mmap.c revision 0d59a01bc461bbab4017ff449b8401151ef44cf6
1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code	<alan@redhat.com>
7 */
8
9#include <linux/slab.h>
10#include <linux/mm.h>
11#include <linux/shm.h>
12#include <linux/mman.h>
13#include <linux/pagemap.h>
14#include <linux/swap.h>
15#include <linux/syscalls.h>
16#include <linux/capability.h>
17#include <linux/init.h>
18#include <linux/file.h>
19#include <linux/fs.h>
20#include <linux/personality.h>
21#include <linux/security.h>
22#include <linux/hugetlb.h>
23#include <linux/profile.h>
24#include <linux/module.h>
25#include <linux/mount.h>
26#include <linux/mempolicy.h>
27#include <linux/rmap.h>
28
29#include <asm/uaccess.h>
30#include <asm/cacheflush.h>
31#include <asm/tlb.h>
32
33#ifndef arch_mmap_check
34#define arch_mmap_check(addr, len, flags)	(0)
35#endif
36
37static void unmap_region(struct mm_struct *mm,
38		struct vm_area_struct *vma, struct vm_area_struct *prev,
39		unsigned long start, unsigned long end);
40
41/*
42 * WARNING: the debugging will use recursive algorithms so never enable this
43 * unless you know what you are doing.
44 */
45#undef DEBUG_MM_RB
46
47/* description of effects of mapping type and prot in current implementation.
48 * this is due to the limited x86 page protection hardware.  The expected
49 * behavior is in parens:
50 *
51 * map_type	prot
52 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
53 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
54 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
55 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
56 *
57 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
58 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
59 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
60 *
61 */
62pgprot_t protection_map[16] = {
63	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
64	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
65};
66
67pgprot_t vm_get_page_prot(unsigned long vm_flags)
68{
69	return protection_map[vm_flags &
70				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
71}
72EXPORT_SYMBOL(vm_get_page_prot);
73
74int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
75int sysctl_overcommit_ratio = 50;	/* default is 50% */
76int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
77atomic_t vm_committed_space = ATOMIC_INIT(0);
78
79/*
80 * Check that a process has enough memory to allocate a new virtual
81 * mapping. 0 means there is enough memory for the allocation to
82 * succeed and -ENOMEM implies there is not.
83 *
84 * We currently support three overcommit policies, which are set via the
85 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
86 *
87 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
88 * Additional code 2002 Jul 20 by Robert Love.
89 *
90 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
91 *
92 * Note this is a helper function intended to be used by LSMs which
93 * wish to use this logic.
94 */
95int __vm_enough_memory(long pages, int cap_sys_admin)
96{
97	unsigned long free, allowed;
98
99	vm_acct_memory(pages);
100
101	/*
102	 * Sometimes we want to use more memory than we have
103	 */
104	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
105		return 0;
106
107	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
108		unsigned long n;
109
110		free = global_page_state(NR_FILE_PAGES);
111		free += nr_swap_pages;
112
113		/*
114		 * Any slabs which are created with the
115		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
116		 * which are reclaimable, under pressure.  The dentry
117		 * cache and most inode caches should fall into this
118		 */
119		free += global_page_state(NR_SLAB_RECLAIMABLE);
120
121		/*
122		 * Leave the last 3% for root
123		 */
124		if (!cap_sys_admin)
125			free -= free / 32;
126
127		if (free > pages)
128			return 0;
129
130		/*
131		 * nr_free_pages() is very expensive on large systems,
132		 * only call if we're about to fail.
133		 */
134		n = nr_free_pages();
135
136		/*
137		 * Leave reserved pages. The pages are not for anonymous pages.
138		 */
139		if (n <= totalreserve_pages)
140			goto error;
141		else
142			n -= totalreserve_pages;
143
144		/*
145		 * Leave the last 3% for root
146		 */
147		if (!cap_sys_admin)
148			n -= n / 32;
149		free += n;
150
151		if (free > pages)
152			return 0;
153
154		goto error;
155	}
156
157	allowed = (totalram_pages - hugetlb_total_pages())
158	       	* sysctl_overcommit_ratio / 100;
159	/*
160	 * Leave the last 3% for root
161	 */
162	if (!cap_sys_admin)
163		allowed -= allowed / 32;
164	allowed += total_swap_pages;
165
166	/* Don't let a single process grow too big:
167	   leave 3% of the size of this process for other processes */
168	allowed -= current->mm->total_vm / 32;
169
170	/*
171	 * cast `allowed' as a signed long because vm_committed_space
172	 * sometimes has a negative value
173	 */
174	if (atomic_read(&vm_committed_space) < (long)allowed)
175		return 0;
176error:
177	vm_unacct_memory(pages);
178
179	return -ENOMEM;
180}
181
182EXPORT_SYMBOL(__vm_enough_memory);
183
184/*
185 * Requires inode->i_mapping->i_mmap_lock
186 */
187static void __remove_shared_vm_struct(struct vm_area_struct *vma,
188		struct file *file, struct address_space *mapping)
189{
190	if (vma->vm_flags & VM_DENYWRITE)
191		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
192	if (vma->vm_flags & VM_SHARED)
193		mapping->i_mmap_writable--;
194
195	flush_dcache_mmap_lock(mapping);
196	if (unlikely(vma->vm_flags & VM_NONLINEAR))
197		list_del_init(&vma->shared.vm_set.list);
198	else
199		vma_prio_tree_remove(vma, &mapping->i_mmap);
200	flush_dcache_mmap_unlock(mapping);
201}
202
203/*
204 * Unlink a file-based vm structure from its prio_tree, to hide
205 * vma from rmap and vmtruncate before freeing its page tables.
206 */
207void unlink_file_vma(struct vm_area_struct *vma)
208{
209	struct file *file = vma->vm_file;
210
211	if (file) {
212		struct address_space *mapping = file->f_mapping;
213		spin_lock(&mapping->i_mmap_lock);
214		__remove_shared_vm_struct(vma, file, mapping);
215		spin_unlock(&mapping->i_mmap_lock);
216	}
217}
218
219/*
220 * Close a vm structure and free it, returning the next.
221 */
222static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
223{
224	struct vm_area_struct *next = vma->vm_next;
225
226	might_sleep();
227	if (vma->vm_ops && vma->vm_ops->close)
228		vma->vm_ops->close(vma);
229	if (vma->vm_file)
230		fput(vma->vm_file);
231	mpol_free(vma_policy(vma));
232	kmem_cache_free(vm_area_cachep, vma);
233	return next;
234}
235
236asmlinkage unsigned long sys_brk(unsigned long brk)
237{
238	unsigned long rlim, retval;
239	unsigned long newbrk, oldbrk;
240	struct mm_struct *mm = current->mm;
241
242	down_write(&mm->mmap_sem);
243
244	if (brk < mm->end_code)
245		goto out;
246
247	/*
248	 * Check against rlimit here. If this check is done later after the test
249	 * of oldbrk with newbrk then it can escape the test and let the data
250	 * segment grow beyond its set limit the in case where the limit is
251	 * not page aligned -Ram Gupta
252	 */
253	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
254	if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
255		goto out;
256
257	newbrk = PAGE_ALIGN(brk);
258	oldbrk = PAGE_ALIGN(mm->brk);
259	if (oldbrk == newbrk)
260		goto set_brk;
261
262	/* Always allow shrinking brk. */
263	if (brk <= mm->brk) {
264		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
265			goto set_brk;
266		goto out;
267	}
268
269	/* Check against existing mmap mappings. */
270	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
271		goto out;
272
273	/* Ok, looks good - let it rip. */
274	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
275		goto out;
276set_brk:
277	mm->brk = brk;
278out:
279	retval = mm->brk;
280	up_write(&mm->mmap_sem);
281	return retval;
282}
283
284#ifdef DEBUG_MM_RB
285static int browse_rb(struct rb_root *root)
286{
287	int i = 0, j;
288	struct rb_node *nd, *pn = NULL;
289	unsigned long prev = 0, pend = 0;
290
291	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
292		struct vm_area_struct *vma;
293		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
294		if (vma->vm_start < prev)
295			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
296		if (vma->vm_start < pend)
297			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
298		if (vma->vm_start > vma->vm_end)
299			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
300		i++;
301		pn = nd;
302	}
303	j = 0;
304	for (nd = pn; nd; nd = rb_prev(nd)) {
305		j++;
306	}
307	if (i != j)
308		printk("backwards %d, forwards %d\n", j, i), i = 0;
309	return i;
310}
311
312void validate_mm(struct mm_struct *mm)
313{
314	int bug = 0;
315	int i = 0;
316	struct vm_area_struct *tmp = mm->mmap;
317	while (tmp) {
318		tmp = tmp->vm_next;
319		i++;
320	}
321	if (i != mm->map_count)
322		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
323	i = browse_rb(&mm->mm_rb);
324	if (i != mm->map_count)
325		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
326	BUG_ON(bug);
327}
328#else
329#define validate_mm(mm) do { } while (0)
330#endif
331
332static struct vm_area_struct *
333find_vma_prepare(struct mm_struct *mm, unsigned long addr,
334		struct vm_area_struct **pprev, struct rb_node ***rb_link,
335		struct rb_node ** rb_parent)
336{
337	struct vm_area_struct * vma;
338	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
339
340	__rb_link = &mm->mm_rb.rb_node;
341	rb_prev = __rb_parent = NULL;
342	vma = NULL;
343
344	while (*__rb_link) {
345		struct vm_area_struct *vma_tmp;
346
347		__rb_parent = *__rb_link;
348		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
349
350		if (vma_tmp->vm_end > addr) {
351			vma = vma_tmp;
352			if (vma_tmp->vm_start <= addr)
353				return vma;
354			__rb_link = &__rb_parent->rb_left;
355		} else {
356			rb_prev = __rb_parent;
357			__rb_link = &__rb_parent->rb_right;
358		}
359	}
360
361	*pprev = NULL;
362	if (rb_prev)
363		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
364	*rb_link = __rb_link;
365	*rb_parent = __rb_parent;
366	return vma;
367}
368
369static inline void
370__vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
371		struct vm_area_struct *prev, struct rb_node *rb_parent)
372{
373	if (prev) {
374		vma->vm_next = prev->vm_next;
375		prev->vm_next = vma;
376	} else {
377		mm->mmap = vma;
378		if (rb_parent)
379			vma->vm_next = rb_entry(rb_parent,
380					struct vm_area_struct, vm_rb);
381		else
382			vma->vm_next = NULL;
383	}
384}
385
386void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
387		struct rb_node **rb_link, struct rb_node *rb_parent)
388{
389	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
390	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
391}
392
393static inline void __vma_link_file(struct vm_area_struct *vma)
394{
395	struct file * file;
396
397	file = vma->vm_file;
398	if (file) {
399		struct address_space *mapping = file->f_mapping;
400
401		if (vma->vm_flags & VM_DENYWRITE)
402			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
403		if (vma->vm_flags & VM_SHARED)
404			mapping->i_mmap_writable++;
405
406		flush_dcache_mmap_lock(mapping);
407		if (unlikely(vma->vm_flags & VM_NONLINEAR))
408			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
409		else
410			vma_prio_tree_insert(vma, &mapping->i_mmap);
411		flush_dcache_mmap_unlock(mapping);
412	}
413}
414
415static void
416__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
417	struct vm_area_struct *prev, struct rb_node **rb_link,
418	struct rb_node *rb_parent)
419{
420	__vma_link_list(mm, vma, prev, rb_parent);
421	__vma_link_rb(mm, vma, rb_link, rb_parent);
422	__anon_vma_link(vma);
423}
424
425static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
426			struct vm_area_struct *prev, struct rb_node **rb_link,
427			struct rb_node *rb_parent)
428{
429	struct address_space *mapping = NULL;
430
431	if (vma->vm_file)
432		mapping = vma->vm_file->f_mapping;
433
434	if (mapping) {
435		spin_lock(&mapping->i_mmap_lock);
436		vma->vm_truncate_count = mapping->truncate_count;
437	}
438	anon_vma_lock(vma);
439
440	__vma_link(mm, vma, prev, rb_link, rb_parent);
441	__vma_link_file(vma);
442
443	anon_vma_unlock(vma);
444	if (mapping)
445		spin_unlock(&mapping->i_mmap_lock);
446
447	mm->map_count++;
448	validate_mm(mm);
449}
450
451/*
452 * Helper for vma_adjust in the split_vma insert case:
453 * insert vm structure into list and rbtree and anon_vma,
454 * but it has already been inserted into prio_tree earlier.
455 */
456static void
457__insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
458{
459	struct vm_area_struct * __vma, * prev;
460	struct rb_node ** rb_link, * rb_parent;
461
462	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
463	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
464	__vma_link(mm, vma, prev, rb_link, rb_parent);
465	mm->map_count++;
466}
467
468static inline void
469__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
470		struct vm_area_struct *prev)
471{
472	prev->vm_next = vma->vm_next;
473	rb_erase(&vma->vm_rb, &mm->mm_rb);
474	if (mm->mmap_cache == vma)
475		mm->mmap_cache = prev;
476}
477
478/*
479 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
480 * is already present in an i_mmap tree without adjusting the tree.
481 * The following helper function should be used when such adjustments
482 * are necessary.  The "insert" vma (if any) is to be inserted
483 * before we drop the necessary locks.
484 */
485void vma_adjust(struct vm_area_struct *vma, unsigned long start,
486	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
487{
488	struct mm_struct *mm = vma->vm_mm;
489	struct vm_area_struct *next = vma->vm_next;
490	struct vm_area_struct *importer = NULL;
491	struct address_space *mapping = NULL;
492	struct prio_tree_root *root = NULL;
493	struct file *file = vma->vm_file;
494	struct anon_vma *anon_vma = NULL;
495	long adjust_next = 0;
496	int remove_next = 0;
497
498	if (next && !insert) {
499		if (end >= next->vm_end) {
500			/*
501			 * vma expands, overlapping all the next, and
502			 * perhaps the one after too (mprotect case 6).
503			 */
504again:			remove_next = 1 + (end > next->vm_end);
505			end = next->vm_end;
506			anon_vma = next->anon_vma;
507			importer = vma;
508		} else if (end > next->vm_start) {
509			/*
510			 * vma expands, overlapping part of the next:
511			 * mprotect case 5 shifting the boundary up.
512			 */
513			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
514			anon_vma = next->anon_vma;
515			importer = vma;
516		} else if (end < vma->vm_end) {
517			/*
518			 * vma shrinks, and !insert tells it's not
519			 * split_vma inserting another: so it must be
520			 * mprotect case 4 shifting the boundary down.
521			 */
522			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
523			anon_vma = next->anon_vma;
524			importer = next;
525		}
526	}
527
528	if (file) {
529		mapping = file->f_mapping;
530		if (!(vma->vm_flags & VM_NONLINEAR))
531			root = &mapping->i_mmap;
532		spin_lock(&mapping->i_mmap_lock);
533		if (importer &&
534		    vma->vm_truncate_count != next->vm_truncate_count) {
535			/*
536			 * unmap_mapping_range might be in progress:
537			 * ensure that the expanding vma is rescanned.
538			 */
539			importer->vm_truncate_count = 0;
540		}
541		if (insert) {
542			insert->vm_truncate_count = vma->vm_truncate_count;
543			/*
544			 * Put into prio_tree now, so instantiated pages
545			 * are visible to arm/parisc __flush_dcache_page
546			 * throughout; but we cannot insert into address
547			 * space until vma start or end is updated.
548			 */
549			__vma_link_file(insert);
550		}
551	}
552
553	/*
554	 * When changing only vma->vm_end, we don't really need
555	 * anon_vma lock: but is that case worth optimizing out?
556	 */
557	if (vma->anon_vma)
558		anon_vma = vma->anon_vma;
559	if (anon_vma) {
560		spin_lock(&anon_vma->lock);
561		/*
562		 * Easily overlooked: when mprotect shifts the boundary,
563		 * make sure the expanding vma has anon_vma set if the
564		 * shrinking vma had, to cover any anon pages imported.
565		 */
566		if (importer && !importer->anon_vma) {
567			importer->anon_vma = anon_vma;
568			__anon_vma_link(importer);
569		}
570	}
571
572	if (root) {
573		flush_dcache_mmap_lock(mapping);
574		vma_prio_tree_remove(vma, root);
575		if (adjust_next)
576			vma_prio_tree_remove(next, root);
577	}
578
579	vma->vm_start = start;
580	vma->vm_end = end;
581	vma->vm_pgoff = pgoff;
582	if (adjust_next) {
583		next->vm_start += adjust_next << PAGE_SHIFT;
584		next->vm_pgoff += adjust_next;
585	}
586
587	if (root) {
588		if (adjust_next)
589			vma_prio_tree_insert(next, root);
590		vma_prio_tree_insert(vma, root);
591		flush_dcache_mmap_unlock(mapping);
592	}
593
594	if (remove_next) {
595		/*
596		 * vma_merge has merged next into vma, and needs
597		 * us to remove next before dropping the locks.
598		 */
599		__vma_unlink(mm, next, vma);
600		if (file)
601			__remove_shared_vm_struct(next, file, mapping);
602		if (next->anon_vma)
603			__anon_vma_merge(vma, next);
604	} else if (insert) {
605		/*
606		 * split_vma has split insert from vma, and needs
607		 * us to insert it before dropping the locks
608		 * (it may either follow vma or precede it).
609		 */
610		__insert_vm_struct(mm, insert);
611	}
612
613	if (anon_vma)
614		spin_unlock(&anon_vma->lock);
615	if (mapping)
616		spin_unlock(&mapping->i_mmap_lock);
617
618	if (remove_next) {
619		if (file)
620			fput(file);
621		mm->map_count--;
622		mpol_free(vma_policy(next));
623		kmem_cache_free(vm_area_cachep, next);
624		/*
625		 * In mprotect's case 6 (see comments on vma_merge),
626		 * we must remove another next too. It would clutter
627		 * up the code too much to do both in one go.
628		 */
629		if (remove_next == 2) {
630			next = vma->vm_next;
631			goto again;
632		}
633	}
634
635	validate_mm(mm);
636}
637
638/*
639 * If the vma has a ->close operation then the driver probably needs to release
640 * per-vma resources, so we don't attempt to merge those.
641 */
642#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
643
644static inline int is_mergeable_vma(struct vm_area_struct *vma,
645			struct file *file, unsigned long vm_flags)
646{
647	if (vma->vm_flags != vm_flags)
648		return 0;
649	if (vma->vm_file != file)
650		return 0;
651	if (vma->vm_ops && vma->vm_ops->close)
652		return 0;
653	return 1;
654}
655
656static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
657					struct anon_vma *anon_vma2)
658{
659	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
660}
661
662/*
663 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
664 * in front of (at a lower virtual address and file offset than) the vma.
665 *
666 * We cannot merge two vmas if they have differently assigned (non-NULL)
667 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
668 *
669 * We don't check here for the merged mmap wrapping around the end of pagecache
670 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
671 * wrap, nor mmaps which cover the final page at index -1UL.
672 */
673static int
674can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
675	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
676{
677	if (is_mergeable_vma(vma, file, vm_flags) &&
678	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
679		if (vma->vm_pgoff == vm_pgoff)
680			return 1;
681	}
682	return 0;
683}
684
685/*
686 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
687 * beyond (at a higher virtual address and file offset than) the vma.
688 *
689 * We cannot merge two vmas if they have differently assigned (non-NULL)
690 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
691 */
692static int
693can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
694	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
695{
696	if (is_mergeable_vma(vma, file, vm_flags) &&
697	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
698		pgoff_t vm_pglen;
699		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
700		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
701			return 1;
702	}
703	return 0;
704}
705
706/*
707 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
708 * whether that can be merged with its predecessor or its successor.
709 * Or both (it neatly fills a hole).
710 *
711 * In most cases - when called for mmap, brk or mremap - [addr,end) is
712 * certain not to be mapped by the time vma_merge is called; but when
713 * called for mprotect, it is certain to be already mapped (either at
714 * an offset within prev, or at the start of next), and the flags of
715 * this area are about to be changed to vm_flags - and the no-change
716 * case has already been eliminated.
717 *
718 * The following mprotect cases have to be considered, where AAAA is
719 * the area passed down from mprotect_fixup, never extending beyond one
720 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
721 *
722 *     AAAA             AAAA                AAAA          AAAA
723 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
724 *    cannot merge    might become    might become    might become
725 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
726 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
727 *    mremap move:                                    PPPPNNNNNNNN 8
728 *        AAAA
729 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
730 *    might become    case 1 below    case 2 below    case 3 below
731 *
732 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
733 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
734 */
735struct vm_area_struct *vma_merge(struct mm_struct *mm,
736			struct vm_area_struct *prev, unsigned long addr,
737			unsigned long end, unsigned long vm_flags,
738		     	struct anon_vma *anon_vma, struct file *file,
739			pgoff_t pgoff, struct mempolicy *policy)
740{
741	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
742	struct vm_area_struct *area, *next;
743
744	/*
745	 * We later require that vma->vm_flags == vm_flags,
746	 * so this tests vma->vm_flags & VM_SPECIAL, too.
747	 */
748	if (vm_flags & VM_SPECIAL)
749		return NULL;
750
751	if (prev)
752		next = prev->vm_next;
753	else
754		next = mm->mmap;
755	area = next;
756	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
757		next = next->vm_next;
758
759	/*
760	 * Can it merge with the predecessor?
761	 */
762	if (prev && prev->vm_end == addr &&
763  			mpol_equal(vma_policy(prev), policy) &&
764			can_vma_merge_after(prev, vm_flags,
765						anon_vma, file, pgoff)) {
766		/*
767		 * OK, it can.  Can we now merge in the successor as well?
768		 */
769		if (next && end == next->vm_start &&
770				mpol_equal(policy, vma_policy(next)) &&
771				can_vma_merge_before(next, vm_flags,
772					anon_vma, file, pgoff+pglen) &&
773				is_mergeable_anon_vma(prev->anon_vma,
774						      next->anon_vma)) {
775							/* cases 1, 6 */
776			vma_adjust(prev, prev->vm_start,
777				next->vm_end, prev->vm_pgoff, NULL);
778		} else					/* cases 2, 5, 7 */
779			vma_adjust(prev, prev->vm_start,
780				end, prev->vm_pgoff, NULL);
781		return prev;
782	}
783
784	/*
785	 * Can this new request be merged in front of next?
786	 */
787	if (next && end == next->vm_start &&
788 			mpol_equal(policy, vma_policy(next)) &&
789			can_vma_merge_before(next, vm_flags,
790					anon_vma, file, pgoff+pglen)) {
791		if (prev && addr < prev->vm_end)	/* case 4 */
792			vma_adjust(prev, prev->vm_start,
793				addr, prev->vm_pgoff, NULL);
794		else					/* cases 3, 8 */
795			vma_adjust(area, addr, next->vm_end,
796				next->vm_pgoff - pglen, NULL);
797		return area;
798	}
799
800	return NULL;
801}
802
803/*
804 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
805 * neighbouring vmas for a suitable anon_vma, before it goes off
806 * to allocate a new anon_vma.  It checks because a repetitive
807 * sequence of mprotects and faults may otherwise lead to distinct
808 * anon_vmas being allocated, preventing vma merge in subsequent
809 * mprotect.
810 */
811struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
812{
813	struct vm_area_struct *near;
814	unsigned long vm_flags;
815
816	near = vma->vm_next;
817	if (!near)
818		goto try_prev;
819
820	/*
821	 * Since only mprotect tries to remerge vmas, match flags
822	 * which might be mprotected into each other later on.
823	 * Neither mlock nor madvise tries to remerge at present,
824	 * so leave their flags as obstructing a merge.
825	 */
826	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
827	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
828
829	if (near->anon_vma && vma->vm_end == near->vm_start &&
830 			mpol_equal(vma_policy(vma), vma_policy(near)) &&
831			can_vma_merge_before(near, vm_flags,
832				NULL, vma->vm_file, vma->vm_pgoff +
833				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
834		return near->anon_vma;
835try_prev:
836	/*
837	 * It is potentially slow to have to call find_vma_prev here.
838	 * But it's only on the first write fault on the vma, not
839	 * every time, and we could devise a way to avoid it later
840	 * (e.g. stash info in next's anon_vma_node when assigning
841	 * an anon_vma, or when trying vma_merge).  Another time.
842	 */
843	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
844	if (!near)
845		goto none;
846
847	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
848	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
849
850	if (near->anon_vma && near->vm_end == vma->vm_start &&
851  			mpol_equal(vma_policy(near), vma_policy(vma)) &&
852			can_vma_merge_after(near, vm_flags,
853				NULL, vma->vm_file, vma->vm_pgoff))
854		return near->anon_vma;
855none:
856	/*
857	 * There's no absolute need to look only at touching neighbours:
858	 * we could search further afield for "compatible" anon_vmas.
859	 * But it would probably just be a waste of time searching,
860	 * or lead to too many vmas hanging off the same anon_vma.
861	 * We're trying to allow mprotect remerging later on,
862	 * not trying to minimize memory used for anon_vmas.
863	 */
864	return NULL;
865}
866
867#ifdef CONFIG_PROC_FS
868void vm_stat_account(struct mm_struct *mm, unsigned long flags,
869						struct file *file, long pages)
870{
871	const unsigned long stack_flags
872		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
873
874	if (file) {
875		mm->shared_vm += pages;
876		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
877			mm->exec_vm += pages;
878	} else if (flags & stack_flags)
879		mm->stack_vm += pages;
880	if (flags & (VM_RESERVED|VM_IO))
881		mm->reserved_vm += pages;
882}
883#endif /* CONFIG_PROC_FS */
884
885/*
886 * The caller must hold down_write(current->mm->mmap_sem).
887 */
888
889unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
890			unsigned long len, unsigned long prot,
891			unsigned long flags, unsigned long pgoff)
892{
893	struct mm_struct * mm = current->mm;
894	struct vm_area_struct * vma, * prev;
895	struct inode *inode;
896	unsigned int vm_flags;
897	int correct_wcount = 0;
898	int error;
899	struct rb_node ** rb_link, * rb_parent;
900	int accountable = 1;
901	unsigned long charged = 0, reqprot = prot;
902
903	/*
904	 * Does the application expect PROT_READ to imply PROT_EXEC?
905	 *
906	 * (the exception is when the underlying filesystem is noexec
907	 *  mounted, in which case we dont add PROT_EXEC.)
908	 */
909	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
910		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
911			prot |= PROT_EXEC;
912
913	if (!len)
914		return -EINVAL;
915
916	error = arch_mmap_check(addr, len, flags);
917	if (error)
918		return error;
919
920	/* Careful about overflows.. */
921	len = PAGE_ALIGN(len);
922	if (!len || len > TASK_SIZE)
923		return -ENOMEM;
924
925	/* offset overflow? */
926	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
927               return -EOVERFLOW;
928
929	/* Too many mappings? */
930	if (mm->map_count > sysctl_max_map_count)
931		return -ENOMEM;
932
933	/* Obtain the address to map to. we verify (or select) it and ensure
934	 * that it represents a valid section of the address space.
935	 */
936	addr = get_unmapped_area(file, addr, len, pgoff, flags);
937	if (addr & ~PAGE_MASK)
938		return addr;
939
940	/* Do simple checking here so the lower-level routines won't have
941	 * to. we assume access permissions have been handled by the open
942	 * of the memory object, so we don't do any here.
943	 */
944	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
945			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
946
947	if (flags & MAP_LOCKED) {
948		if (!can_do_mlock())
949			return -EPERM;
950		vm_flags |= VM_LOCKED;
951	}
952	/* mlock MCL_FUTURE? */
953	if (vm_flags & VM_LOCKED) {
954		unsigned long locked, lock_limit;
955		locked = len >> PAGE_SHIFT;
956		locked += mm->locked_vm;
957		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
958		lock_limit >>= PAGE_SHIFT;
959		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
960			return -EAGAIN;
961	}
962
963	inode = file ? file->f_path.dentry->d_inode : NULL;
964
965	if (file) {
966		switch (flags & MAP_TYPE) {
967		case MAP_SHARED:
968			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
969				return -EACCES;
970
971			/*
972			 * Make sure we don't allow writing to an append-only
973			 * file..
974			 */
975			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
976				return -EACCES;
977
978			/*
979			 * Make sure there are no mandatory locks on the file.
980			 */
981			if (locks_verify_locked(inode))
982				return -EAGAIN;
983
984			vm_flags |= VM_SHARED | VM_MAYSHARE;
985			if (!(file->f_mode & FMODE_WRITE))
986				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
987
988			/* fall through */
989		case MAP_PRIVATE:
990			if (!(file->f_mode & FMODE_READ))
991				return -EACCES;
992			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
993				if (vm_flags & VM_EXEC)
994					return -EPERM;
995				vm_flags &= ~VM_MAYEXEC;
996			}
997			if (is_file_hugepages(file))
998				accountable = 0;
999
1000			if (!file->f_op || !file->f_op->mmap)
1001				return -ENODEV;
1002			break;
1003
1004		default:
1005			return -EINVAL;
1006		}
1007	} else {
1008		switch (flags & MAP_TYPE) {
1009		case MAP_SHARED:
1010			vm_flags |= VM_SHARED | VM_MAYSHARE;
1011			break;
1012		case MAP_PRIVATE:
1013			/*
1014			 * Set pgoff according to addr for anon_vma.
1015			 */
1016			pgoff = addr >> PAGE_SHIFT;
1017			break;
1018		default:
1019			return -EINVAL;
1020		}
1021	}
1022
1023	error = security_file_mmap(file, reqprot, prot, flags);
1024	if (error)
1025		return error;
1026
1027	/* Clear old maps */
1028	error = -ENOMEM;
1029munmap_back:
1030	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1031	if (vma && vma->vm_start < addr + len) {
1032		if (do_munmap(mm, addr, len))
1033			return -ENOMEM;
1034		goto munmap_back;
1035	}
1036
1037	/* Check against address space limit. */
1038	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1039		return -ENOMEM;
1040
1041	if (accountable && (!(flags & MAP_NORESERVE) ||
1042			    sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1043		if (vm_flags & VM_SHARED) {
1044			/* Check memory availability in shmem_file_setup? */
1045			vm_flags |= VM_ACCOUNT;
1046		} else if (vm_flags & VM_WRITE) {
1047			/*
1048			 * Private writable mapping: check memory availability
1049			 */
1050			charged = len >> PAGE_SHIFT;
1051			if (security_vm_enough_memory(charged))
1052				return -ENOMEM;
1053			vm_flags |= VM_ACCOUNT;
1054		}
1055	}
1056
1057	/*
1058	 * Can we just expand an old private anonymous mapping?
1059	 * The VM_SHARED test is necessary because shmem_zero_setup
1060	 * will create the file object for a shared anonymous map below.
1061	 */
1062	if (!file && !(vm_flags & VM_SHARED) &&
1063	    vma_merge(mm, prev, addr, addr + len, vm_flags,
1064					NULL, NULL, pgoff, NULL))
1065		goto out;
1066
1067	/*
1068	 * Determine the object being mapped and call the appropriate
1069	 * specific mapper. the address has already been validated, but
1070	 * not unmapped, but the maps are removed from the list.
1071	 */
1072	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1073	if (!vma) {
1074		error = -ENOMEM;
1075		goto unacct_error;
1076	}
1077
1078	vma->vm_mm = mm;
1079	vma->vm_start = addr;
1080	vma->vm_end = addr + len;
1081	vma->vm_flags = vm_flags;
1082	vma->vm_page_prot = protection_map[vm_flags &
1083				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
1084	vma->vm_pgoff = pgoff;
1085
1086	if (file) {
1087		error = -EINVAL;
1088		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1089			goto free_vma;
1090		if (vm_flags & VM_DENYWRITE) {
1091			error = deny_write_access(file);
1092			if (error)
1093				goto free_vma;
1094			correct_wcount = 1;
1095		}
1096		vma->vm_file = file;
1097		get_file(file);
1098		error = file->f_op->mmap(file, vma);
1099		if (error)
1100			goto unmap_and_free_vma;
1101	} else if (vm_flags & VM_SHARED) {
1102		error = shmem_zero_setup(vma);
1103		if (error)
1104			goto free_vma;
1105	}
1106
1107	/* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1108	 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1109	 * that memory reservation must be checked; but that reservation
1110	 * belongs to shared memory object, not to vma: so now clear it.
1111	 */
1112	if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1113		vma->vm_flags &= ~VM_ACCOUNT;
1114
1115	/* Can addr have changed??
1116	 *
1117	 * Answer: Yes, several device drivers can do it in their
1118	 *         f_op->mmap method. -DaveM
1119	 */
1120	addr = vma->vm_start;
1121	pgoff = vma->vm_pgoff;
1122	vm_flags = vma->vm_flags;
1123
1124	if (vma_wants_writenotify(vma))
1125		vma->vm_page_prot =
1126			protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC)];
1127
1128	if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1129			vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1130		file = vma->vm_file;
1131		vma_link(mm, vma, prev, rb_link, rb_parent);
1132		if (correct_wcount)
1133			atomic_inc(&inode->i_writecount);
1134	} else {
1135		if (file) {
1136			if (correct_wcount)
1137				atomic_inc(&inode->i_writecount);
1138			fput(file);
1139		}
1140		mpol_free(vma_policy(vma));
1141		kmem_cache_free(vm_area_cachep, vma);
1142	}
1143out:
1144	mm->total_vm += len >> PAGE_SHIFT;
1145	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1146	if (vm_flags & VM_LOCKED) {
1147		mm->locked_vm += len >> PAGE_SHIFT;
1148		make_pages_present(addr, addr + len);
1149	}
1150	if (flags & MAP_POPULATE) {
1151		up_write(&mm->mmap_sem);
1152		sys_remap_file_pages(addr, len, 0,
1153					pgoff, flags & MAP_NONBLOCK);
1154		down_write(&mm->mmap_sem);
1155	}
1156	return addr;
1157
1158unmap_and_free_vma:
1159	if (correct_wcount)
1160		atomic_inc(&inode->i_writecount);
1161	vma->vm_file = NULL;
1162	fput(file);
1163
1164	/* Undo any partial mapping done by a device driver. */
1165	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1166	charged = 0;
1167free_vma:
1168	kmem_cache_free(vm_area_cachep, vma);
1169unacct_error:
1170	if (charged)
1171		vm_unacct_memory(charged);
1172	return error;
1173}
1174
1175EXPORT_SYMBOL(do_mmap_pgoff);
1176
1177/* Get an address range which is currently unmapped.
1178 * For shmat() with addr=0.
1179 *
1180 * Ugly calling convention alert:
1181 * Return value with the low bits set means error value,
1182 * ie
1183 *	if (ret & ~PAGE_MASK)
1184 *		error = ret;
1185 *
1186 * This function "knows" that -ENOMEM has the bits set.
1187 */
1188#ifndef HAVE_ARCH_UNMAPPED_AREA
1189unsigned long
1190arch_get_unmapped_area(struct file *filp, unsigned long addr,
1191		unsigned long len, unsigned long pgoff, unsigned long flags)
1192{
1193	struct mm_struct *mm = current->mm;
1194	struct vm_area_struct *vma;
1195	unsigned long start_addr;
1196
1197	if (len > TASK_SIZE)
1198		return -ENOMEM;
1199
1200	if (addr) {
1201		addr = PAGE_ALIGN(addr);
1202		vma = find_vma(mm, addr);
1203		if (TASK_SIZE - len >= addr &&
1204		    (!vma || addr + len <= vma->vm_start))
1205			return addr;
1206	}
1207	if (len > mm->cached_hole_size) {
1208	        start_addr = addr = mm->free_area_cache;
1209	} else {
1210	        start_addr = addr = TASK_UNMAPPED_BASE;
1211	        mm->cached_hole_size = 0;
1212	}
1213
1214full_search:
1215	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1216		/* At this point:  (!vma || addr < vma->vm_end). */
1217		if (TASK_SIZE - len < addr) {
1218			/*
1219			 * Start a new search - just in case we missed
1220			 * some holes.
1221			 */
1222			if (start_addr != TASK_UNMAPPED_BASE) {
1223				addr = TASK_UNMAPPED_BASE;
1224			        start_addr = addr;
1225				mm->cached_hole_size = 0;
1226				goto full_search;
1227			}
1228			return -ENOMEM;
1229		}
1230		if (!vma || addr + len <= vma->vm_start) {
1231			/*
1232			 * Remember the place where we stopped the search:
1233			 */
1234			mm->free_area_cache = addr + len;
1235			return addr;
1236		}
1237		if (addr + mm->cached_hole_size < vma->vm_start)
1238		        mm->cached_hole_size = vma->vm_start - addr;
1239		addr = vma->vm_end;
1240	}
1241}
1242#endif
1243
1244void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1245{
1246	/*
1247	 * Is this a new hole at the lowest possible address?
1248	 */
1249	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1250		mm->free_area_cache = addr;
1251		mm->cached_hole_size = ~0UL;
1252	}
1253}
1254
1255/*
1256 * This mmap-allocator allocates new areas top-down from below the
1257 * stack's low limit (the base):
1258 */
1259#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1260unsigned long
1261arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1262			  const unsigned long len, const unsigned long pgoff,
1263			  const unsigned long flags)
1264{
1265	struct vm_area_struct *vma;
1266	struct mm_struct *mm = current->mm;
1267	unsigned long addr = addr0;
1268
1269	/* requested length too big for entire address space */
1270	if (len > TASK_SIZE)
1271		return -ENOMEM;
1272
1273	/* requesting a specific address */
1274	if (addr) {
1275		addr = PAGE_ALIGN(addr);
1276		vma = find_vma(mm, addr);
1277		if (TASK_SIZE - len >= addr &&
1278				(!vma || addr + len <= vma->vm_start))
1279			return addr;
1280	}
1281
1282	/* check if free_area_cache is useful for us */
1283	if (len <= mm->cached_hole_size) {
1284 	        mm->cached_hole_size = 0;
1285 		mm->free_area_cache = mm->mmap_base;
1286 	}
1287
1288	/* either no address requested or can't fit in requested address hole */
1289	addr = mm->free_area_cache;
1290
1291	/* make sure it can fit in the remaining address space */
1292	if (addr > len) {
1293		vma = find_vma(mm, addr-len);
1294		if (!vma || addr <= vma->vm_start)
1295			/* remember the address as a hint for next time */
1296			return (mm->free_area_cache = addr-len);
1297	}
1298
1299	if (mm->mmap_base < len)
1300		goto bottomup;
1301
1302	addr = mm->mmap_base-len;
1303
1304	do {
1305		/*
1306		 * Lookup failure means no vma is above this address,
1307		 * else if new region fits below vma->vm_start,
1308		 * return with success:
1309		 */
1310		vma = find_vma(mm, addr);
1311		if (!vma || addr+len <= vma->vm_start)
1312			/* remember the address as a hint for next time */
1313			return (mm->free_area_cache = addr);
1314
1315 		/* remember the largest hole we saw so far */
1316 		if (addr + mm->cached_hole_size < vma->vm_start)
1317 		        mm->cached_hole_size = vma->vm_start - addr;
1318
1319		/* try just below the current vma->vm_start */
1320		addr = vma->vm_start-len;
1321	} while (len < vma->vm_start);
1322
1323bottomup:
1324	/*
1325	 * A failed mmap() very likely causes application failure,
1326	 * so fall back to the bottom-up function here. This scenario
1327	 * can happen with large stack limits and large mmap()
1328	 * allocations.
1329	 */
1330	mm->cached_hole_size = ~0UL;
1331  	mm->free_area_cache = TASK_UNMAPPED_BASE;
1332	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1333	/*
1334	 * Restore the topdown base:
1335	 */
1336	mm->free_area_cache = mm->mmap_base;
1337	mm->cached_hole_size = ~0UL;
1338
1339	return addr;
1340}
1341#endif
1342
1343void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1344{
1345	/*
1346	 * Is this a new hole at the highest possible address?
1347	 */
1348	if (addr > mm->free_area_cache)
1349		mm->free_area_cache = addr;
1350
1351	/* dont allow allocations above current base */
1352	if (mm->free_area_cache > mm->mmap_base)
1353		mm->free_area_cache = mm->mmap_base;
1354}
1355
1356unsigned long
1357get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1358		unsigned long pgoff, unsigned long flags)
1359{
1360	unsigned long ret;
1361
1362	if (!(flags & MAP_FIXED)) {
1363		unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1364
1365		get_area = current->mm->get_unmapped_area;
1366		if (file && file->f_op && file->f_op->get_unmapped_area)
1367			get_area = file->f_op->get_unmapped_area;
1368		addr = get_area(file, addr, len, pgoff, flags);
1369		if (IS_ERR_VALUE(addr))
1370			return addr;
1371	}
1372
1373	if (addr > TASK_SIZE - len)
1374		return -ENOMEM;
1375	if (addr & ~PAGE_MASK)
1376		return -EINVAL;
1377	if (file && is_file_hugepages(file))  {
1378		/*
1379		 * Check if the given range is hugepage aligned, and
1380		 * can be made suitable for hugepages.
1381		 */
1382		ret = prepare_hugepage_range(addr, len, pgoff);
1383	} else {
1384		/*
1385		 * Ensure that a normal request is not falling in a
1386		 * reserved hugepage range.  For some archs like IA-64,
1387		 * there is a separate region for hugepages.
1388		 */
1389		ret = is_hugepage_only_range(current->mm, addr, len);
1390	}
1391	if (ret)
1392		return -EINVAL;
1393	return addr;
1394}
1395
1396EXPORT_SYMBOL(get_unmapped_area);
1397
1398/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1399struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1400{
1401	struct vm_area_struct *vma = NULL;
1402
1403	if (mm) {
1404		/* Check the cache first. */
1405		/* (Cache hit rate is typically around 35%.) */
1406		vma = mm->mmap_cache;
1407		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1408			struct rb_node * rb_node;
1409
1410			rb_node = mm->mm_rb.rb_node;
1411			vma = NULL;
1412
1413			while (rb_node) {
1414				struct vm_area_struct * vma_tmp;
1415
1416				vma_tmp = rb_entry(rb_node,
1417						struct vm_area_struct, vm_rb);
1418
1419				if (vma_tmp->vm_end > addr) {
1420					vma = vma_tmp;
1421					if (vma_tmp->vm_start <= addr)
1422						break;
1423					rb_node = rb_node->rb_left;
1424				} else
1425					rb_node = rb_node->rb_right;
1426			}
1427			if (vma)
1428				mm->mmap_cache = vma;
1429		}
1430	}
1431	return vma;
1432}
1433
1434EXPORT_SYMBOL(find_vma);
1435
1436/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1437struct vm_area_struct *
1438find_vma_prev(struct mm_struct *mm, unsigned long addr,
1439			struct vm_area_struct **pprev)
1440{
1441	struct vm_area_struct *vma = NULL, *prev = NULL;
1442	struct rb_node * rb_node;
1443	if (!mm)
1444		goto out;
1445
1446	/* Guard against addr being lower than the first VMA */
1447	vma = mm->mmap;
1448
1449	/* Go through the RB tree quickly. */
1450	rb_node = mm->mm_rb.rb_node;
1451
1452	while (rb_node) {
1453		struct vm_area_struct *vma_tmp;
1454		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1455
1456		if (addr < vma_tmp->vm_end) {
1457			rb_node = rb_node->rb_left;
1458		} else {
1459			prev = vma_tmp;
1460			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1461				break;
1462			rb_node = rb_node->rb_right;
1463		}
1464	}
1465
1466out:
1467	*pprev = prev;
1468	return prev ? prev->vm_next : vma;
1469}
1470
1471/*
1472 * Verify that the stack growth is acceptable and
1473 * update accounting. This is shared with both the
1474 * grow-up and grow-down cases.
1475 */
1476static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1477{
1478	struct mm_struct *mm = vma->vm_mm;
1479	struct rlimit *rlim = current->signal->rlim;
1480	unsigned long new_start;
1481
1482	/* address space limit tests */
1483	if (!may_expand_vm(mm, grow))
1484		return -ENOMEM;
1485
1486	/* Stack limit test */
1487	if (size > rlim[RLIMIT_STACK].rlim_cur)
1488		return -ENOMEM;
1489
1490	/* mlock limit tests */
1491	if (vma->vm_flags & VM_LOCKED) {
1492		unsigned long locked;
1493		unsigned long limit;
1494		locked = mm->locked_vm + grow;
1495		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1496		if (locked > limit && !capable(CAP_IPC_LOCK))
1497			return -ENOMEM;
1498	}
1499
1500	/* Check to ensure the stack will not grow into a hugetlb-only region */
1501	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1502			vma->vm_end - size;
1503	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1504		return -EFAULT;
1505
1506	/*
1507	 * Overcommit..  This must be the final test, as it will
1508	 * update security statistics.
1509	 */
1510	if (security_vm_enough_memory(grow))
1511		return -ENOMEM;
1512
1513	/* Ok, everything looks good - let it rip */
1514	mm->total_vm += grow;
1515	if (vma->vm_flags & VM_LOCKED)
1516		mm->locked_vm += grow;
1517	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1518	return 0;
1519}
1520
1521#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1522/*
1523 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1524 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1525 */
1526#ifndef CONFIG_IA64
1527static inline
1528#endif
1529int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1530{
1531	int error;
1532
1533	if (!(vma->vm_flags & VM_GROWSUP))
1534		return -EFAULT;
1535
1536	/*
1537	 * We must make sure the anon_vma is allocated
1538	 * so that the anon_vma locking is not a noop.
1539	 */
1540	if (unlikely(anon_vma_prepare(vma)))
1541		return -ENOMEM;
1542	anon_vma_lock(vma);
1543
1544	/*
1545	 * vma->vm_start/vm_end cannot change under us because the caller
1546	 * is required to hold the mmap_sem in read mode.  We need the
1547	 * anon_vma lock to serialize against concurrent expand_stacks.
1548	 */
1549	address += 4 + PAGE_SIZE - 1;
1550	address &= PAGE_MASK;
1551	error = 0;
1552
1553	/* Somebody else might have raced and expanded it already */
1554	if (address > vma->vm_end) {
1555		unsigned long size, grow;
1556
1557		size = address - vma->vm_start;
1558		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1559
1560		error = acct_stack_growth(vma, size, grow);
1561		if (!error)
1562			vma->vm_end = address;
1563	}
1564	anon_vma_unlock(vma);
1565	return error;
1566}
1567#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1568
1569#ifdef CONFIG_STACK_GROWSUP
1570int expand_stack(struct vm_area_struct *vma, unsigned long address)
1571{
1572	return expand_upwards(vma, address);
1573}
1574
1575struct vm_area_struct *
1576find_extend_vma(struct mm_struct *mm, unsigned long addr)
1577{
1578	struct vm_area_struct *vma, *prev;
1579
1580	addr &= PAGE_MASK;
1581	vma = find_vma_prev(mm, addr, &prev);
1582	if (vma && (vma->vm_start <= addr))
1583		return vma;
1584	if (!prev || expand_stack(prev, addr))
1585		return NULL;
1586	if (prev->vm_flags & VM_LOCKED) {
1587		make_pages_present(addr, prev->vm_end);
1588	}
1589	return prev;
1590}
1591#else
1592/*
1593 * vma is the first one with address < vma->vm_start.  Have to extend vma.
1594 */
1595int expand_stack(struct vm_area_struct *vma, unsigned long address)
1596{
1597	int error;
1598
1599	/*
1600	 * We must make sure the anon_vma is allocated
1601	 * so that the anon_vma locking is not a noop.
1602	 */
1603	if (unlikely(anon_vma_prepare(vma)))
1604		return -ENOMEM;
1605	anon_vma_lock(vma);
1606
1607	/*
1608	 * vma->vm_start/vm_end cannot change under us because the caller
1609	 * is required to hold the mmap_sem in read mode.  We need the
1610	 * anon_vma lock to serialize against concurrent expand_stacks.
1611	 */
1612	address &= PAGE_MASK;
1613	error = 0;
1614
1615	/* Somebody else might have raced and expanded it already */
1616	if (address < vma->vm_start) {
1617		unsigned long size, grow;
1618
1619		size = vma->vm_end - address;
1620		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1621
1622		error = acct_stack_growth(vma, size, grow);
1623		if (!error) {
1624			vma->vm_start = address;
1625			vma->vm_pgoff -= grow;
1626		}
1627	}
1628	anon_vma_unlock(vma);
1629	return error;
1630}
1631
1632struct vm_area_struct *
1633find_extend_vma(struct mm_struct * mm, unsigned long addr)
1634{
1635	struct vm_area_struct * vma;
1636	unsigned long start;
1637
1638	addr &= PAGE_MASK;
1639	vma = find_vma(mm,addr);
1640	if (!vma)
1641		return NULL;
1642	if (vma->vm_start <= addr)
1643		return vma;
1644	if (!(vma->vm_flags & VM_GROWSDOWN))
1645		return NULL;
1646	start = vma->vm_start;
1647	if (expand_stack(vma, addr))
1648		return NULL;
1649	if (vma->vm_flags & VM_LOCKED) {
1650		make_pages_present(addr, start);
1651	}
1652	return vma;
1653}
1654#endif
1655
1656/*
1657 * Ok - we have the memory areas we should free on the vma list,
1658 * so release them, and do the vma updates.
1659 *
1660 * Called with the mm semaphore held.
1661 */
1662static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1663{
1664	/* Update high watermark before we lower total_vm */
1665	update_hiwater_vm(mm);
1666	do {
1667		long nrpages = vma_pages(vma);
1668
1669		mm->total_vm -= nrpages;
1670		if (vma->vm_flags & VM_LOCKED)
1671			mm->locked_vm -= nrpages;
1672		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1673		vma = remove_vma(vma);
1674	} while (vma);
1675	validate_mm(mm);
1676}
1677
1678/*
1679 * Get rid of page table information in the indicated region.
1680 *
1681 * Called with the mm semaphore held.
1682 */
1683static void unmap_region(struct mm_struct *mm,
1684		struct vm_area_struct *vma, struct vm_area_struct *prev,
1685		unsigned long start, unsigned long end)
1686{
1687	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1688	struct mmu_gather *tlb;
1689	unsigned long nr_accounted = 0;
1690
1691	lru_add_drain();
1692	tlb = tlb_gather_mmu(mm, 0);
1693	update_hiwater_rss(mm);
1694	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1695	vm_unacct_memory(nr_accounted);
1696	free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1697				 next? next->vm_start: 0);
1698	tlb_finish_mmu(tlb, start, end);
1699}
1700
1701/*
1702 * Create a list of vma's touched by the unmap, removing them from the mm's
1703 * vma list as we go..
1704 */
1705static void
1706detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1707	struct vm_area_struct *prev, unsigned long end)
1708{
1709	struct vm_area_struct **insertion_point;
1710	struct vm_area_struct *tail_vma = NULL;
1711	unsigned long addr;
1712
1713	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1714	do {
1715		rb_erase(&vma->vm_rb, &mm->mm_rb);
1716		mm->map_count--;
1717		tail_vma = vma;
1718		vma = vma->vm_next;
1719	} while (vma && vma->vm_start < end);
1720	*insertion_point = vma;
1721	tail_vma->vm_next = NULL;
1722	if (mm->unmap_area == arch_unmap_area)
1723		addr = prev ? prev->vm_end : mm->mmap_base;
1724	else
1725		addr = vma ?  vma->vm_start : mm->mmap_base;
1726	mm->unmap_area(mm, addr);
1727	mm->mmap_cache = NULL;		/* Kill the cache. */
1728}
1729
1730/*
1731 * Split a vma into two pieces at address 'addr', a new vma is allocated
1732 * either for the first part or the the tail.
1733 */
1734int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1735	      unsigned long addr, int new_below)
1736{
1737	struct mempolicy *pol;
1738	struct vm_area_struct *new;
1739
1740	if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1741		return -EINVAL;
1742
1743	if (mm->map_count >= sysctl_max_map_count)
1744		return -ENOMEM;
1745
1746	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1747	if (!new)
1748		return -ENOMEM;
1749
1750	/* most fields are the same, copy all, and then fixup */
1751	*new = *vma;
1752
1753	if (new_below)
1754		new->vm_end = addr;
1755	else {
1756		new->vm_start = addr;
1757		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1758	}
1759
1760	pol = mpol_copy(vma_policy(vma));
1761	if (IS_ERR(pol)) {
1762		kmem_cache_free(vm_area_cachep, new);
1763		return PTR_ERR(pol);
1764	}
1765	vma_set_policy(new, pol);
1766
1767	if (new->vm_file)
1768		get_file(new->vm_file);
1769
1770	if (new->vm_ops && new->vm_ops->open)
1771		new->vm_ops->open(new);
1772
1773	if (new_below)
1774		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1775			((addr - new->vm_start) >> PAGE_SHIFT), new);
1776	else
1777		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1778
1779	return 0;
1780}
1781
1782/* Munmap is split into 2 main parts -- this part which finds
1783 * what needs doing, and the areas themselves, which do the
1784 * work.  This now handles partial unmappings.
1785 * Jeremy Fitzhardinge <jeremy@goop.org>
1786 */
1787int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1788{
1789	unsigned long end;
1790	struct vm_area_struct *vma, *prev, *last;
1791
1792	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1793		return -EINVAL;
1794
1795	if ((len = PAGE_ALIGN(len)) == 0)
1796		return -EINVAL;
1797
1798	/* Find the first overlapping VMA */
1799	vma = find_vma_prev(mm, start, &prev);
1800	if (!vma)
1801		return 0;
1802	/* we have  start < vma->vm_end  */
1803
1804	/* if it doesn't overlap, we have nothing.. */
1805	end = start + len;
1806	if (vma->vm_start >= end)
1807		return 0;
1808
1809	/*
1810	 * If we need to split any vma, do it now to save pain later.
1811	 *
1812	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1813	 * unmapped vm_area_struct will remain in use: so lower split_vma
1814	 * places tmp vma above, and higher split_vma places tmp vma below.
1815	 */
1816	if (start > vma->vm_start) {
1817		int error = split_vma(mm, vma, start, 0);
1818		if (error)
1819			return error;
1820		prev = vma;
1821	}
1822
1823	/* Does it split the last one? */
1824	last = find_vma(mm, end);
1825	if (last && end > last->vm_start) {
1826		int error = split_vma(mm, last, end, 1);
1827		if (error)
1828			return error;
1829	}
1830	vma = prev? prev->vm_next: mm->mmap;
1831
1832	/*
1833	 * Remove the vma's, and unmap the actual pages
1834	 */
1835	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1836	unmap_region(mm, vma, prev, start, end);
1837
1838	/* Fix up all other VM information */
1839	remove_vma_list(mm, vma);
1840
1841	return 0;
1842}
1843
1844EXPORT_SYMBOL(do_munmap);
1845
1846asmlinkage long sys_munmap(unsigned long addr, size_t len)
1847{
1848	int ret;
1849	struct mm_struct *mm = current->mm;
1850
1851	profile_munmap(addr);
1852
1853	down_write(&mm->mmap_sem);
1854	ret = do_munmap(mm, addr, len);
1855	up_write(&mm->mmap_sem);
1856	return ret;
1857}
1858
1859static inline void verify_mm_writelocked(struct mm_struct *mm)
1860{
1861#ifdef CONFIG_DEBUG_VM
1862	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1863		WARN_ON(1);
1864		up_read(&mm->mmap_sem);
1865	}
1866#endif
1867}
1868
1869/*
1870 *  this is really a simplified "do_mmap".  it only handles
1871 *  anonymous maps.  eventually we may be able to do some
1872 *  brk-specific accounting here.
1873 */
1874unsigned long do_brk(unsigned long addr, unsigned long len)
1875{
1876	struct mm_struct * mm = current->mm;
1877	struct vm_area_struct * vma, * prev;
1878	unsigned long flags;
1879	struct rb_node ** rb_link, * rb_parent;
1880	pgoff_t pgoff = addr >> PAGE_SHIFT;
1881	int error;
1882
1883	len = PAGE_ALIGN(len);
1884	if (!len)
1885		return addr;
1886
1887	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1888		return -EINVAL;
1889
1890	if (is_hugepage_only_range(mm, addr, len))
1891		return -EINVAL;
1892
1893	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1894
1895	error = arch_mmap_check(addr, len, flags);
1896	if (error)
1897		return error;
1898
1899	/*
1900	 * mlock MCL_FUTURE?
1901	 */
1902	if (mm->def_flags & VM_LOCKED) {
1903		unsigned long locked, lock_limit;
1904		locked = len >> PAGE_SHIFT;
1905		locked += mm->locked_vm;
1906		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1907		lock_limit >>= PAGE_SHIFT;
1908		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1909			return -EAGAIN;
1910	}
1911
1912	/*
1913	 * mm->mmap_sem is required to protect against another thread
1914	 * changing the mappings in case we sleep.
1915	 */
1916	verify_mm_writelocked(mm);
1917
1918	/*
1919	 * Clear old maps.  this also does some error checking for us
1920	 */
1921 munmap_back:
1922	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1923	if (vma && vma->vm_start < addr + len) {
1924		if (do_munmap(mm, addr, len))
1925			return -ENOMEM;
1926		goto munmap_back;
1927	}
1928
1929	/* Check against address space limits *after* clearing old maps... */
1930	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1931		return -ENOMEM;
1932
1933	if (mm->map_count > sysctl_max_map_count)
1934		return -ENOMEM;
1935
1936	if (security_vm_enough_memory(len >> PAGE_SHIFT))
1937		return -ENOMEM;
1938
1939	/* Can we just expand an old private anonymous mapping? */
1940	if (vma_merge(mm, prev, addr, addr + len, flags,
1941					NULL, NULL, pgoff, NULL))
1942		goto out;
1943
1944	/*
1945	 * create a vma struct for an anonymous mapping
1946	 */
1947	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1948	if (!vma) {
1949		vm_unacct_memory(len >> PAGE_SHIFT);
1950		return -ENOMEM;
1951	}
1952
1953	vma->vm_mm = mm;
1954	vma->vm_start = addr;
1955	vma->vm_end = addr + len;
1956	vma->vm_pgoff = pgoff;
1957	vma->vm_flags = flags;
1958	vma->vm_page_prot = protection_map[flags &
1959				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
1960	vma_link(mm, vma, prev, rb_link, rb_parent);
1961out:
1962	mm->total_vm += len >> PAGE_SHIFT;
1963	if (flags & VM_LOCKED) {
1964		mm->locked_vm += len >> PAGE_SHIFT;
1965		make_pages_present(addr, addr + len);
1966	}
1967	return addr;
1968}
1969
1970EXPORT_SYMBOL(do_brk);
1971
1972/* Release all mmaps. */
1973void exit_mmap(struct mm_struct *mm)
1974{
1975	struct mmu_gather *tlb;
1976	struct vm_area_struct *vma = mm->mmap;
1977	unsigned long nr_accounted = 0;
1978	unsigned long end;
1979
1980	lru_add_drain();
1981	flush_cache_mm(mm);
1982	tlb = tlb_gather_mmu(mm, 1);
1983	/* Don't update_hiwater_rss(mm) here, do_exit already did */
1984	/* Use -1 here to ensure all VMAs in the mm are unmapped */
1985	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
1986	vm_unacct_memory(nr_accounted);
1987	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
1988	tlb_finish_mmu(tlb, 0, end);
1989
1990	/*
1991	 * Walk the list again, actually closing and freeing it,
1992	 * with preemption enabled, without holding any MM locks.
1993	 */
1994	while (vma)
1995		vma = remove_vma(vma);
1996
1997	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
1998}
1999
2000/* Insert vm structure into process list sorted by address
2001 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2002 * then i_mmap_lock is taken here.
2003 */
2004int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2005{
2006	struct vm_area_struct * __vma, * prev;
2007	struct rb_node ** rb_link, * rb_parent;
2008
2009	/*
2010	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2011	 * until its first write fault, when page's anon_vma and index
2012	 * are set.  But now set the vm_pgoff it will almost certainly
2013	 * end up with (unless mremap moves it elsewhere before that
2014	 * first wfault), so /proc/pid/maps tells a consistent story.
2015	 *
2016	 * By setting it to reflect the virtual start address of the
2017	 * vma, merges and splits can happen in a seamless way, just
2018	 * using the existing file pgoff checks and manipulations.
2019	 * Similarly in do_mmap_pgoff and in do_brk.
2020	 */
2021	if (!vma->vm_file) {
2022		BUG_ON(vma->anon_vma);
2023		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2024	}
2025	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2026	if (__vma && __vma->vm_start < vma->vm_end)
2027		return -ENOMEM;
2028	if ((vma->vm_flags & VM_ACCOUNT) &&
2029	     security_vm_enough_memory(vma_pages(vma)))
2030		return -ENOMEM;
2031	vma_link(mm, vma, prev, rb_link, rb_parent);
2032	return 0;
2033}
2034
2035/*
2036 * Copy the vma structure to a new location in the same mm,
2037 * prior to moving page table entries, to effect an mremap move.
2038 */
2039struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2040	unsigned long addr, unsigned long len, pgoff_t pgoff)
2041{
2042	struct vm_area_struct *vma = *vmap;
2043	unsigned long vma_start = vma->vm_start;
2044	struct mm_struct *mm = vma->vm_mm;
2045	struct vm_area_struct *new_vma, *prev;
2046	struct rb_node **rb_link, *rb_parent;
2047	struct mempolicy *pol;
2048
2049	/*
2050	 * If anonymous vma has not yet been faulted, update new pgoff
2051	 * to match new location, to increase its chance of merging.
2052	 */
2053	if (!vma->vm_file && !vma->anon_vma)
2054		pgoff = addr >> PAGE_SHIFT;
2055
2056	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2057	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2058			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2059	if (new_vma) {
2060		/*
2061		 * Source vma may have been merged into new_vma
2062		 */
2063		if (vma_start >= new_vma->vm_start &&
2064		    vma_start < new_vma->vm_end)
2065			*vmap = new_vma;
2066	} else {
2067		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2068		if (new_vma) {
2069			*new_vma = *vma;
2070			pol = mpol_copy(vma_policy(vma));
2071			if (IS_ERR(pol)) {
2072				kmem_cache_free(vm_area_cachep, new_vma);
2073				return NULL;
2074			}
2075			vma_set_policy(new_vma, pol);
2076			new_vma->vm_start = addr;
2077			new_vma->vm_end = addr + len;
2078			new_vma->vm_pgoff = pgoff;
2079			if (new_vma->vm_file)
2080				get_file(new_vma->vm_file);
2081			if (new_vma->vm_ops && new_vma->vm_ops->open)
2082				new_vma->vm_ops->open(new_vma);
2083			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2084		}
2085	}
2086	return new_vma;
2087}
2088
2089/*
2090 * Return true if the calling process may expand its vm space by the passed
2091 * number of pages
2092 */
2093int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2094{
2095	unsigned long cur = mm->total_vm;	/* pages */
2096	unsigned long lim;
2097
2098	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2099
2100	if (cur + npages > lim)
2101		return 0;
2102	return 1;
2103}
2104