			added_exe_file_vma(mm);
1201	} else if (vm_flags & VM_SHARED) {
1202		error = shmem_zero_setup(vma);
1203		if (error)
1204			goto free_vma;
1205	}
1206
1207	/* Can addr have changed??
1208	 *
1209	 * Answer: Yes, several device drivers can do it in their
1210	 *         f_op->mmap method. -DaveM
1211	 */
1212	addr = vma->vm_start;
1213	pgoff = vma->vm_pgoff;
1214	vm_flags = vma->vm_flags;
1215
1216	if (vma_wants_writenotify(vma))
1217		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1218
1219	vma_link(mm, vma, prev, rb_link, rb_parent);
1220	file = vma->vm_file;
1221
1222	/* Once vma denies write, undo our temporary denial count */
1223	if (correct_wcount)
1224		atomic_inc(&inode->i_writecount);
1225out:
1226	mm->total_vm += len >> PAGE_SHIFT;
1227	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1228	if (vm_flags & VM_LOCKED) {
1229		/*
1230		 * makes pages present; downgrades, drops, reacquires mmap_sem
1231		 */
1232		long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1233		if (nr_pages < 0)
1234			return nr_pages;	/* vma gone! */
1235		mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1236	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1237		make_pages_present(addr, addr + len);
1238	return addr;
1239
1240unmap_and_free_vma:
1241	if (correct_wcount)
1242		atomic_inc(&inode->i_writecount);
1243	vma->vm_file = NULL;
1244	fput(file);
1245
1246	/* Undo any partial mapping done by a device driver. */
1247	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1248	charged = 0;
1249free_vma:
1250	kmem_cache_free(vm_area_cachep, vma);
1251unacct_error:
1252	if (charged)
1253		vm_unacct_memory(charged);
1254	return error;
1255}
1256
1257/* Get an address range which is currently unmapped.
1258 * For shmat() with addr=0.
1259 *
1260 * Ugly calling convention alert:
1261 * Return value with the low bits set means error value,
1262 * ie
1263 *	if (ret & ~PAGE_MASK)
1264 *		error = ret;
1265 *
1266 * This function "knows" that -ENOMEM has the bits set.
1267 */
1268#ifndef HAVE_ARCH_UNMAPPED_AREA
1269unsigned long
1270arch_get_unmapped_area(struct file *filp, unsigned long addr,
1271		unsigned long len, unsigned long pgoff, unsigned long flags)
1272{
1273	struct mm_struct *mm = current->mm;
1274	struct vm_area_struct *vma;
1275	unsigned long start_addr;
1276
1277	if (len > TASK_SIZE)
1278		return -ENOMEM;
1279
1280	if (flags & MAP_FIXED)
1281		return addr;
1282
1283	if (addr) {
1284		addr = PAGE_ALIGN(addr);
1285		vma = find_vma(mm, addr);
1286		if (TASK_SIZE - len >= addr &&
1287		    (!vma || addr + len <= vma->vm_start))
1288			return addr;
1289	}
1290	if (len > mm->cached_hole_size) {
1291	        start_addr = addr = mm->free_area_cache;
1292	} else {
1293	        start_addr = addr = TASK_UNMAPPED_BASE;
1294	        mm->cached_hole_size = 0;
1295	}
1296
1297full_search:
1298	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1299		/* At this point:  (!vma || addr < vma->vm_end). */
1300		if (TASK_SIZE - len < addr) {
1301			/*
1302			 * Start a new search - just in case we missed
1303			 * some holes.
1304			 */
1305			if (start_addr != TASK_UNMAPPED_BASE) {
1306				addr = TASK_UNMAPPED_BASE;
1307			        start_addr = addr;
1308				mm->cached_hole_size = 0;
1309				goto full_search;
1310			}
1311			return -ENOMEM;
1312		}
1313		if (!vma || addr + len <= vma->vm_start) {
1314			/*
1315			 * Remember the place where we stopped the search:
1316			 */
1317			mm->free_area_cache = addr + len;
1318			return addr;
1319		}
1320		if (addr + mm->cached_hole_size < vma->vm_start)
1321		        mm->cached_hole_size = vma->vm_start - addr;
1322		addr = vma->vm_end;
1323	}
1324}
1325#endif
1326
1327void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1328{
1329	/*
1330	 * Is this a new hole at the lowest possible address?
1331	 */
1332	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1333		mm->free_area_cache = addr;
1334		mm->cached_hole_size = ~0UL;
1335	}
1336}
1337
1338/*
1339 * This mmap-allocator allocates new areas top-down from below the
1340 * stack's low limit (the base):
1341 */
1342#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1343unsigned long
1344arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1345			  const unsigned long len, const unsigned long pgoff,
1346			  const unsigned long flags)
1347{
1348	struct vm_area_struct *vma;
1349	struct mm_struct *mm = current->mm;
1350	unsigned long addr = addr0;
1351
1352	/* requested length too big for entire address space */
1353	if (len > TASK_SIZE)
1354		return -ENOMEM;
1355
1356	if (flags & MAP_FIXED)
1357		return addr;
1358
1359	/* requesting a specific address */
1360	if (addr) {
1361		addr = PAGE_ALIGN(addr);
1362		vma = find_vma(mm, addr);
1363		if (TASK_SIZE - len >= addr &&
1364				(!vma || addr + len <= vma->vm_start))
1365			return addr;
1366	}
1367
1368	/* check if free_area_cache is useful for us */
1369	if (len <= mm->cached_hole_size) {
1370 	        mm->cached_hole_size = 0;
1371 		mm->free_area_cache = mm->mmap_base;
1372 	}
1373
1374	/* either no address requested or can't fit in requested address hole */
1375	addr = mm->free_area_cache;
1376
1377	/* make sure it can fit in the remaining address space */
1378	if (addr > len) {
1379		vma = find_vma(mm, addr-len);
1380		if (!vma || addr <= vma->vm_start)
1381			/* remember the address as a hint for next time */
1382			return (mm->free_area_cache = addr-len);
1383	}
1384
1385	if (mm->mmap_base < len)
1386		goto bottomup;
1387
1388	addr = mm->mmap_base-len;
1389
1390	do {
1391		/*
1392		 * Lookup failure means no vma is above this address,
1393		 * else if new region fits below vma->vm_start,
1394		 * return with success:
1395		 */
1396		vma = find_vma(mm, addr);
1397		if (!vma || addr+len <= vma->vm_start)
1398			/* remember the address as a hint for next time */
1399			return (mm->free_area_cache = addr);
1400
1401 		/* remember the largest hole we saw so far */
1402 		if (addr + mm->cached_hole_size < vma->vm_start)
1403 		        mm->cached_hole_size = vma->vm_start - addr;
1404
1405		/* try just below the current vma->vm_start */
1406		addr = vma->vm_start-len;
1407	} while (len < vma->vm_start);
1408
1409bottomup:
1410	/*
1411	 * A failed mmap() very likely causes application failure,
1412	 * so fall back to the bottom-up function here. This scenario
1413	 * can happen with large stack limits and large mmap()
1414	 * allocations.
1415	 */
1416	mm->cached_hole_size = ~0UL;
1417  	mm->free_area_cache = TASK_UNMAPPED_BASE;
1418	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1419	/*
1420	 * Restore the topdown base:
1421	 */
1422	mm->free_area_cache = mm->mmap_base;
1423	mm->cached_hole_size = ~0UL;
1424
1425	return addr;
1426}
1427#endif
1428
1429void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1430{
1431	/*
1432	 * Is this a new hole at the highest possible address?
1433	 */
1434	if (addr > mm->free_area_cache)
1435		mm->free_area_cache = addr;
1436
1437	/* dont allow allocations above current base */
1438	if (mm->free_area_cache > mm->mmap_base)
1439		mm->free_area_cache = mm->mmap_base;
1440}
1441
1442unsigned long
1443get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1444		unsigned long pgoff, unsigned long flags)
1445{
1446	unsigned long (*get_area)(struct file *, unsigned long,
1447				  unsigned long, unsigned long, unsigned long);
1448
1449	get_area = current->mm->get_unmapped_area;
1450	if (file && file->f_op && file->f_op->get_unmapped_area)
1451		get_area = file->f_op->get_unmapped_area;
1452	addr = get_area(file, addr, len, pgoff, flags);
1453	if (IS_ERR_VALUE(addr))
1454		return addr;
1455
1456	if (addr > TASK_SIZE - len)
1457		return -ENOMEM;
1458	if (addr & ~PAGE_MASK)
1459		return -EINVAL;
1460
1461	return arch_rebalance_pgtables(addr, len);
1462}
1463
1464EXPORT_SYMBOL(get_unmapped_area);
1465
1466/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1467struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1468{
1469	struct vm_area_struct *vma = NULL;
1470
1471	if (mm) {
1472		/* Check the cache first. */
1473		/* (Cache hit rate is typically around 35%.) */
1474		vma = mm->mmap_cache;
1475		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1476			struct rb_node * rb_node;
1477
1478			rb_node = mm->mm_rb.rb_node;
1479			vma = NULL;
1480
1481			while (rb_node) {
1482				struct vm_area_struct * vma_tmp;
1483
1484				vma_tmp = rb_entry(rb_node,
1485						struct vm_area_struct, vm_rb);
1486
1487				if (vma_tmp->vm_end > addr) {
1488					vma = vma_tmp;
1489					if (vma_tmp->vm_start <= addr)
1490						break;
1491					rb_node = rb_node->rb_left;
1492				} else
1493					rb_node = rb_node->rb_right;
1494			}
1495			if (vma)
1496				mm->mmap_cache = vma;
1497		}
1498	}
1499	return vma;
1500}
1501
1502EXPORT_SYMBOL(find_vma);
1503
1504/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1505struct vm_area_struct *
1506find_vma_prev(struct mm_struct *mm, unsigned long addr,
1507			struct vm_area_struct **pprev)
1508{
1509	struct vm_area_struct *vma = NULL, *prev = NULL;
1510	struct rb_node *rb_node;
1511	if (!mm)
1512		goto out;
1513
1514	/* Guard against addr being lower than the first VMA */
1515	vma = mm->mmap;
1516
1517	/* Go through the RB tree quickly. */
1518	rb_node = mm->mm_rb.rb_node;
1519
1520	while (rb_node) {
1521		struct vm_area_struct *vma_tmp;
1522		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1523
1524		if (addr < vma_tmp->vm_end) {
1525			rb_node = rb_node->rb_left;
1526		} else {
1527			prev = vma_tmp;
1528			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1529				break;
1530			rb_node = rb_node->rb_right;
1531		}
1532	}
1533
1534out:
1535	*pprev = prev;
1536	return prev ? prev->vm_next : vma;
1537}
1538
1539/*
1540 * Verify that the stack growth is acceptable and
1541 * update accounting. This is shared with both the
1542 * grow-up and grow-down cases.
1543 */
1544static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1545{
1546	struct mm_struct *mm = vma->vm_mm;
1547	struct rlimit *rlim = current->signal->rlim;
1548	unsigned long new_start;
1549
1550	/* address space limit tests */
1551	if (!may_expand_vm(mm, grow))
1552		return -ENOMEM;
1553
1554	/* Stack limit test */
1555	if (size > rlim[RLIMIT_STACK].rlim_cur)
1556		return -ENOMEM;
1557
1558	/* mlock limit tests */
1559	if (vma->vm_flags & VM_LOCKED) {
1560		unsigned long locked;
1561		unsigned long limit;
1562		locked = mm->locked_vm + grow;
1563		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1564		if (locked > limit && !capable(CAP_IPC_LOCK))
1565			return -ENOMEM;
1566	}
1567
1568	/* Check to ensure the stack will not grow into a hugetlb-only region */
1569	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1570			vma->vm_end - size;
1571	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1572		return -EFAULT;
1573
1574	/*
1575	 * Overcommit..  This must be the final test, as it will
1576	 * update security statistics.
1577	 */
1578	if (security_vm_enough_memory_mm(mm, grow))
1579		return -ENOMEM;
1580
1581	/* Ok, everything looks good - let it rip */
1582	mm->total_vm += grow;
1583	if (vma->vm_flags & VM_LOCKED)
1584		mm->locked_vm += grow;
1585	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1586	return 0;
1587}
1588
1589#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1590/*
1591 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1592 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1593 */
1594#ifndef CONFIG_IA64
1595static
1596#endif
1597int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1598{
1599	int error;
1600
1601	if (!(vma->vm_flags & VM_GROWSUP))
1602		return -EFAULT;
1603
1604	/*
1605	 * We must make sure the anon_vma is allocated
1606	 * so that the anon_vma locking is not a noop.
1607	 */
1608	if (unlikely(anon_vma_prepare(vma)))
1609		return -ENOMEM;
1610	anon_vma_lock(vma);
1611
1612	/*
1613	 * vma->vm_start/vm_end cannot change under us because the caller
1614	 * is required to hold the mmap_sem in read mode.  We need the
1615	 * anon_vma lock to serialize against concurrent expand_stacks.
1616	 * Also guard against wrapping around to address 0.
1617	 */
1618	if (address < PAGE_ALIGN(address+4))
1619		address = PAGE_ALIGN(address+4);
1620	else {
1621		anon_vma_unlock(vma);
1622		return -ENOMEM;
1623	}
1624	error = 0;
1625
1626	/* Somebody else might have raced and expanded it already */
1627	if (address > vma->vm_end) {
1628		unsigned long size, grow;
1629
1630		size = address - vma->vm_start;
1631		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1632
1633		error = acct_stack_growth(vma, size, grow);
1634		if (!error)
1635			vma->vm_end = address;
1636	}
1637	anon_vma_unlock(vma);
1638	return error;
1639}
1640#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1641
1642/*
1643 * vma is the first one with address < vma->vm_start.  Have to extend vma.
1644 */
1645static int expand_downwards(struct vm_area_struct *vma,
1646				   unsigned long address)
1647{
1648	int error;
1649
1650	/*
1651	 * We must make sure the anon_vma is allocated
1652	 * so that the anon_vma locking is not a noop.
1653	 */
1654	if (unlikely(anon_vma_prepare(vma)))
1655		return -ENOMEM;
1656
1657	address &= PAGE_MASK;
1658	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1659	if (error)
1660		return error;
1661
1662	anon_vma_lock(vma);
1663
1664	/*
1665	 * vma->vm_start/vm_end cannot change under us because the caller
1666	 * is required to hold the mmap_sem in read mode.  We need the
1667	 * anon_vma lock to serialize against concurrent expand_stacks.
1668	 */
1669
1670	/* Somebody else might have raced and expanded it already */
1671	if (address < vma->vm_start) {
1672		unsigned long size, grow;
1673
1674		size = vma->vm_end - address;
1675		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1676
1677		error = acct_stack_growth(vma, size, grow);
1678		if (!error) {
1679			vma->vm_start = address;
1680			vma->vm_pgoff -= grow;
1681		}
1682	}
1683	anon_vma_unlock(vma);
1684	return error;
1685}
1686
1687int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1688{
1689	return expand_downwards(vma, address);
1690}
1691
1692#ifdef CONFIG_STACK_GROWSUP
1693int expand_stack(struct vm_area_struct *vma, unsigned long address)
1694{
1695	return expand_upwards(vma, address);
1696}
1697
1698struct vm_area_struct *
1699find_extend_vma(struct mm_struct *mm, unsigned long addr)
1700{
1701	struct vm_area_struct *vma, *prev;
1702
1703	addr &= PAGE_MASK;
1704	vma = find_vma_prev(mm, addr, &prev);
1705	if (vma && (vma->vm_start <= addr))
1706		return vma;
1707	if (!prev || expand_stack(prev, addr))
1708		return NULL;
1709	if (prev->vm_flags & VM_LOCKED) {
1710		if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1711			return NULL;	/* vma gone! */
1712	}
1713	return prev;
1714}
1715#else
1716int expand_stack(struct vm_area_struct *vma, unsigned long address)
1717{
1718	return expand_downwards(vma, address);
1719}
1720
1721struct vm_area_struct *
1722find_extend_vma(struct mm_struct * mm, unsigned long addr)
1723{
1724	struct vm_area_struct * vma;
1725	unsigned long start;
1726
1727	addr &= PAGE_MASK;
1728	vma = find_vma(mm,addr);
1729	if (!vma)
1730		return NULL;
1731	if (vma->vm_start <= addr)
1732		return vma;
1733	if (!(vma->vm_flags & VM_GROWSDOWN))
1734		return NULL;
1735	start = vma->vm_start;
1736	if (expand_stack(vma, addr))
1737		return NULL;
1738	if (vma->vm_flags & VM_LOCKED) {
1739		if (mlock_vma_pages_range(vma, addr, start) < 0)
1740			return NULL;	/* vma gone! */
1741	}
1742	return vma;
1743}
1744#endif
1745
1746/*
1747 * Ok - we have the memory areas we should free on the vma list,
1748 * so release them, and do the vma updates.
1749 *
1750 * Called with the mm semaphore held.
1751 */
1752static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1753{
1754	/* Update high watermark before we lower total_vm */
1755	update_hiwater_vm(mm);
1756	do {
1757		long nrpages = vma_pages(vma);
1758
1759		mm->total_vm -= nrpages;
1760		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1761		vma = remove_vma(vma);
1762	} while (vma);
1763	validate_mm(mm);
1764}
1765
1766/*
1767 * Get rid of page table information in the indicated region.
1768 *
1769 * Called with the mm semaphore held.
1770 */
1771static void unmap_region(struct mm_struct *mm,
1772		struct vm_area_struct *vma, struct vm_area_struct *prev,
1773		unsigned long start, unsigned long end)
1774{
1775	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1776	struct mmu_gather *tlb;
1777	unsigned long nr_accounted = 0;
1778
1779	lru_add_drain();
1780	tlb = tlb_gather_mmu(mm, 0);
1781	update_hiwater_rss(mm);
1782	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1783	vm_unacct_memory(nr_accounted);
1784	free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1785				 next? next->vm_start: 0);
1786	tlb_finish_mmu(tlb, start, end);
1787}
1788
1789/*
1790 * Create a list of vma's touched by the unmap, removing them from the mm's
1791 * vma list as we go..
1792 */
1793static void
1794detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1795	struct vm_area_struct *prev, unsigned long end)
1796{
1797	struct vm_area_struct **insertion_point;
1798	struct vm_area_struct *tail_vma = NULL;
1799	unsigned long addr;
1800
1801	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1802	do {
1803		rb_erase(&vma->vm_rb, &mm->mm_rb);
1804		mm->map_count--;
1805		tail_vma = vma;
1806		vma = vma->vm_next;
1807	} while (vma && vma->vm_start < end);
1808	*insertion_point = vma;
1809	tail_vma->vm_next = NULL;
1810	if (mm->unmap_area == arch_unmap_area)
1811		addr = prev ? prev->vm_end : mm->mmap_base;
1812	else
1813		addr = vma ?  vma->vm_start : mm->mmap_base;
1814	mm->unmap_area(mm, addr);
1815	mm->mmap_cache = NULL;		/* Kill the cache. */
1816}
1817
1818/*
1819 * Split a vma into two pieces at address 'addr', a new vma is allocated
1820 * either for the first part or the tail.
1821 */
1822int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1823	      unsigned long addr, int new_below)
1824{
1825	struct mempolicy *pol;
1826	struct vm_area_struct *new;
1827
1828	if (is_vm_hugetlb_page(vma) && (addr &
1829					~(huge_page_mask(hstate_vma(vma)))))
1830		return -EINVAL;
1831
1832	if (mm->map_count >= sysctl_max_map_count)
1833		return -ENOMEM;
1834
1835	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1836	if (!new)
1837		return -ENOMEM;
1838
1839	/* most fields are the same, copy all, and then fixup */
1840	*new = *vma;
1841
1842	if (new_below)
1843		new->vm_end = addr;
1844	else {
1845		new->vm_start = addr;
1846		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1847	}
1848
1849	pol = mpol_dup(vma_policy(vma));
1850	if (IS_ERR(pol)) {
1851		kmem_cache_free(vm_area_cachep, new);
1852		return PTR_ERR(pol);
1853	}
1854	vma_set_policy(new, pol);
1855
1856	if (new->vm_file) {
1857		get_file(new->vm_file);
1858		if (vma->vm_flags & VM_EXECUTABLE)
1859			added_exe_file_vma(mm);
1860	}
1861
1862	if (new->vm_ops && new->vm_ops->open)
1863		new->vm_ops->open(new);
1864
1865	if (new_below)
1866		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1867			((addr - new->vm_start) >> PAGE_SHIFT), new);
1868	else
1869		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1870
1871	return 0;
1872}
1873
1874/* Munmap is split into 2 main parts -- this part which finds
1875 * what needs doing, and the areas themselves, which do the
1876 * work.  This now handles partial unmappings.
1877 * Jeremy Fitzhardinge <jeremy@goop.org>
1878 */
1879int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1880{
1881	unsigned long end;
1882	struct vm_area_struct *vma, *prev, *last;
1883
1884	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1885		return -EINVAL;
1886
1887	if ((len = PAGE_ALIGN(len)) == 0)
1888		return -EINVAL;
1889
1890	/* Find the first overlapping VMA */
1891	vma = find_vma_prev(mm, start, &prev);
1892	if (!vma)
1893		return 0;
1894	/* we have  start < vma->vm_end  */
1895
1896	/* if it doesn't overlap, we have nothing.. */
1897	end = start + len;
1898	if (vma->vm_start >= end)
1899		return 0;
1900
1901	/*
1902	 * If we need to split any vma, do it now to save pain later.
1903	 *
1904	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1905	 * unmapped vm_area_struct will remain in use: so lower split_vma
1906	 * places tmp vma above, and higher split_vma places tmp vma below.
1907	 */
1908	if (start > vma->vm_start) {
1909		int error = split_vma(mm, vma, start, 0);
1910		if (error)
1911			return error;
1912		prev = vma;
1913	}
1914
1915	/* Does it split the last one? */
1916	last = find_vma(mm, end);
1917	if (last && end > last->vm_start) {
1918		int error = split_vma(mm, last, end, 1);
1919		if (error)
1920			return error;
1921	}
1922	vma = prev? prev->vm_next: mm->mmap;
1923
1924	/*
1925	 * unlock any mlock()ed ranges before detaching vmas
1926	 */
1927	if (mm->locked_vm) {
1928		struct vm_area_struct *tmp = vma;
1929		while (tmp && tmp->vm_start < end) {
1930			if (tmp->vm_flags & VM_LOCKED) {
1931				mm->locked_vm -= vma_pages(tmp);
1932				munlock_vma_pages_all(tmp);
1933			}
1934			tmp = tmp->vm_next;
1935		}
1936	}
1937
1938	/*
1939	 * Remove the vma's, and unmap the actual pages
1940	 */
1941	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1942	unmap_region(mm, vma, prev, start, end);
1943
1944	/* Fix up all other VM information */
1945	remove_vma_list(mm, vma);
1946
1947	return 0;
1948}
1949
1950EXPORT_SYMBOL(do_munmap);
1951
1952SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1953{
1954	int ret;
1955	struct mm_struct *mm = current->mm;
1956
1957	profile_munmap(addr);
1958
1959	down_write(&mm->mmap_sem);
1960	ret = do_munmap(mm, addr, len);
1961	up_write(&mm->mmap_sem);
1962	return ret;
1963}
1964
1965static inline void verify_mm_writelocked(struct mm_struct *mm)
1966{
1967#ifdef CONFIG_DEBUG_VM
1968	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1969		WARN_ON(1);
1970		up_read(&mm->mmap_sem);
1971	}
1972#endif
1973}
1974
1975/*
1976 *  this is really a simplified "do_mmap".  it only handles
1977 *  anonymous maps.  eventually we may be able to do some
1978 *  brk-specific accounting here.
1979 */
1980unsigned long do_brk(unsigned long addr, unsigned long len)
1981{
1982	struct mm_struct * mm = current->mm;
1983	struct vm_area_struct * vma, * prev;
1984	unsigned long flags;
1985	struct rb_node ** rb_link, * rb_parent;
1986	pgoff_t pgoff = addr >> PAGE_SHIFT;
1987	int error;
1988
1989	len = PAGE_ALIGN(len);
1990	if (!len)
1991		return addr;
1992
1993	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1994		return -EINVAL;
1995
1996	if (is_hugepage_only_range(mm, addr, len))
1997		return -EINVAL;
1998
1999	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2000	if (error)
2001		return error;
2002
2003	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2004
2005	error = arch_mmap_check(addr, len, flags);
2006	if (error)
2007		return error;
2008
2009	/*
2010	 * mlock MCL_FUTURE?
2011	 */
2012	if (mm->def_flags & VM_LOCKED) {
2013		unsigned long locked, lock_limit;
2014		locked = len >> PAGE_SHIFT;
2015		locked += mm->locked_vm;
2016		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2017		lock_limit >>= PAGE_SHIFT;
2018		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2019			return -EAGAIN;
2020	}
2021
2022	/*
2023	 * mm->mmap_sem is required to protect against another thread
2024	 * changing the mappings in case we sleep.
2025	 */
2026	verify_mm_writelocked(mm);
2027
2028	/*
2029	 * Clear old maps.  this also does some error checking for us
2030	 */
2031 munmap_back:
2032	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2033	if (vma && vma->vm_start < addr + len) {
2034		if (do_munmap(mm, addr, len))
2035			return -ENOMEM;
2036		goto munmap_back;
2037	}
2038
2039	/* Check against address space limits *after* clearing old maps... */
2040	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2041		return -ENOMEM;
2042
2043	if (mm->map_count > sysctl_max_map_count)
2044		return -ENOMEM;
2045
2046	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2047		return -ENOMEM;
2048
2049	/* Can we just expand an old private anonymous mapping? */
2050	vma = vma_merge(mm, prev, addr, addr + len, flags,
2051					NULL, NULL, pgoff, NULL);
2052	if (vma)
2053		goto out;
2054
2055	/*
2056	 * create a vma struct for an anonymous mapping
2057	 */
2058	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2059	if (!vma) {
2060		vm_unacct_memory(len >> PAGE_SHIFT);
2061		return -ENOMEM;
2062	}
2063
2064	vma->vm_mm = mm;
2065	vma->vm_start = addr;
2066	vma->vm_end = addr + len;
2067	vma->vm_pgoff = pgoff;
2068	vma->vm_flags = flags;
2069	vma->vm_page_prot = vm_get_page_prot(flags);
2070	vma_link(mm, vma, prev, rb_link, rb_parent);
2071out:
2072	mm->total_vm += len >> PAGE_SHIFT;
2073	if (flags & VM_LOCKED) {
2074		if (!mlock_vma_pages_range(vma, addr, addr + len))
2075			mm->locked_vm += (len >> PAGE_SHIFT);
2076	}
2077	return addr;
2078}
2079
2080EXPORT_SYMBOL(do_brk);
2081
2082/* Release all mmaps. */
2083void exit_mmap(struct mm_struct *mm)
2084{
2085	struct mmu_gather *tlb;
2086	struct vm_area_struct *vma;
2087	unsigned long nr_accounted = 0;
2088	unsigned long end;
2089
2090	/* mm's last user has gone, and its about to be pulled down */
2091	mmu_notifier_release(mm);
2092
2093	if (mm->locked_vm) {
2094		vma = mm->mmap;
2095		while (vma) {
2096			if (vma->vm_flags & VM_LOCKED)
2097				munlock_vma_pages_all(vma);
2098			vma = vma->vm_next;
2099		}
2100	}
2101
2102	arch_exit_mmap(mm);
2103
2104	vma = mm->mmap;
2105	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2106		return;
2107
2108	lru_add_drain();
2109	flush_cache_mm(mm);
2110	tlb = tlb_gather_mmu(mm, 1);
2111	/* update_hiwater_rss(mm) here? but nobody should be looking */
2112	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2113	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2114	vm_unacct_memory(nr_accounted);
2115	free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2116	tlb_finish_mmu(tlb, 0, end);
2117
2118	/*
2119	 * Walk the list again, actually closing and freeing it,
2120	 * with preemption enabled, without holding any MM locks.
2121	 */
2122	while (vma)
2123		vma = remove_vma(vma);
2124
2125	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2126}
2127
2128/* Insert vm structure into process list sorted by address
2129 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2130 * then i_mmap_lock is taken here.
2131 */
2132int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2133{
2134	struct vm_area_struct * __vma, * prev;
2135	struct rb_node ** rb_link, * rb_parent;
2136
2137	/*
2138	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2139	 * until its first write fault, when page's anon_vma and index
2140	 * are set.  But now set the vm_pgoff it will almost certainly
2141	 * end up with (unless mremap moves it elsewhere before that
2142	 * first wfault), so /proc/pid/maps tells a consistent story.
2143	 *
2144	 * By setting it to reflect the virtual start address of the
2145	 * vma, merges and splits can happen in a seamless way, just
2146	 * using the existing file pgoff checks and manipulations.
2147	 * Similarly in do_mmap_pgoff and in do_brk.
2148	 */
2149	if (!vma->vm_file) {
2150		BUG_ON(vma->anon_vma);
2151		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2152	}
2153	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2154	if (__vma && __vma->vm_start < vma->vm_end)
2155		return -ENOMEM;
2156	if ((vma->vm_flags & VM_ACCOUNT) &&
2157	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2158		return -ENOMEM;
2159	vma_link(mm, vma, prev, rb_link, rb_parent);
2160	return 0;
2161}
2162
2163/*
2164 * Copy the vma structure to a new location in the same mm,
2165 * prior to moving page table entries, to effect an mremap move.
2166 */
2167struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2168	unsigned long addr, unsigned long len, pgoff_t pgoff)
2169{
2170	struct vm_area_struct *vma = *vmap;
2171	unsigned long vma_start = vma->vm_start;
2172	struct mm_struct *mm = vma->vm_mm;
2173	struct vm_area_struct *new_vma, *prev;
2174	struct rb_node **rb_link, *rb_parent;
2175	struct mempolicy *pol;
2176
2177	/*
2178	 * If anonymous vma has not yet been faulted, update new pgoff
2179	 * to match new location, to increase its chance of merging.
2180	 */
2181	if (!vma->vm_file && !vma->anon_vma)
2182		pgoff = addr >> PAGE_SHIFT;
2183
2184	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2185	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2186			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2187	if (new_vma) {
2188		/*
2189		 * Source vma may have been merged into new_vma
2190		 */
2191		if (vma_start >= new_vma->vm_start &&
2192		    vma_start < new_vma->vm_end)
2193			*vmap = new_vma;
2194	} else {
2195		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2196		if (new_vma) {
2197			*new_vma = *vma;
2198			pol = mpol_dup(vma_policy(vma));
2199			if (IS_ERR(pol)) {
2200				kmem_cache_free(vm_area_cachep, new_vma);
2201				return NULL;
2202			}
2203			vma_set_policy(new_vma, pol);
2204			new_vma->vm_start = addr;
2205			new_vma->vm_end = addr + len;
2206			new_vma->vm_pgoff = pgoff;
2207			if (new_vma->vm_file) {
2208				get_file(new_vma->vm_file);
2209				if (vma->vm_flags & VM_EXECUTABLE)
2210					added_exe_file_vma(mm);
2211			}
2212			if (new_vma->vm_ops && new_vma->vm_ops->open)
2213				new_vma->vm_ops->open(new_vma);
2214			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2215		}
2216	}
2217	return new_vma;
2218}
2219
2220/*
2221 * Return true if the calling process may expand its vm space by the passed
2222 * number of pages
2223 */
2224int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2225{
2226	unsigned long cur = mm->total_vm;	/* pages */
2227	unsigned long lim;
2228
2229	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2230
2231	if (cur + npages > lim)
2232		return 0;
2233	return 1;
2234}
2235
2236
2237static int special_mapping_fault(struct vm_area_struct *vma,
2238				struct vm_fault *vmf)
2239{
2240	pgoff_t pgoff;
2241	struct page **pages;
2242
2243	/*
2244	 * special mappings have no vm_file, and in that case, the mm
2245	 * uses vm_pgoff internally. So we have to subtract it from here.
2246	 * We are allowed to do this because we are the mm; do not copy
2247	 * this code into drivers!
2248	 */
2249	pgoff = vmf->pgoff - vma->vm_pgoff;
2250
2251	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2252		pgoff--;
2253
2254	if (*pages) {
2255		struct page *page = *pages;
2256		get_page(page);
2257		vmf->page = page;
2258		return 0;
2259	}
2260
2261	return VM_FAULT_SIGBUS;
2262}
2263
2264/*
2265 * Having a close hook prevents vma merging regardless of flags.
2266 */
2267static void special_mapping_close(struct vm_area_struct *vma)
2268{
2269}
2270
2271static struct vm_operations_struct special_mapping_vmops = {
2272	.close = special_mapping_close,
2273	.fault = special_mapping_fault,
2274};
2275
2276/*
2277 * Called with mm->mmap_sem held for writing.
2278 * Insert a new vma covering the given region, with the given flags.
2279 * Its pages are supplied by the given array of struct page *.
2280 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2281 * The region past the last page supplied will always produce SIGBUS.
2282 * The array pointer and the pages it points to are assumed to stay alive
2283 * for as long as this mapping might exist.
2284 */
2285int install_special_mapping(struct mm_struct *mm,
2286			    unsigned long addr, unsigned long len,
2287			    unsigned long vm_flags, struct page **pages)
2288{
2289	struct vm_area_struct *vma;
2290
2291	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2292	if (unlikely(vma == NULL))
2293		return -ENOMEM;
2294
2295	vma->vm_mm = mm;
2296	vma->vm_start = addr;
2297	vma->vm_end = addr + len;
2298
2299	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2300	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2301
2302	vma->vm_ops = &special_mapping_vmops;
2303	vma->vm_private_data = pages;
2304
2305	if (unlikely(insert_vm_struct(mm, vma))) {
2306		kmem_cache_free(vm_area_cachep, vma);
2307		return -ENOMEM;
2308	}
2309
2310	mm->total_vm += len >> PAGE_SHIFT;
2311
2312	return 0;
2313}
2314
2315static DEFINE_MUTEX(mm_all_locks_mutex);
2316
2317static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2318{
2319	if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2320		/*
2321		 * The LSB of head.next can't change from under us
2322		 * because we hold the mm_all_locks_mutex.
2323		 */
2324		spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2325		/*
2326		 * We can safely modify head.next after taking the
2327		 * anon_vma->lock. If some other vma in this mm shares
2328		 * the same anon_vma we won't take it again.
2329		 *
2330		 * No need of atomic instructions here, head.next
2331		 * can't change from under us thanks to the
2332		 * anon_vma->lock.
2333		 */
2334		if (__test_and_set_bit(0, (unsigned long *)
2335				       &anon_vma->head.next))
2336			BUG();
2337	}
2338}
2339
2340static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2341{
2342	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2343		/*
2344		 * AS_MM_ALL_LOCKS can't change from under us because
2345		 * we hold the mm_all_locks_mutex.
2346		 *
2347		 * Operations on ->flags have to be atomic because
2348		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2349		 * mm_all_locks_mutex, there may be other cpus
2350		 * changing other bitflags in parallel to us.
2351		 */
2352		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2353			BUG();
2354		spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2355	}
2356}
2357
2358/*
2359 * This operation locks against the VM for all pte/vma/mm related
2360 * operations that could ever happen on a certain mm. This includes
2361 * vmtruncate, try_to_unmap, and all page faults.
2362 *
2363 * The caller must take the mmap_sem in write mode before calling
2364 * mm_take_all_locks(). The caller isn't allowed to release the
2365 * mmap_sem until mm_drop_all_locks() returns.
2366 *
2367 * mmap_sem in write mode is required in order to block all operations
2368 * that could modify pagetables and free pages without need of
2369 * altering the vma layout (for example populate_range() with
2370 * nonlinear vmas). It's also needed in write mode to avoid new
2371 * anon_vmas to be associated with existing vmas.
2372 *
2373 * A single task can't take more than one mm_take_all_locks() in a row
2374 * or it would deadlock.
2375 *
2376 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2377 * mapping->flags avoid to take the same lock twice, if more than one
2378 * vma in this mm is backed by the same anon_vma or address_space.
2379 *
2380 * We can take all the locks in random order because the VM code
2381 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2382 * takes more than one of them in a row. Secondly we're protected
2383 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2384 *
2385 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2386 * that may have to take thousand of locks.
2387 *
2388 * mm_take_all_locks() can fail if it's interrupted by signals.
2389 */
2390int mm_take_all_locks(struct mm_struct *mm)
2391{
2392	struct vm_area_struct *vma;
2393	int ret = -EINTR;
2394
2395	BUG_ON(down_read_trylock(&mm->mmap_sem));
2396
2397	mutex_lock(&mm_all_locks_mutex);
2398
2399	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2400		if (signal_pending(current))
2401			goto out_unlock;
2402		if (vma->vm_file && vma->vm_file->f_mapping)
2403			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2404	}
2405
2406	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2407		if (signal_pending(current))
2408			goto out_unlock;
2409		if (vma->anon_vma)
2410			vm_lock_anon_vma(mm, vma->anon_vma);
2411	}
2412
2413	ret = 0;
2414
2415out_unlock:
2416	if (ret)
2417		mm_drop_all_locks(mm);
2418
2419	return ret;
2420}
2421
2422static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2423{
2424	if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2425		/*
2426		 * The LSB of head.next can't change to 0 from under
2427		 * us because we hold the mm_all_locks_mutex.
2428		 *
2429		 * We must however clear the bitflag before unlocking
2430		 * the vma so the users using the anon_vma->head will
2431		 * never see our bitflag.
2432		 *
2433		 * No need of atomic instructions here, head.next
2434		 * can't change from under us until we release the
2435		 * anon_vma->lock.
2436		 */
2437		if (!__test_and_clear_bit(0, (unsigned long *)
2438					  &anon_vma->head.next))
2439			BUG();
2440		spin_unlock(&anon_vma->lock);
2441	}
2442}
2443
2444static void vm_unlock_mapping(struct address_space *mapping)
2445{
2446	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2447		/*
2448		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2449		 * because we hold the mm_all_locks_mutex.
2450		 */
2451		spin_unlock(&mapping->i_mmap_lock);
2452		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2453					&mapping->flags))
2454			BUG();
2455	}
2456}
2457
2458/*
2459 * The mmap_sem cannot be released by the caller until
2460 * mm_drop_all_locks() returns.
2461 */
2462void mm_drop_all_locks(struct mm_struct *mm)
2463{
2464	struct vm_area_struct *vma;
2465
2466	BUG_ON(down_read_trylock(&mm->mmap_sem));
2467	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2468
2469	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2470		if (vma->anon_vma)
2471			vm_unlock_anon_vma(vma->anon_vma);
2472		if (vma->vm_file && vma->vm_file->f_mapping)
2473			vm_unlock_mapping(vma->vm_file->f_mapping);
2474	}
2475
2476	mutex_unlock(&mm_all_locks_mutex);
2477}
2478
2479/*
2480 * initialise the VMA slab
2481 */
2482void __init mmap_init(void)
2483{
2484}
2485