mmap.c revision 120a795da07c9a02221ca23464c28a7c6ad7de1d
1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7 */
8
9#include <linux/slab.h>
10#include <linux/backing-dev.h>
11#include <linux/mm.h>
12#include <linux/shm.h>
13#include <linux/mman.h>
14#include <linux/pagemap.h>
15#include <linux/swap.h>
16#include <linux/syscalls.h>
17#include <linux/capability.h>
18#include <linux/init.h>
19#include <linux/file.h>
20#include <linux/fs.h>
21#include <linux/personality.h>
22#include <linux/security.h>
23#include <linux/hugetlb.h>
24#include <linux/profile.h>
25#include <linux/module.h>
26#include <linux/mount.h>
27#include <linux/mempolicy.h>
28#include <linux/rmap.h>
29#include <linux/mmu_notifier.h>
30#include <linux/perf_event.h>
31#include <linux/audit.h>
32
33#include <asm/uaccess.h>
34#include <asm/cacheflush.h>
35#include <asm/tlb.h>
36#include <asm/mmu_context.h>
37
38#include "internal.h"
39
40#ifndef arch_mmap_check
41#define arch_mmap_check(addr, len, flags)	(0)
42#endif
43
44#ifndef arch_rebalance_pgtables
45#define arch_rebalance_pgtables(addr, len)		(addr)
46#endif
47
48static void unmap_region(struct mm_struct *mm,
49		struct vm_area_struct *vma, struct vm_area_struct *prev,
50		unsigned long start, unsigned long end);
51
52/*
53 * WARNING: the debugging will use recursive algorithms so never enable this
54 * unless you know what you are doing.
55 */
56#undef DEBUG_MM_RB
57
58/* description of effects of mapping type and prot in current implementation.
59 * this is due to the limited x86 page protection hardware.  The expected
60 * behavior is in parens:
61 *
62 * map_type	prot
63 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
64 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
65 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
66 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
67 *
68 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
69 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
70 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
71 *
72 */
73pgprot_t protection_map[16] = {
74	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
75	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
76};
77
78pgprot_t vm_get_page_prot(unsigned long vm_flags)
79{
80	return __pgprot(pgprot_val(protection_map[vm_flags &
81				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
82			pgprot_val(arch_vm_get_page_prot(vm_flags)));
83}
84EXPORT_SYMBOL(vm_get_page_prot);
85
86int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
87int sysctl_overcommit_ratio = 50;	/* default is 50% */
88int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
89struct percpu_counter vm_committed_as;
90
91/*
92 * Check that a process has enough memory to allocate a new virtual
93 * mapping. 0 means there is enough memory for the allocation to
94 * succeed and -ENOMEM implies there is not.
95 *
96 * We currently support three overcommit policies, which are set via the
97 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
98 *
99 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
100 * Additional code 2002 Jul 20 by Robert Love.
101 *
102 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
103 *
104 * Note this is a helper function intended to be used by LSMs which
105 * wish to use this logic.
106 */
107int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
108{
109	unsigned long free, allowed;
110
111	vm_acct_memory(pages);
112
113	/*
114	 * Sometimes we want to use more memory than we have
115	 */
116	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
117		return 0;
118
119	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
120		unsigned long n;
121
122		free = global_page_state(NR_FILE_PAGES);
123		free += nr_swap_pages;
124
125		/*
126		 * Any slabs which are created with the
127		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
128		 * which are reclaimable, under pressure.  The dentry
129		 * cache and most inode caches should fall into this
130		 */
131		free += global_page_state(NR_SLAB_RECLAIMABLE);
132
133		/*
134		 * Leave the last 3% for root
135		 */
136		if (!cap_sys_admin)
137			free -= free / 32;
138
139		if (free > pages)
140			return 0;
141
142		/*
143		 * nr_free_pages() is very expensive on large systems,
144		 * only call if we're about to fail.
145		 */
146		n = nr_free_pages();
147
148		/*
149		 * Leave reserved pages. The pages are not for anonymous pages.
150		 */
151		if (n <= totalreserve_pages)
152			goto error;
153		else
154			n -= totalreserve_pages;
155
156		/*
157		 * Leave the last 3% for root
158		 */
159		if (!cap_sys_admin)
160			n -= n / 32;
161		free += n;
162
163		if (free > pages)
164			return 0;
165
166		goto error;
167	}
168
169	allowed = (totalram_pages - hugetlb_total_pages())
170	       	* sysctl_overcommit_ratio / 100;
171	/*
172	 * Leave the last 3% for root
173	 */
174	if (!cap_sys_admin)
175		allowed -= allowed / 32;
176	allowed += total_swap_pages;
177
178	/* Don't let a single process grow too big:
179	   leave 3% of the size of this process for other processes */
180	if (mm)
181		allowed -= mm->total_vm / 32;
182
183	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
184		return 0;
185error:
186	vm_unacct_memory(pages);
187
188	return -ENOMEM;
189}
190
191/*
192 * Requires inode->i_mapping->i_mmap_lock
193 */
194static void __remove_shared_vm_struct(struct vm_area_struct *vma,
195		struct file *file, struct address_space *mapping)
196{
197	if (vma->vm_flags & VM_DENYWRITE)
198		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
199	if (vma->vm_flags & VM_SHARED)
200		mapping->i_mmap_writable--;
201
202	flush_dcache_mmap_lock(mapping);
203	if (unlikely(vma->vm_flags & VM_NONLINEAR))
204		list_del_init(&vma->shared.vm_set.list);
205	else
206		vma_prio_tree_remove(vma, &mapping->i_mmap);
207	flush_dcache_mmap_unlock(mapping);
208}
209
210/*
211 * Unlink a file-based vm structure from its prio_tree, to hide
212 * vma from rmap and vmtruncate before freeing its page tables.
213 */
214void unlink_file_vma(struct vm_area_struct *vma)
215{
216	struct file *file = vma->vm_file;
217
218	if (file) {
219		struct address_space *mapping = file->f_mapping;
220		spin_lock(&mapping->i_mmap_lock);
221		__remove_shared_vm_struct(vma, file, mapping);
222		spin_unlock(&mapping->i_mmap_lock);
223	}
224}
225
226/*
227 * Close a vm structure and free it, returning the next.
228 */
229static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
230{
231	struct vm_area_struct *next = vma->vm_next;
232
233	might_sleep();
234	if (vma->vm_ops && vma->vm_ops->close)
235		vma->vm_ops->close(vma);
236	if (vma->vm_file) {
237		fput(vma->vm_file);
238		if (vma->vm_flags & VM_EXECUTABLE)
239			removed_exe_file_vma(vma->vm_mm);
240	}
241	mpol_put(vma_policy(vma));
242	kmem_cache_free(vm_area_cachep, vma);
243	return next;
244}
245
246SYSCALL_DEFINE1(brk, unsigned long, brk)
247{
248	unsigned long rlim, retval;
249	unsigned long newbrk, oldbrk;
250	struct mm_struct *mm = current->mm;
251	unsigned long min_brk;
252
253	down_write(&mm->mmap_sem);
254
255#ifdef CONFIG_COMPAT_BRK
256	min_brk = mm->end_code;
257#else
258	min_brk = mm->start_brk;
259#endif
260	if (brk < min_brk)
261		goto out;
262
263	/*
264	 * Check against rlimit here. If this check is done later after the test
265	 * of oldbrk with newbrk then it can escape the test and let the data
266	 * segment grow beyond its set limit the in case where the limit is
267	 * not page aligned -Ram Gupta
268	 */
269	rlim = rlimit(RLIMIT_DATA);
270	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
271			(mm->end_data - mm->start_data) > rlim)
272		goto out;
273
274	newbrk = PAGE_ALIGN(brk);
275	oldbrk = PAGE_ALIGN(mm->brk);
276	if (oldbrk == newbrk)
277		goto set_brk;
278
279	/* Always allow shrinking brk. */
280	if (brk <= mm->brk) {
281		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
282			goto set_brk;
283		goto out;
284	}
285
286	/* Check against existing mmap mappings. */
287	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
288		goto out;
289
290	/* Ok, looks good - let it rip. */
291	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
292		goto out;
293set_brk:
294	mm->brk = brk;
295out:
296	retval = mm->brk;
297	up_write(&mm->mmap_sem);
298	return retval;
299}
300
301#ifdef DEBUG_MM_RB
302static int browse_rb(struct rb_root *root)
303{
304	int i = 0, j;
305	struct rb_node *nd, *pn = NULL;
306	unsigned long prev = 0, pend = 0;
307
308	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
309		struct vm_area_struct *vma;
310		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
311		if (vma->vm_start < prev)
312			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
313		if (vma->vm_start < pend)
314			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
315		if (vma->vm_start > vma->vm_end)
316			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
317		i++;
318		pn = nd;
319		prev = vma->vm_start;
320		pend = vma->vm_end;
321	}
322	j = 0;
323	for (nd = pn; nd; nd = rb_prev(nd)) {
324		j++;
325	}
326	if (i != j)
327		printk("backwards %d, forwards %d\n", j, i), i = 0;
328	return i;
329}
330
331void validate_mm(struct mm_struct *mm)
332{
333	int bug = 0;
334	int i = 0;
335	struct vm_area_struct *tmp = mm->mmap;
336	while (tmp) {
337		tmp = tmp->vm_next;
338		i++;
339	}
340	if (i != mm->map_count)
341		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
342	i = browse_rb(&mm->mm_rb);
343	if (i != mm->map_count)
344		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
345	BUG_ON(bug);
346}
347#else
348#define validate_mm(mm) do { } while (0)
349#endif
350
351static struct vm_area_struct *
352find_vma_prepare(struct mm_struct *mm, unsigned long addr,
353		struct vm_area_struct **pprev, struct rb_node ***rb_link,
354		struct rb_node ** rb_parent)
355{
356	struct vm_area_struct * vma;
357	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
358
359	__rb_link = &mm->mm_rb.rb_node;
360	rb_prev = __rb_parent = NULL;
361	vma = NULL;
362
363	while (*__rb_link) {
364		struct vm_area_struct *vma_tmp;
365
366		__rb_parent = *__rb_link;
367		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
368
369		if (vma_tmp->vm_end > addr) {
370			vma = vma_tmp;
371			if (vma_tmp->vm_start <= addr)
372				break;
373			__rb_link = &__rb_parent->rb_left;
374		} else {
375			rb_prev = __rb_parent;
376			__rb_link = &__rb_parent->rb_right;
377		}
378	}
379
380	*pprev = NULL;
381	if (rb_prev)
382		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
383	*rb_link = __rb_link;
384	*rb_parent = __rb_parent;
385	return vma;
386}
387
388static inline void
389__vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
390		struct vm_area_struct *prev, struct rb_node *rb_parent)
391{
392	struct vm_area_struct *next;
393
394	vma->vm_prev = prev;
395	if (prev) {
396		next = prev->vm_next;
397		prev->vm_next = vma;
398	} else {
399		mm->mmap = vma;
400		if (rb_parent)
401			next = rb_entry(rb_parent,
402					struct vm_area_struct, vm_rb);
403		else
404			next = NULL;
405	}
406	vma->vm_next = next;
407	if (next)
408		next->vm_prev = vma;
409}
410
411void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
412		struct rb_node **rb_link, struct rb_node *rb_parent)
413{
414	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
415	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
416}
417
418static void __vma_link_file(struct vm_area_struct *vma)
419{
420	struct file *file;
421
422	file = vma->vm_file;
423	if (file) {
424		struct address_space *mapping = file->f_mapping;
425
426		if (vma->vm_flags & VM_DENYWRITE)
427			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
428		if (vma->vm_flags & VM_SHARED)
429			mapping->i_mmap_writable++;
430
431		flush_dcache_mmap_lock(mapping);
432		if (unlikely(vma->vm_flags & VM_NONLINEAR))
433			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
434		else
435			vma_prio_tree_insert(vma, &mapping->i_mmap);
436		flush_dcache_mmap_unlock(mapping);
437	}
438}
439
440static void
441__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
442	struct vm_area_struct *prev, struct rb_node **rb_link,
443	struct rb_node *rb_parent)
444{
445	__vma_link_list(mm, vma, prev, rb_parent);
446	__vma_link_rb(mm, vma, rb_link, rb_parent);
447}
448
449static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
450			struct vm_area_struct *prev, struct rb_node **rb_link,
451			struct rb_node *rb_parent)
452{
453	struct address_space *mapping = NULL;
454
455	if (vma->vm_file)
456		mapping = vma->vm_file->f_mapping;
457
458	if (mapping) {
459		spin_lock(&mapping->i_mmap_lock);
460		vma->vm_truncate_count = mapping->truncate_count;
461	}
462
463	__vma_link(mm, vma, prev, rb_link, rb_parent);
464	__vma_link_file(vma);
465
466	if (mapping)
467		spin_unlock(&mapping->i_mmap_lock);
468
469	mm->map_count++;
470	validate_mm(mm);
471}
472
473/*
474 * Helper for vma_adjust in the split_vma insert case:
475 * insert vm structure into list and rbtree and anon_vma,
476 * but it has already been inserted into prio_tree earlier.
477 */
478static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
479{
480	struct vm_area_struct *__vma, *prev;
481	struct rb_node **rb_link, *rb_parent;
482
483	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
484	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
485	__vma_link(mm, vma, prev, rb_link, rb_parent);
486	mm->map_count++;
487}
488
489static inline void
490__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
491		struct vm_area_struct *prev)
492{
493	struct vm_area_struct *next = vma->vm_next;
494
495	prev->vm_next = next;
496	if (next)
497		next->vm_prev = prev;
498	rb_erase(&vma->vm_rb, &mm->mm_rb);
499	if (mm->mmap_cache == vma)
500		mm->mmap_cache = prev;
501}
502
503/*
504 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
505 * is already present in an i_mmap tree without adjusting the tree.
506 * The following helper function should be used when such adjustments
507 * are necessary.  The "insert" vma (if any) is to be inserted
508 * before we drop the necessary locks.
509 */
510int vma_adjust(struct vm_area_struct *vma, unsigned long start,
511	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
512{
513	struct mm_struct *mm = vma->vm_mm;
514	struct vm_area_struct *next = vma->vm_next;
515	struct vm_area_struct *importer = NULL;
516	struct address_space *mapping = NULL;
517	struct prio_tree_root *root = NULL;
518	struct anon_vma *anon_vma = NULL;
519	struct file *file = vma->vm_file;
520	long adjust_next = 0;
521	int remove_next = 0;
522
523	if (next && !insert) {
524		struct vm_area_struct *exporter = NULL;
525
526		if (end >= next->vm_end) {
527			/*
528			 * vma expands, overlapping all the next, and
529			 * perhaps the one after too (mprotect case 6).
530			 */
531again:			remove_next = 1 + (end > next->vm_end);
532			end = next->vm_end;
533			exporter = next;
534			importer = vma;
535		} else if (end > next->vm_start) {
536			/*
537			 * vma expands, overlapping part of the next:
538			 * mprotect case 5 shifting the boundary up.
539			 */
540			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
541			exporter = next;
542			importer = vma;
543		} else if (end < vma->vm_end) {
544			/*
545			 * vma shrinks, and !insert tells it's not
546			 * split_vma inserting another: so it must be
547			 * mprotect case 4 shifting the boundary down.
548			 */
549			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
550			exporter = vma;
551			importer = next;
552		}
553
554		/*
555		 * Easily overlooked: when mprotect shifts the boundary,
556		 * make sure the expanding vma has anon_vma set if the
557		 * shrinking vma had, to cover any anon pages imported.
558		 */
559		if (exporter && exporter->anon_vma && !importer->anon_vma) {
560			if (anon_vma_clone(importer, exporter))
561				return -ENOMEM;
562			importer->anon_vma = exporter->anon_vma;
563		}
564	}
565
566	if (file) {
567		mapping = file->f_mapping;
568		if (!(vma->vm_flags & VM_NONLINEAR))
569			root = &mapping->i_mmap;
570		spin_lock(&mapping->i_mmap_lock);
571		if (importer &&
572		    vma->vm_truncate_count != next->vm_truncate_count) {
573			/*
574			 * unmap_mapping_range might be in progress:
575			 * ensure that the expanding vma is rescanned.
576			 */
577			importer->vm_truncate_count = 0;
578		}
579		if (insert) {
580			insert->vm_truncate_count = vma->vm_truncate_count;
581			/*
582			 * Put into prio_tree now, so instantiated pages
583			 * are visible to arm/parisc __flush_dcache_page
584			 * throughout; but we cannot insert into address
585			 * space until vma start or end is updated.
586			 */
587			__vma_link_file(insert);
588		}
589	}
590
591	/*
592	 * When changing only vma->vm_end, we don't really need anon_vma
593	 * lock. This is a fairly rare case by itself, but the anon_vma
594	 * lock may be shared between many sibling processes.  Skipping
595	 * the lock for brk adjustments makes a difference sometimes.
596	 */
597	if (vma->anon_vma && (insert || importer || start != vma->vm_start)) {
598		anon_vma = vma->anon_vma;
599		anon_vma_lock(anon_vma);
600	}
601
602	if (root) {
603		flush_dcache_mmap_lock(mapping);
604		vma_prio_tree_remove(vma, root);
605		if (adjust_next)
606			vma_prio_tree_remove(next, root);
607	}
608
609	vma->vm_start = start;
610	vma->vm_end = end;
611	vma->vm_pgoff = pgoff;
612	if (adjust_next) {
613		next->vm_start += adjust_next << PAGE_SHIFT;
614		next->vm_pgoff += adjust_next;
615	}
616
617	if (root) {
618		if (adjust_next)
619			vma_prio_tree_insert(next, root);
620		vma_prio_tree_insert(vma, root);
621		flush_dcache_mmap_unlock(mapping);
622	}
623
624	if (remove_next) {
625		/*
626		 * vma_merge has merged next into vma, and needs
627		 * us to remove next before dropping the locks.
628		 */
629		__vma_unlink(mm, next, vma);
630		if (file)
631			__remove_shared_vm_struct(next, file, mapping);
632	} else if (insert) {
633		/*
634		 * split_vma has split insert from vma, and needs
635		 * us to insert it before dropping the locks
636		 * (it may either follow vma or precede it).
637		 */
638		__insert_vm_struct(mm, insert);
639	}
640
641	if (anon_vma)
642		anon_vma_unlock(anon_vma);
643	if (mapping)
644		spin_unlock(&mapping->i_mmap_lock);
645
646	if (remove_next) {
647		if (file) {
648			fput(file);
649			if (next->vm_flags & VM_EXECUTABLE)
650				removed_exe_file_vma(mm);
651		}
652		if (next->anon_vma)
653			anon_vma_merge(vma, next);
654		mm->map_count--;
655		mpol_put(vma_policy(next));
656		kmem_cache_free(vm_area_cachep, next);
657		/*
658		 * In mprotect's case 6 (see comments on vma_merge),
659		 * we must remove another next too. It would clutter
660		 * up the code too much to do both in one go.
661		 */
662		if (remove_next == 2) {
663			next = vma->vm_next;
664			goto again;
665		}
666	}
667
668	validate_mm(mm);
669
670	return 0;
671}
672
673/*
674 * If the vma has a ->close operation then the driver probably needs to release
675 * per-vma resources, so we don't attempt to merge those.
676 */
677static inline int is_mergeable_vma(struct vm_area_struct *vma,
678			struct file *file, unsigned long vm_flags)
679{
680	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
681	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
682		return 0;
683	if (vma->vm_file != file)
684		return 0;
685	if (vma->vm_ops && vma->vm_ops->close)
686		return 0;
687	return 1;
688}
689
690static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
691					struct anon_vma *anon_vma2)
692{
693	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
694}
695
696/*
697 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
698 * in front of (at a lower virtual address and file offset than) the vma.
699 *
700 * We cannot merge two vmas if they have differently assigned (non-NULL)
701 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
702 *
703 * We don't check here for the merged mmap wrapping around the end of pagecache
704 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
705 * wrap, nor mmaps which cover the final page at index -1UL.
706 */
707static int
708can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
709	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
710{
711	if (is_mergeable_vma(vma, file, vm_flags) &&
712	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
713		if (vma->vm_pgoff == vm_pgoff)
714			return 1;
715	}
716	return 0;
717}
718
719/*
720 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
721 * beyond (at a higher virtual address and file offset than) the vma.
722 *
723 * We cannot merge two vmas if they have differently assigned (non-NULL)
724 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
725 */
726static int
727can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
728	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
729{
730	if (is_mergeable_vma(vma, file, vm_flags) &&
731	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
732		pgoff_t vm_pglen;
733		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
734		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
735			return 1;
736	}
737	return 0;
738}
739
740/*
741 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
742 * whether that can be merged with its predecessor or its successor.
743 * Or both (it neatly fills a hole).
744 *
745 * In most cases - when called for mmap, brk or mremap - [addr,end) is
746 * certain not to be mapped by the time vma_merge is called; but when
747 * called for mprotect, it is certain to be already mapped (either at
748 * an offset within prev, or at the start of next), and the flags of
749 * this area are about to be changed to vm_flags - and the no-change
750 * case has already been eliminated.
751 *
752 * The following mprotect cases have to be considered, where AAAA is
753 * the area passed down from mprotect_fixup, never extending beyond one
754 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
755 *
756 *     AAAA             AAAA                AAAA          AAAA
757 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
758 *    cannot merge    might become    might become    might become
759 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
760 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
761 *    mremap move:                                    PPPPNNNNNNNN 8
762 *        AAAA
763 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
764 *    might become    case 1 below    case 2 below    case 3 below
765 *
766 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
767 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
768 */
769struct vm_area_struct *vma_merge(struct mm_struct *mm,
770			struct vm_area_struct *prev, unsigned long addr,
771			unsigned long end, unsigned long vm_flags,
772		     	struct anon_vma *anon_vma, struct file *file,
773			pgoff_t pgoff, struct mempolicy *policy)
774{
775	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
776	struct vm_area_struct *area, *next;
777	int err;
778
779	/*
780	 * We later require that vma->vm_flags == vm_flags,
781	 * so this tests vma->vm_flags & VM_SPECIAL, too.
782	 */
783	if (vm_flags & VM_SPECIAL)
784		return NULL;
785
786	if (prev)
787		next = prev->vm_next;
788	else
789		next = mm->mmap;
790	area = next;
791	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
792		next = next->vm_next;
793
794	/*
795	 * Can it merge with the predecessor?
796	 */
797	if (prev && prev->vm_end == addr &&
798  			mpol_equal(vma_policy(prev), policy) &&
799			can_vma_merge_after(prev, vm_flags,
800						anon_vma, file, pgoff)) {
801		/*
802		 * OK, it can.  Can we now merge in the successor as well?
803		 */
804		if (next && end == next->vm_start &&
805				mpol_equal(policy, vma_policy(next)) &&
806				can_vma_merge_before(next, vm_flags,
807					anon_vma, file, pgoff+pglen) &&
808				is_mergeable_anon_vma(prev->anon_vma,
809						      next->anon_vma)) {
810							/* cases 1, 6 */
811			err = vma_adjust(prev, prev->vm_start,
812				next->vm_end, prev->vm_pgoff, NULL);
813		} else					/* cases 2, 5, 7 */
814			err = vma_adjust(prev, prev->vm_start,
815				end, prev->vm_pgoff, NULL);
816		if (err)
817			return NULL;
818		return prev;
819	}
820
821	/*
822	 * Can this new request be merged in front of next?
823	 */
824	if (next && end == next->vm_start &&
825 			mpol_equal(policy, vma_policy(next)) &&
826			can_vma_merge_before(next, vm_flags,
827					anon_vma, file, pgoff+pglen)) {
828		if (prev && addr < prev->vm_end)	/* case 4 */
829			err = vma_adjust(prev, prev->vm_start,
830				addr, prev->vm_pgoff, NULL);
831		else					/* cases 3, 8 */
832			err = vma_adjust(area, addr, next->vm_end,
833				next->vm_pgoff - pglen, NULL);
834		if (err)
835			return NULL;
836		return area;
837	}
838
839	return NULL;
840}
841
842/*
843 * Rough compatbility check to quickly see if it's even worth looking
844 * at sharing an anon_vma.
845 *
846 * They need to have the same vm_file, and the flags can only differ
847 * in things that mprotect may change.
848 *
849 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
850 * we can merge the two vma's. For example, we refuse to merge a vma if
851 * there is a vm_ops->close() function, because that indicates that the
852 * driver is doing some kind of reference counting. But that doesn't
853 * really matter for the anon_vma sharing case.
854 */
855static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
856{
857	return a->vm_end == b->vm_start &&
858		mpol_equal(vma_policy(a), vma_policy(b)) &&
859		a->vm_file == b->vm_file &&
860		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
861		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
862}
863
864/*
865 * Do some basic sanity checking to see if we can re-use the anon_vma
866 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
867 * the same as 'old', the other will be the new one that is trying
868 * to share the anon_vma.
869 *
870 * NOTE! This runs with mm_sem held for reading, so it is possible that
871 * the anon_vma of 'old' is concurrently in the process of being set up
872 * by another page fault trying to merge _that_. But that's ok: if it
873 * is being set up, that automatically means that it will be a singleton
874 * acceptable for merging, so we can do all of this optimistically. But
875 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
876 *
877 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
878 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
879 * is to return an anon_vma that is "complex" due to having gone through
880 * a fork).
881 *
882 * We also make sure that the two vma's are compatible (adjacent,
883 * and with the same memory policies). That's all stable, even with just
884 * a read lock on the mm_sem.
885 */
886static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
887{
888	if (anon_vma_compatible(a, b)) {
889		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
890
891		if (anon_vma && list_is_singular(&old->anon_vma_chain))
892			return anon_vma;
893	}
894	return NULL;
895}
896
897/*
898 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
899 * neighbouring vmas for a suitable anon_vma, before it goes off
900 * to allocate a new anon_vma.  It checks because a repetitive
901 * sequence of mprotects and faults may otherwise lead to distinct
902 * anon_vmas being allocated, preventing vma merge in subsequent
903 * mprotect.
904 */
905struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
906{
907	struct anon_vma *anon_vma;
908	struct vm_area_struct *near;
909
910	near = vma->vm_next;
911	if (!near)
912		goto try_prev;
913
914	anon_vma = reusable_anon_vma(near, vma, near);
915	if (anon_vma)
916		return anon_vma;
917try_prev:
918	/*
919	 * It is potentially slow to have to call find_vma_prev here.
920	 * But it's only on the first write fault on the vma, not
921	 * every time, and we could devise a way to avoid it later
922	 * (e.g. stash info in next's anon_vma_node when assigning
923	 * an anon_vma, or when trying vma_merge).  Another time.
924	 */
925	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
926	if (!near)
927		goto none;
928
929	anon_vma = reusable_anon_vma(near, near, vma);
930	if (anon_vma)
931		return anon_vma;
932none:
933	/*
934	 * There's no absolute need to look only at touching neighbours:
935	 * we could search further afield for "compatible" anon_vmas.
936	 * But it would probably just be a waste of time searching,
937	 * or lead to too many vmas hanging off the same anon_vma.
938	 * We're trying to allow mprotect remerging later on,
939	 * not trying to minimize memory used for anon_vmas.
940	 */
941	return NULL;
942}
943
944#ifdef CONFIG_PROC_FS
945void vm_stat_account(struct mm_struct *mm, unsigned long flags,
946						struct file *file, long pages)
947{
948	const unsigned long stack_flags
949		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
950
951	if (file) {
952		mm->shared_vm += pages;
953		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
954			mm->exec_vm += pages;
955	} else if (flags & stack_flags)
956		mm->stack_vm += pages;
957	if (flags & (VM_RESERVED|VM_IO))
958		mm->reserved_vm += pages;
959}
960#endif /* CONFIG_PROC_FS */
961
962/*
963 * The caller must hold down_write(&current->mm->mmap_sem).
964 */
965
966unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
967			unsigned long len, unsigned long prot,
968			unsigned long flags, unsigned long pgoff)
969{
970	struct mm_struct * mm = current->mm;
971	struct inode *inode;
972	unsigned int vm_flags;
973	int error;
974	unsigned long reqprot = prot;
975
976	/*
977	 * Does the application expect PROT_READ to imply PROT_EXEC?
978	 *
979	 * (the exception is when the underlying filesystem is noexec
980	 *  mounted, in which case we dont add PROT_EXEC.)
981	 */
982	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
983		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
984			prot |= PROT_EXEC;
985
986	if (!len)
987		return -EINVAL;
988
989	if (!(flags & MAP_FIXED))
990		addr = round_hint_to_min(addr);
991
992	/* Careful about overflows.. */
993	len = PAGE_ALIGN(len);
994	if (!len)
995		return -ENOMEM;
996
997	/* offset overflow? */
998	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
999               return -EOVERFLOW;
1000
1001	/* Too many mappings? */
1002	if (mm->map_count > sysctl_max_map_count)
1003		return -ENOMEM;
1004
1005	/* Obtain the address to map to. we verify (or select) it and ensure
1006	 * that it represents a valid section of the address space.
1007	 */
1008	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1009	if (addr & ~PAGE_MASK)
1010		return addr;
1011
1012	/* Do simple checking here so the lower-level routines won't have
1013	 * to. we assume access permissions have been handled by the open
1014	 * of the memory object, so we don't do any here.
1015	 */
1016	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1017			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1018
1019	if (flags & MAP_LOCKED)
1020		if (!can_do_mlock())
1021			return -EPERM;
1022
1023	/* mlock MCL_FUTURE? */
1024	if (vm_flags & VM_LOCKED) {
1025		unsigned long locked, lock_limit;
1026		locked = len >> PAGE_SHIFT;
1027		locked += mm->locked_vm;
1028		lock_limit = rlimit(RLIMIT_MEMLOCK);
1029		lock_limit >>= PAGE_SHIFT;
1030		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1031			return -EAGAIN;
1032	}
1033
1034	inode = file ? file->f_path.dentry->d_inode : NULL;
1035
1036	if (file) {
1037		switch (flags & MAP_TYPE) {
1038		case MAP_SHARED:
1039			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1040				return -EACCES;
1041
1042			/*
1043			 * Make sure we don't allow writing to an append-only
1044			 * file..
1045			 */
1046			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1047				return -EACCES;
1048
1049			/*
1050			 * Make sure there are no mandatory locks on the file.
1051			 */
1052			if (locks_verify_locked(inode))
1053				return -EAGAIN;
1054
1055			vm_flags |= VM_SHARED | VM_MAYSHARE;
1056			if (!(file->f_mode & FMODE_WRITE))
1057				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1058
1059			/* fall through */
1060		case MAP_PRIVATE:
1061			if (!(file->f_mode & FMODE_READ))
1062				return -EACCES;
1063			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1064				if (vm_flags & VM_EXEC)
1065					return -EPERM;
1066				vm_flags &= ~VM_MAYEXEC;
1067			}
1068
1069			if (!file->f_op || !file->f_op->mmap)
1070				return -ENODEV;
1071			break;
1072
1073		default:
1074			return -EINVAL;
1075		}
1076	} else {
1077		switch (flags & MAP_TYPE) {
1078		case MAP_SHARED:
1079			/*
1080			 * Ignore pgoff.
1081			 */
1082			pgoff = 0;
1083			vm_flags |= VM_SHARED | VM_MAYSHARE;
1084			break;
1085		case MAP_PRIVATE:
1086			/*
1087			 * Set pgoff according to addr for anon_vma.
1088			 */
1089			pgoff = addr >> PAGE_SHIFT;
1090			break;
1091		default:
1092			return -EINVAL;
1093		}
1094	}
1095
1096	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1097	if (error)
1098		return error;
1099
1100	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1101}
1102EXPORT_SYMBOL(do_mmap_pgoff);
1103
1104SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1105		unsigned long, prot, unsigned long, flags,
1106		unsigned long, fd, unsigned long, pgoff)
1107{
1108	struct file *file = NULL;
1109	unsigned long retval = -EBADF;
1110
1111	if (!(flags & MAP_ANONYMOUS)) {
1112		audit_mmap_fd(fd, flags);
1113		if (unlikely(flags & MAP_HUGETLB))
1114			return -EINVAL;
1115		file = fget(fd);
1116		if (!file)
1117			goto out;
1118	} else if (flags & MAP_HUGETLB) {
1119		struct user_struct *user = NULL;
1120		/*
1121		 * VM_NORESERVE is used because the reservations will be
1122		 * taken when vm_ops->mmap() is called
1123		 * A dummy user value is used because we are not locking
1124		 * memory so no accounting is necessary
1125		 */
1126		len = ALIGN(len, huge_page_size(&default_hstate));
1127		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1128						&user, HUGETLB_ANONHUGE_INODE);
1129		if (IS_ERR(file))
1130			return PTR_ERR(file);
1131	}
1132
1133	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1134
1135	down_write(&current->mm->mmap_sem);
1136	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1137	up_write(&current->mm->mmap_sem);
1138
1139	if (file)
1140		fput(file);
1141out:
1142	return retval;
1143}
1144
1145#ifdef __ARCH_WANT_SYS_OLD_MMAP
1146struct mmap_arg_struct {
1147	unsigned long addr;
1148	unsigned long len;
1149	unsigned long prot;
1150	unsigned long flags;
1151	unsigned long fd;
1152	unsigned long offset;
1153};
1154
1155SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1156{
1157	struct mmap_arg_struct a;
1158
1159	if (copy_from_user(&a, arg, sizeof(a)))
1160		return -EFAULT;
1161	if (a.offset & ~PAGE_MASK)
1162		return -EINVAL;
1163
1164	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1165			      a.offset >> PAGE_SHIFT);
1166}
1167#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1168
1169/*
1170 * Some shared mappigns will want the pages marked read-only
1171 * to track write events. If so, we'll downgrade vm_page_prot
1172 * to the private version (using protection_map[] without the
1173 * VM_SHARED bit).
1174 */
1175int vma_wants_writenotify(struct vm_area_struct *vma)
1176{
1177	unsigned int vm_flags = vma->vm_flags;
1178
1179	/* If it was private or non-writable, the write bit is already clear */
1180	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1181		return 0;
1182
1183	/* The backer wishes to know when pages are first written to? */
1184	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1185		return 1;
1186
1187	/* The open routine did something to the protections already? */
1188	if (pgprot_val(vma->vm_page_prot) !=
1189	    pgprot_val(vm_get_page_prot(vm_flags)))
1190		return 0;
1191
1192	/* Specialty mapping? */
1193	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1194		return 0;
1195
1196	/* Can the mapping track the dirty pages? */
1197	return vma->vm_file && vma->vm_file->f_mapping &&
1198		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1199}
1200
1201/*
1202 * We account for memory if it's a private writeable mapping,
1203 * not hugepages and VM_NORESERVE wasn't set.
1204 */
1205static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1206{
1207	/*
1208	 * hugetlb has its own accounting separate from the core VM
1209	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1210	 */
1211	if (file && is_file_hugepages(file))
1212		return 0;
1213
1214	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1215}
1216
1217unsigned long mmap_region(struct file *file, unsigned long addr,
1218			  unsigned long len, unsigned long flags,
1219			  unsigned int vm_flags, unsigned long pgoff)
1220{
1221	struct mm_struct *mm = current->mm;
1222	struct vm_area_struct *vma, *prev;
1223	int correct_wcount = 0;
1224	int error;
1225	struct rb_node **rb_link, *rb_parent;
1226	unsigned long charged = 0;
1227	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1228
1229	/* Clear old maps */
1230	error = -ENOMEM;
1231munmap_back:
1232	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1233	if (vma && vma->vm_start < addr + len) {
1234		if (do_munmap(mm, addr, len))
1235			return -ENOMEM;
1236		goto munmap_back;
1237	}
1238
1239	/* Check against address space limit. */
1240	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1241		return -ENOMEM;
1242
1243	/*
1244	 * Set 'VM_NORESERVE' if we should not account for the
1245	 * memory use of this mapping.
1246	 */
1247	if ((flags & MAP_NORESERVE)) {
1248		/* We honor MAP_NORESERVE if allowed to overcommit */
1249		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1250			vm_flags |= VM_NORESERVE;
1251
1252		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1253		if (file && is_file_hugepages(file))
1254			vm_flags |= VM_NORESERVE;
1255	}
1256
1257	/*
1258	 * Private writable mapping: check memory availability
1259	 */
1260	if (accountable_mapping(file, vm_flags)) {
1261		charged = len >> PAGE_SHIFT;
1262		if (security_vm_enough_memory(charged))
1263			return -ENOMEM;
1264		vm_flags |= VM_ACCOUNT;
1265	}
1266
1267	/*
1268	 * Can we just expand an old mapping?
1269	 */
1270	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1271	if (vma)
1272		goto out;
1273
1274	/*
1275	 * Determine the object being mapped and call the appropriate
1276	 * specific mapper. the address has already been validated, but
1277	 * not unmapped, but the maps are removed from the list.
1278	 */
1279	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1280	if (!vma) {
1281		error = -ENOMEM;
1282		goto unacct_error;
1283	}
1284
1285	vma->vm_mm = mm;
1286	vma->vm_start = addr;
1287	vma->vm_end = addr + len;
1288	vma->vm_flags = vm_flags;
1289	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1290	vma->vm_pgoff = pgoff;
1291	INIT_LIST_HEAD(&vma->anon_vma_chain);
1292
1293	if (file) {
1294		error = -EINVAL;
1295		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1296			goto free_vma;
1297		if (vm_flags & VM_DENYWRITE) {
1298			error = deny_write_access(file);
1299			if (error)
1300				goto free_vma;
1301			correct_wcount = 1;
1302		}
1303		vma->vm_file = file;
1304		get_file(file);
1305		error = file->f_op->mmap(file, vma);
1306		if (error)
1307			goto unmap_and_free_vma;
1308		if (vm_flags & VM_EXECUTABLE)
1309			added_exe_file_vma(mm);
1310
1311		/* Can addr have changed??
1312		 *
1313		 * Answer: Yes, several device drivers can do it in their
1314		 *         f_op->mmap method. -DaveM
1315		 */
1316		addr = vma->vm_start;
1317		pgoff = vma->vm_pgoff;
1318		vm_flags = vma->vm_flags;
1319	} else if (vm_flags & VM_SHARED) {
1320		error = shmem_zero_setup(vma);
1321		if (error)
1322			goto free_vma;
1323	}
1324
1325	if (vma_wants_writenotify(vma)) {
1326		pgprot_t pprot = vma->vm_page_prot;
1327
1328		/* Can vma->vm_page_prot have changed??
1329		 *
1330		 * Answer: Yes, drivers may have changed it in their
1331		 *         f_op->mmap method.
1332		 *
1333		 * Ensures that vmas marked as uncached stay that way.
1334		 */
1335		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1336		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1337			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1338	}
1339
1340	vma_link(mm, vma, prev, rb_link, rb_parent);
1341	file = vma->vm_file;
1342
1343	/* Once vma denies write, undo our temporary denial count */
1344	if (correct_wcount)
1345		atomic_inc(&inode->i_writecount);
1346out:
1347	perf_event_mmap(vma);
1348
1349	mm->total_vm += len >> PAGE_SHIFT;
1350	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1351	if (vm_flags & VM_LOCKED) {
1352		if (!mlock_vma_pages_range(vma, addr, addr + len))
1353			mm->locked_vm += (len >> PAGE_SHIFT);
1354	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1355		make_pages_present(addr, addr + len);
1356	return addr;
1357
1358unmap_and_free_vma:
1359	if (correct_wcount)
1360		atomic_inc(&inode->i_writecount);
1361	vma->vm_file = NULL;
1362	fput(file);
1363
1364	/* Undo any partial mapping done by a device driver. */
1365	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1366	charged = 0;
1367free_vma:
1368	kmem_cache_free(vm_area_cachep, vma);
1369unacct_error:
1370	if (charged)
1371		vm_unacct_memory(charged);
1372	return error;
1373}
1374
1375/* Get an address range which is currently unmapped.
1376 * For shmat() with addr=0.
1377 *
1378 * Ugly calling convention alert:
1379 * Return value with the low bits set means error value,
1380 * ie
1381 *	if (ret & ~PAGE_MASK)
1382 *		error = ret;
1383 *
1384 * This function "knows" that -ENOMEM has the bits set.
1385 */
1386#ifndef HAVE_ARCH_UNMAPPED_AREA
1387unsigned long
1388arch_get_unmapped_area(struct file *filp, unsigned long addr,
1389		unsigned long len, unsigned long pgoff, unsigned long flags)
1390{
1391	struct mm_struct *mm = current->mm;
1392	struct vm_area_struct *vma;
1393	unsigned long start_addr;
1394
1395	if (len > TASK_SIZE)
1396		return -ENOMEM;
1397
1398	if (flags & MAP_FIXED)
1399		return addr;
1400
1401	if (addr) {
1402		addr = PAGE_ALIGN(addr);
1403		vma = find_vma(mm, addr);
1404		if (TASK_SIZE - len >= addr &&
1405		    (!vma || addr + len <= vma->vm_start))
1406			return addr;
1407	}
1408	if (len > mm->cached_hole_size) {
1409	        start_addr = addr = mm->free_area_cache;
1410	} else {
1411	        start_addr = addr = TASK_UNMAPPED_BASE;
1412	        mm->cached_hole_size = 0;
1413	}
1414
1415full_search:
1416	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1417		/* At this point:  (!vma || addr < vma->vm_end). */
1418		if (TASK_SIZE - len < addr) {
1419			/*
1420			 * Start a new search - just in case we missed
1421			 * some holes.
1422			 */
1423			if (start_addr != TASK_UNMAPPED_BASE) {
1424				addr = TASK_UNMAPPED_BASE;
1425			        start_addr = addr;
1426				mm->cached_hole_size = 0;
1427				goto full_search;
1428			}
1429			return -ENOMEM;
1430		}
1431		if (!vma || addr + len <= vma->vm_start) {
1432			/*
1433			 * Remember the place where we stopped the search:
1434			 */
1435			mm->free_area_cache = addr + len;
1436			return addr;
1437		}
1438		if (addr + mm->cached_hole_size < vma->vm_start)
1439		        mm->cached_hole_size = vma->vm_start - addr;
1440		addr = vma->vm_end;
1441	}
1442}
1443#endif
1444
1445void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1446{
1447	/*
1448	 * Is this a new hole at the lowest possible address?
1449	 */
1450	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1451		mm->free_area_cache = addr;
1452		mm->cached_hole_size = ~0UL;
1453	}
1454}
1455
1456/*
1457 * This mmap-allocator allocates new areas top-down from below the
1458 * stack's low limit (the base):
1459 */
1460#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1461unsigned long
1462arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1463			  const unsigned long len, const unsigned long pgoff,
1464			  const unsigned long flags)
1465{
1466	struct vm_area_struct *vma;
1467	struct mm_struct *mm = current->mm;
1468	unsigned long addr = addr0;
1469
1470	/* requested length too big for entire address space */
1471	if (len > TASK_SIZE)
1472		return -ENOMEM;
1473
1474	if (flags & MAP_FIXED)
1475		return addr;
1476
1477	/* requesting a specific address */
1478	if (addr) {
1479		addr = PAGE_ALIGN(addr);
1480		vma = find_vma(mm, addr);
1481		if (TASK_SIZE - len >= addr &&
1482				(!vma || addr + len <= vma->vm_start))
1483			return addr;
1484	}
1485
1486	/* check if free_area_cache is useful for us */
1487	if (len <= mm->cached_hole_size) {
1488 	        mm->cached_hole_size = 0;
1489 		mm->free_area_cache = mm->mmap_base;
1490 	}
1491
1492	/* either no address requested or can't fit in requested address hole */
1493	addr = mm->free_area_cache;
1494
1495	/* make sure it can fit in the remaining address space */
1496	if (addr > len) {
1497		vma = find_vma(mm, addr-len);
1498		if (!vma || addr <= vma->vm_start)
1499			/* remember the address as a hint for next time */
1500			return (mm->free_area_cache = addr-len);
1501	}
1502
1503	if (mm->mmap_base < len)
1504		goto bottomup;
1505
1506	addr = mm->mmap_base-len;
1507
1508	do {
1509		/*
1510		 * Lookup failure means no vma is above this address,
1511		 * else if new region fits below vma->vm_start,
1512		 * return with success:
1513		 */
1514		vma = find_vma(mm, addr);
1515		if (!vma || addr+len <= vma->vm_start)
1516			/* remember the address as a hint for next time */
1517			return (mm->free_area_cache = addr);
1518
1519 		/* remember the largest hole we saw so far */
1520 		if (addr + mm->cached_hole_size < vma->vm_start)
1521 		        mm->cached_hole_size = vma->vm_start - addr;
1522
1523		/* try just below the current vma->vm_start */
1524		addr = vma->vm_start-len;
1525	} while (len < vma->vm_start);
1526
1527bottomup:
1528	/*
1529	 * A failed mmap() very likely causes application failure,
1530	 * so fall back to the bottom-up function here. This scenario
1531	 * can happen with large stack limits and large mmap()
1532	 * allocations.
1533	 */
1534	mm->cached_hole_size = ~0UL;
1535  	mm->free_area_cache = TASK_UNMAPPED_BASE;
1536	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1537	/*
1538	 * Restore the topdown base:
1539	 */
1540	mm->free_area_cache = mm->mmap_base;
1541	mm->cached_hole_size = ~0UL;
1542
1543	return addr;
1544}
1545#endif
1546
1547void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1548{
1549	/*
1550	 * Is this a new hole at the highest possible address?
1551	 */
1552	if (addr > mm->free_area_cache)
1553		mm->free_area_cache = addr;
1554
1555	/* dont allow allocations above current base */
1556	if (mm->free_area_cache > mm->mmap_base)
1557		mm->free_area_cache = mm->mmap_base;
1558}
1559
1560unsigned long
1561get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1562		unsigned long pgoff, unsigned long flags)
1563{
1564	unsigned long (*get_area)(struct file *, unsigned long,
1565				  unsigned long, unsigned long, unsigned long);
1566
1567	unsigned long error = arch_mmap_check(addr, len, flags);
1568	if (error)
1569		return error;
1570
1571	/* Careful about overflows.. */
1572	if (len > TASK_SIZE)
1573		return -ENOMEM;
1574
1575	get_area = current->mm->get_unmapped_area;
1576	if (file && file->f_op && file->f_op->get_unmapped_area)
1577		get_area = file->f_op->get_unmapped_area;
1578	addr = get_area(file, addr, len, pgoff, flags);
1579	if (IS_ERR_VALUE(addr))
1580		return addr;
1581
1582	if (addr > TASK_SIZE - len)
1583		return -ENOMEM;
1584	if (addr & ~PAGE_MASK)
1585		return -EINVAL;
1586
1587	return arch_rebalance_pgtables(addr, len);
1588}
1589
1590EXPORT_SYMBOL(get_unmapped_area);
1591
1592/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1593struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1594{
1595	struct vm_area_struct *vma = NULL;
1596
1597	if (mm) {
1598		/* Check the cache first. */
1599		/* (Cache hit rate is typically around 35%.) */
1600		vma = mm->mmap_cache;
1601		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1602			struct rb_node * rb_node;
1603
1604			rb_node = mm->mm_rb.rb_node;
1605			vma = NULL;
1606
1607			while (rb_node) {
1608				struct vm_area_struct * vma_tmp;
1609
1610				vma_tmp = rb_entry(rb_node,
1611						struct vm_area_struct, vm_rb);
1612
1613				if (vma_tmp->vm_end > addr) {
1614					vma = vma_tmp;
1615					if (vma_tmp->vm_start <= addr)
1616						break;
1617					rb_node = rb_node->rb_left;
1618				} else
1619					rb_node = rb_node->rb_right;
1620			}
1621			if (vma)
1622				mm->mmap_cache = vma;
1623		}
1624	}
1625	return vma;
1626}
1627
1628EXPORT_SYMBOL(find_vma);
1629
1630/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1631struct vm_area_struct *
1632find_vma_prev(struct mm_struct *mm, unsigned long addr,
1633			struct vm_area_struct **pprev)
1634{
1635	struct vm_area_struct *vma = NULL, *prev = NULL;
1636	struct rb_node *rb_node;
1637	if (!mm)
1638		goto out;
1639
1640	/* Guard against addr being lower than the first VMA */
1641	vma = mm->mmap;
1642
1643	/* Go through the RB tree quickly. */
1644	rb_node = mm->mm_rb.rb_node;
1645
1646	while (rb_node) {
1647		struct vm_area_struct *vma_tmp;
1648		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1649
1650		if (addr < vma_tmp->vm_end) {
1651			rb_node = rb_node->rb_left;
1652		} else {
1653			prev = vma_tmp;
1654			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1655				break;
1656			rb_node = rb_node->rb_right;
1657		}
1658	}
1659
1660out:
1661	*pprev = prev;
1662	return prev ? prev->vm_next : vma;
1663}
1664
1665/*
1666 * Verify that the stack growth is acceptable and
1667 * update accounting. This is shared with both the
1668 * grow-up and grow-down cases.
1669 */
1670static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1671{
1672	struct mm_struct *mm = vma->vm_mm;
1673	struct rlimit *rlim = current->signal->rlim;
1674	unsigned long new_start;
1675
1676	/* address space limit tests */
1677	if (!may_expand_vm(mm, grow))
1678		return -ENOMEM;
1679
1680	/* Stack limit test */
1681	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1682		return -ENOMEM;
1683
1684	/* mlock limit tests */
1685	if (vma->vm_flags & VM_LOCKED) {
1686		unsigned long locked;
1687		unsigned long limit;
1688		locked = mm->locked_vm + grow;
1689		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1690		limit >>= PAGE_SHIFT;
1691		if (locked > limit && !capable(CAP_IPC_LOCK))
1692			return -ENOMEM;
1693	}
1694
1695	/* Check to ensure the stack will not grow into a hugetlb-only region */
1696	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1697			vma->vm_end - size;
1698	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1699		return -EFAULT;
1700
1701	/*
1702	 * Overcommit..  This must be the final test, as it will
1703	 * update security statistics.
1704	 */
1705	if (security_vm_enough_memory_mm(mm, grow))
1706		return -ENOMEM;
1707
1708	/* Ok, everything looks good - let it rip */
1709	mm->total_vm += grow;
1710	if (vma->vm_flags & VM_LOCKED)
1711		mm->locked_vm += grow;
1712	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1713	return 0;
1714}
1715
1716#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1717/*
1718 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1719 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1720 */
1721int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1722{
1723	int error;
1724
1725	if (!(vma->vm_flags & VM_GROWSUP))
1726		return -EFAULT;
1727
1728	/*
1729	 * We must make sure the anon_vma is allocated
1730	 * so that the anon_vma locking is not a noop.
1731	 */
1732	if (unlikely(anon_vma_prepare(vma)))
1733		return -ENOMEM;
1734	vma_lock_anon_vma(vma);
1735
1736	/*
1737	 * vma->vm_start/vm_end cannot change under us because the caller
1738	 * is required to hold the mmap_sem in read mode.  We need the
1739	 * anon_vma lock to serialize against concurrent expand_stacks.
1740	 * Also guard against wrapping around to address 0.
1741	 */
1742	if (address < PAGE_ALIGN(address+4))
1743		address = PAGE_ALIGN(address+4);
1744	else {
1745		vma_unlock_anon_vma(vma);
1746		return -ENOMEM;
1747	}
1748	error = 0;
1749
1750	/* Somebody else might have raced and expanded it already */
1751	if (address > vma->vm_end) {
1752		unsigned long size, grow;
1753
1754		size = address - vma->vm_start;
1755		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1756
1757		error = acct_stack_growth(vma, size, grow);
1758		if (!error) {
1759			vma->vm_end = address;
1760			perf_event_mmap(vma);
1761		}
1762	}
1763	vma_unlock_anon_vma(vma);
1764	return error;
1765}
1766#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1767
1768/*
1769 * vma is the first one with address < vma->vm_start.  Have to extend vma.
1770 */
1771static int expand_downwards(struct vm_area_struct *vma,
1772				   unsigned long address)
1773{
1774	int error;
1775
1776	/*
1777	 * We must make sure the anon_vma is allocated
1778	 * so that the anon_vma locking is not a noop.
1779	 */
1780	if (unlikely(anon_vma_prepare(vma)))
1781		return -ENOMEM;
1782
1783	address &= PAGE_MASK;
1784	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1785	if (error)
1786		return error;
1787
1788	vma_lock_anon_vma(vma);
1789
1790	/*
1791	 * vma->vm_start/vm_end cannot change under us because the caller
1792	 * is required to hold the mmap_sem in read mode.  We need the
1793	 * anon_vma lock to serialize against concurrent expand_stacks.
1794	 */
1795
1796	/* Somebody else might have raced and expanded it already */
1797	if (address < vma->vm_start) {
1798		unsigned long size, grow;
1799
1800		size = vma->vm_end - address;
1801		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1802
1803		error = acct_stack_growth(vma, size, grow);
1804		if (!error) {
1805			vma->vm_start = address;
1806			vma->vm_pgoff -= grow;
1807			perf_event_mmap(vma);
1808		}
1809	}
1810	vma_unlock_anon_vma(vma);
1811	return error;
1812}
1813
1814int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1815{
1816	return expand_downwards(vma, address);
1817}
1818
1819#ifdef CONFIG_STACK_GROWSUP
1820int expand_stack(struct vm_area_struct *vma, unsigned long address)
1821{
1822	return expand_upwards(vma, address);
1823}
1824
1825struct vm_area_struct *
1826find_extend_vma(struct mm_struct *mm, unsigned long addr)
1827{
1828	struct vm_area_struct *vma, *prev;
1829
1830	addr &= PAGE_MASK;
1831	vma = find_vma_prev(mm, addr, &prev);
1832	if (vma && (vma->vm_start <= addr))
1833		return vma;
1834	if (!prev || expand_stack(prev, addr))
1835		return NULL;
1836	if (prev->vm_flags & VM_LOCKED) {
1837		mlock_vma_pages_range(prev, addr, prev->vm_end);
1838	}
1839	return prev;
1840}
1841#else
1842int expand_stack(struct vm_area_struct *vma, unsigned long address)
1843{
1844	return expand_downwards(vma, address);
1845}
1846
1847struct vm_area_struct *
1848find_extend_vma(struct mm_struct * mm, unsigned long addr)
1849{
1850	struct vm_area_struct * vma;
1851	unsigned long start;
1852
1853	addr &= PAGE_MASK;
1854	vma = find_vma(mm,addr);
1855	if (!vma)
1856		return NULL;
1857	if (vma->vm_start <= addr)
1858		return vma;
1859	if (!(vma->vm_flags & VM_GROWSDOWN))
1860		return NULL;
1861	start = vma->vm_start;
1862	if (expand_stack(vma, addr))
1863		return NULL;
1864	if (vma->vm_flags & VM_LOCKED) {
1865		mlock_vma_pages_range(vma, addr, start);
1866	}
1867	return vma;
1868}
1869#endif
1870
1871/*
1872 * Ok - we have the memory areas we should free on the vma list,
1873 * so release them, and do the vma updates.
1874 *
1875 * Called with the mm semaphore held.
1876 */
1877static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1878{
1879	/* Update high watermark before we lower total_vm */
1880	update_hiwater_vm(mm);
1881	do {
1882		long nrpages = vma_pages(vma);
1883
1884		mm->total_vm -= nrpages;
1885		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1886		vma = remove_vma(vma);
1887	} while (vma);
1888	validate_mm(mm);
1889}
1890
1891/*
1892 * Get rid of page table information in the indicated region.
1893 *
1894 * Called with the mm semaphore held.
1895 */
1896static void unmap_region(struct mm_struct *mm,
1897		struct vm_area_struct *vma, struct vm_area_struct *prev,
1898		unsigned long start, unsigned long end)
1899{
1900	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1901	struct mmu_gather *tlb;
1902	unsigned long nr_accounted = 0;
1903
1904	lru_add_drain();
1905	tlb = tlb_gather_mmu(mm, 0);
1906	update_hiwater_rss(mm);
1907	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1908	vm_unacct_memory(nr_accounted);
1909	free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1910				 next? next->vm_start: 0);
1911	tlb_finish_mmu(tlb, start, end);
1912}
1913
1914/*
1915 * Create a list of vma's touched by the unmap, removing them from the mm's
1916 * vma list as we go..
1917 */
1918static void
1919detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1920	struct vm_area_struct *prev, unsigned long end)
1921{
1922	struct vm_area_struct **insertion_point;
1923	struct vm_area_struct *tail_vma = NULL;
1924	unsigned long addr;
1925
1926	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1927	vma->vm_prev = NULL;
1928	do {
1929		rb_erase(&vma->vm_rb, &mm->mm_rb);
1930		mm->map_count--;
1931		tail_vma = vma;
1932		vma = vma->vm_next;
1933	} while (vma && vma->vm_start < end);
1934	*insertion_point = vma;
1935	if (vma)
1936		vma->vm_prev = prev;
1937	tail_vma->vm_next = NULL;
1938	if (mm->unmap_area == arch_unmap_area)
1939		addr = prev ? prev->vm_end : mm->mmap_base;
1940	else
1941		addr = vma ?  vma->vm_start : mm->mmap_base;
1942	mm->unmap_area(mm, addr);
1943	mm->mmap_cache = NULL;		/* Kill the cache. */
1944}
1945
1946/*
1947 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1948 * munmap path where it doesn't make sense to fail.
1949 */
1950static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1951	      unsigned long addr, int new_below)
1952{
1953	struct mempolicy *pol;
1954	struct vm_area_struct *new;
1955	int err = -ENOMEM;
1956
1957	if (is_vm_hugetlb_page(vma) && (addr &
1958					~(huge_page_mask(hstate_vma(vma)))))
1959		return -EINVAL;
1960
1961	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1962	if (!new)
1963		goto out_err;
1964
1965	/* most fields are the same, copy all, and then fixup */
1966	*new = *vma;
1967
1968	INIT_LIST_HEAD(&new->anon_vma_chain);
1969
1970	if (new_below)
1971		new->vm_end = addr;
1972	else {
1973		new->vm_start = addr;
1974		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1975	}
1976
1977	pol = mpol_dup(vma_policy(vma));
1978	if (IS_ERR(pol)) {
1979		err = PTR_ERR(pol);
1980		goto out_free_vma;
1981	}
1982	vma_set_policy(new, pol);
1983
1984	if (anon_vma_clone(new, vma))
1985		goto out_free_mpol;
1986
1987	if (new->vm_file) {
1988		get_file(new->vm_file);
1989		if (vma->vm_flags & VM_EXECUTABLE)
1990			added_exe_file_vma(mm);
1991	}
1992
1993	if (new->vm_ops && new->vm_ops->open)
1994		new->vm_ops->open(new);
1995
1996	if (new_below)
1997		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1998			((addr - new->vm_start) >> PAGE_SHIFT), new);
1999	else
2000		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2001
2002	/* Success. */
2003	if (!err)
2004		return 0;
2005
2006	/* Clean everything up if vma_adjust failed. */
2007	if (new->vm_ops && new->vm_ops->close)
2008		new->vm_ops->close(new);
2009	if (new->vm_file) {
2010		if (vma->vm_flags & VM_EXECUTABLE)
2011			removed_exe_file_vma(mm);
2012		fput(new->vm_file);
2013	}
2014	unlink_anon_vmas(new);
2015 out_free_mpol:
2016	mpol_put(pol);
2017 out_free_vma:
2018	kmem_cache_free(vm_area_cachep, new);
2019 out_err:
2020	return err;
2021}
2022
2023/*
2024 * Split a vma into two pieces at address 'addr', a new vma is allocated
2025 * either for the first part or the tail.
2026 */
2027int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2028	      unsigned long addr, int new_below)
2029{
2030	if (mm->map_count >= sysctl_max_map_count)
2031		return -ENOMEM;
2032
2033	return __split_vma(mm, vma, addr, new_below);
2034}
2035
2036/* Munmap is split into 2 main parts -- this part which finds
2037 * what needs doing, and the areas themselves, which do the
2038 * work.  This now handles partial unmappings.
2039 * Jeremy Fitzhardinge <jeremy@goop.org>
2040 */
2041int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2042{
2043	unsigned long end;
2044	struct vm_area_struct *vma, *prev, *last;
2045
2046	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2047		return -EINVAL;
2048
2049	if ((len = PAGE_ALIGN(len)) == 0)
2050		return -EINVAL;
2051
2052	/* Find the first overlapping VMA */
2053	vma = find_vma_prev(mm, start, &prev);
2054	if (!vma)
2055		return 0;
2056	/* we have  start < vma->vm_end  */
2057
2058	/* if it doesn't overlap, we have nothing.. */
2059	end = start + len;
2060	if (vma->vm_start >= end)
2061		return 0;
2062
2063	/*
2064	 * If we need to split any vma, do it now to save pain later.
2065	 *
2066	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2067	 * unmapped vm_area_struct will remain in use: so lower split_vma
2068	 * places tmp vma above, and higher split_vma places tmp vma below.
2069	 */
2070	if (start > vma->vm_start) {
2071		int error;
2072
2073		/*
2074		 * Make sure that map_count on return from munmap() will
2075		 * not exceed its limit; but let map_count go just above
2076		 * its limit temporarily, to help free resources as expected.
2077		 */
2078		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2079			return -ENOMEM;
2080
2081		error = __split_vma(mm, vma, start, 0);
2082		if (error)
2083			return error;
2084		prev = vma;
2085	}
2086
2087	/* Does it split the last one? */
2088	last = find_vma(mm, end);
2089	if (last && end > last->vm_start) {
2090		int error = __split_vma(mm, last, end, 1);
2091		if (error)
2092			return error;
2093	}
2094	vma = prev? prev->vm_next: mm->mmap;
2095
2096	/*
2097	 * unlock any mlock()ed ranges before detaching vmas
2098	 */
2099	if (mm->locked_vm) {
2100		struct vm_area_struct *tmp = vma;
2101		while (tmp && tmp->vm_start < end) {
2102			if (tmp->vm_flags & VM_LOCKED) {
2103				mm->locked_vm -= vma_pages(tmp);
2104				munlock_vma_pages_all(tmp);
2105			}
2106			tmp = tmp->vm_next;
2107		}
2108	}
2109
2110	/*
2111	 * Remove the vma's, and unmap the actual pages
2112	 */
2113	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2114	unmap_region(mm, vma, prev, start, end);
2115
2116	/* Fix up all other VM information */
2117	remove_vma_list(mm, vma);
2118
2119	return 0;
2120}
2121
2122EXPORT_SYMBOL(do_munmap);
2123
2124SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2125{
2126	int ret;
2127	struct mm_struct *mm = current->mm;
2128
2129	profile_munmap(addr);
2130
2131	down_write(&mm->mmap_sem);
2132	ret = do_munmap(mm, addr, len);
2133	up_write(&mm->mmap_sem);
2134	return ret;
2135}
2136
2137static inline void verify_mm_writelocked(struct mm_struct *mm)
2138{
2139#ifdef CONFIG_DEBUG_VM
2140	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2141		WARN_ON(1);
2142		up_read(&mm->mmap_sem);
2143	}
2144#endif
2145}
2146
2147/*
2148 *  this is really a simplified "do_mmap".  it only handles
2149 *  anonymous maps.  eventually we may be able to do some
2150 *  brk-specific accounting here.
2151 */
2152unsigned long do_brk(unsigned long addr, unsigned long len)
2153{
2154	struct mm_struct * mm = current->mm;
2155	struct vm_area_struct * vma, * prev;
2156	unsigned long flags;
2157	struct rb_node ** rb_link, * rb_parent;
2158	pgoff_t pgoff = addr >> PAGE_SHIFT;
2159	int error;
2160
2161	len = PAGE_ALIGN(len);
2162	if (!len)
2163		return addr;
2164
2165	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2166	if (error)
2167		return error;
2168
2169	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2170
2171	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2172	if (error & ~PAGE_MASK)
2173		return error;
2174
2175	/*
2176	 * mlock MCL_FUTURE?
2177	 */
2178	if (mm->def_flags & VM_LOCKED) {
2179		unsigned long locked, lock_limit;
2180		locked = len >> PAGE_SHIFT;
2181		locked += mm->locked_vm;
2182		lock_limit = rlimit(RLIMIT_MEMLOCK);
2183		lock_limit >>= PAGE_SHIFT;
2184		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2185			return -EAGAIN;
2186	}
2187
2188	/*
2189	 * mm->mmap_sem is required to protect against another thread
2190	 * changing the mappings in case we sleep.
2191	 */
2192	verify_mm_writelocked(mm);
2193
2194	/*
2195	 * Clear old maps.  this also does some error checking for us
2196	 */
2197 munmap_back:
2198	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2199	if (vma && vma->vm_start < addr + len) {
2200		if (do_munmap(mm, addr, len))
2201			return -ENOMEM;
2202		goto munmap_back;
2203	}
2204
2205	/* Check against address space limits *after* clearing old maps... */
2206	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2207		return -ENOMEM;
2208
2209	if (mm->map_count > sysctl_max_map_count)
2210		return -ENOMEM;
2211
2212	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2213		return -ENOMEM;
2214
2215	/* Can we just expand an old private anonymous mapping? */
2216	vma = vma_merge(mm, prev, addr, addr + len, flags,
2217					NULL, NULL, pgoff, NULL);
2218	if (vma)
2219		goto out;
2220
2221	/*
2222	 * create a vma struct for an anonymous mapping
2223	 */
2224	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2225	if (!vma) {
2226		vm_unacct_memory(len >> PAGE_SHIFT);
2227		return -ENOMEM;
2228	}
2229
2230	INIT_LIST_HEAD(&vma->anon_vma_chain);
2231	vma->vm_mm = mm;
2232	vma->vm_start = addr;
2233	vma->vm_end = addr + len;
2234	vma->vm_pgoff = pgoff;
2235	vma->vm_flags = flags;
2236	vma->vm_page_prot = vm_get_page_prot(flags);
2237	vma_link(mm, vma, prev, rb_link, rb_parent);
2238out:
2239	perf_event_mmap(vma);
2240	mm->total_vm += len >> PAGE_SHIFT;
2241	if (flags & VM_LOCKED) {
2242		if (!mlock_vma_pages_range(vma, addr, addr + len))
2243			mm->locked_vm += (len >> PAGE_SHIFT);
2244	}
2245	return addr;
2246}
2247
2248EXPORT_SYMBOL(do_brk);
2249
2250/* Release all mmaps. */
2251void exit_mmap(struct mm_struct *mm)
2252{
2253	struct mmu_gather *tlb;
2254	struct vm_area_struct *vma;
2255	unsigned long nr_accounted = 0;
2256	unsigned long end;
2257
2258	/* mm's last user has gone, and its about to be pulled down */
2259	mmu_notifier_release(mm);
2260
2261	if (mm->locked_vm) {
2262		vma = mm->mmap;
2263		while (vma) {
2264			if (vma->vm_flags & VM_LOCKED)
2265				munlock_vma_pages_all(vma);
2266			vma = vma->vm_next;
2267		}
2268	}
2269
2270	arch_exit_mmap(mm);
2271
2272	vma = mm->mmap;
2273	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2274		return;
2275
2276	lru_add_drain();
2277	flush_cache_mm(mm);
2278	tlb = tlb_gather_mmu(mm, 1);
2279	/* update_hiwater_rss(mm) here? but nobody should be looking */
2280	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2281	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2282	vm_unacct_memory(nr_accounted);
2283
2284	free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2285	tlb_finish_mmu(tlb, 0, end);
2286
2287	/*
2288	 * Walk the list again, actually closing and freeing it,
2289	 * with preemption enabled, without holding any MM locks.
2290	 */
2291	while (vma)
2292		vma = remove_vma(vma);
2293
2294	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2295}
2296
2297/* Insert vm structure into process list sorted by address
2298 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2299 * then i_mmap_lock is taken here.
2300 */
2301int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2302{
2303	struct vm_area_struct * __vma, * prev;
2304	struct rb_node ** rb_link, * rb_parent;
2305
2306	/*
2307	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2308	 * until its first write fault, when page's anon_vma and index
2309	 * are set.  But now set the vm_pgoff it will almost certainly
2310	 * end up with (unless mremap moves it elsewhere before that
2311	 * first wfault), so /proc/pid/maps tells a consistent story.
2312	 *
2313	 * By setting it to reflect the virtual start address of the
2314	 * vma, merges and splits can happen in a seamless way, just
2315	 * using the existing file pgoff checks and manipulations.
2316	 * Similarly in do_mmap_pgoff and in do_brk.
2317	 */
2318	if (!vma->vm_file) {
2319		BUG_ON(vma->anon_vma);
2320		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2321	}
2322	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2323	if (__vma && __vma->vm_start < vma->vm_end)
2324		return -ENOMEM;
2325	if ((vma->vm_flags & VM_ACCOUNT) &&
2326	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2327		return -ENOMEM;
2328	vma_link(mm, vma, prev, rb_link, rb_parent);
2329	return 0;
2330}
2331
2332/*
2333 * Copy the vma structure to a new location in the same mm,
2334 * prior to moving page table entries, to effect an mremap move.
2335 */
2336struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2337	unsigned long addr, unsigned long len, pgoff_t pgoff)
2338{
2339	struct vm_area_struct *vma = *vmap;
2340	unsigned long vma_start = vma->vm_start;
2341	struct mm_struct *mm = vma->vm_mm;
2342	struct vm_area_struct *new_vma, *prev;
2343	struct rb_node **rb_link, *rb_parent;
2344	struct mempolicy *pol;
2345
2346	/*
2347	 * If anonymous vma has not yet been faulted, update new pgoff
2348	 * to match new location, to increase its chance of merging.
2349	 */
2350	if (!vma->vm_file && !vma->anon_vma)
2351		pgoff = addr >> PAGE_SHIFT;
2352
2353	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2354	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2355			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2356	if (new_vma) {
2357		/*
2358		 * Source vma may have been merged into new_vma
2359		 */
2360		if (vma_start >= new_vma->vm_start &&
2361		    vma_start < new_vma->vm_end)
2362			*vmap = new_vma;
2363	} else {
2364		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2365		if (new_vma) {
2366			*new_vma = *vma;
2367			pol = mpol_dup(vma_policy(vma));
2368			if (IS_ERR(pol))
2369				goto out_free_vma;
2370			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2371			if (anon_vma_clone(new_vma, vma))
2372				goto out_free_mempol;
2373			vma_set_policy(new_vma, pol);
2374			new_vma->vm_start = addr;
2375			new_vma->vm_end = addr + len;
2376			new_vma->vm_pgoff = pgoff;
2377			if (new_vma->vm_file) {
2378				get_file(new_vma->vm_file);
2379				if (vma->vm_flags & VM_EXECUTABLE)
2380					added_exe_file_vma(mm);
2381			}
2382			if (new_vma->vm_ops && new_vma->vm_ops->open)
2383				new_vma->vm_ops->open(new_vma);
2384			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2385		}
2386	}
2387	return new_vma;
2388
2389 out_free_mempol:
2390	mpol_put(pol);
2391 out_free_vma:
2392	kmem_cache_free(vm_area_cachep, new_vma);
2393	return NULL;
2394}
2395
2396/*
2397 * Return true if the calling process may expand its vm space by the passed
2398 * number of pages
2399 */
2400int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2401{
2402	unsigned long cur = mm->total_vm;	/* pages */
2403	unsigned long lim;
2404
2405	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2406
2407	if (cur + npages > lim)
2408		return 0;
2409	return 1;
2410}
2411
2412
2413static int special_mapping_fault(struct vm_area_struct *vma,
2414				struct vm_fault *vmf)
2415{
2416	pgoff_t pgoff;
2417	struct page **pages;
2418
2419	/*
2420	 * special mappings have no vm_file, and in that case, the mm
2421	 * uses vm_pgoff internally. So we have to subtract it from here.
2422	 * We are allowed to do this because we are the mm; do not copy
2423	 * this code into drivers!
2424	 */
2425	pgoff = vmf->pgoff - vma->vm_pgoff;
2426
2427	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2428		pgoff--;
2429
2430	if (*pages) {
2431		struct page *page = *pages;
2432		get_page(page);
2433		vmf->page = page;
2434		return 0;
2435	}
2436
2437	return VM_FAULT_SIGBUS;
2438}
2439
2440/*
2441 * Having a close hook prevents vma merging regardless of flags.
2442 */
2443static void special_mapping_close(struct vm_area_struct *vma)
2444{
2445}
2446
2447static const struct vm_operations_struct special_mapping_vmops = {
2448	.close = special_mapping_close,
2449	.fault = special_mapping_fault,
2450};
2451
2452/*
2453 * Called with mm->mmap_sem held for writing.
2454 * Insert a new vma covering the given region, with the given flags.
2455 * Its pages are supplied by the given array of struct page *.
2456 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2457 * The region past the last page supplied will always produce SIGBUS.
2458 * The array pointer and the pages it points to are assumed to stay alive
2459 * for as long as this mapping might exist.
2460 */
2461int install_special_mapping(struct mm_struct *mm,
2462			    unsigned long addr, unsigned long len,
2463			    unsigned long vm_flags, struct page **pages)
2464{
2465	struct vm_area_struct *vma;
2466
2467	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2468	if (unlikely(vma == NULL))
2469		return -ENOMEM;
2470
2471	INIT_LIST_HEAD(&vma->anon_vma_chain);
2472	vma->vm_mm = mm;
2473	vma->vm_start = addr;
2474	vma->vm_end = addr + len;
2475
2476	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2477	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2478
2479	vma->vm_ops = &special_mapping_vmops;
2480	vma->vm_private_data = pages;
2481
2482	if (unlikely(insert_vm_struct(mm, vma))) {
2483		kmem_cache_free(vm_area_cachep, vma);
2484		return -ENOMEM;
2485	}
2486
2487	mm->total_vm += len >> PAGE_SHIFT;
2488
2489	perf_event_mmap(vma);
2490
2491	return 0;
2492}
2493
2494static DEFINE_MUTEX(mm_all_locks_mutex);
2495
2496static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2497{
2498	if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2499		/*
2500		 * The LSB of head.next can't change from under us
2501		 * because we hold the mm_all_locks_mutex.
2502		 */
2503		spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem);
2504		/*
2505		 * We can safely modify head.next after taking the
2506		 * anon_vma->root->lock. If some other vma in this mm shares
2507		 * the same anon_vma we won't take it again.
2508		 *
2509		 * No need of atomic instructions here, head.next
2510		 * can't change from under us thanks to the
2511		 * anon_vma->root->lock.
2512		 */
2513		if (__test_and_set_bit(0, (unsigned long *)
2514				       &anon_vma->root->head.next))
2515			BUG();
2516	}
2517}
2518
2519static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2520{
2521	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2522		/*
2523		 * AS_MM_ALL_LOCKS can't change from under us because
2524		 * we hold the mm_all_locks_mutex.
2525		 *
2526		 * Operations on ->flags have to be atomic because
2527		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2528		 * mm_all_locks_mutex, there may be other cpus
2529		 * changing other bitflags in parallel to us.
2530		 */
2531		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2532			BUG();
2533		spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2534	}
2535}
2536
2537/*
2538 * This operation locks against the VM for all pte/vma/mm related
2539 * operations that could ever happen on a certain mm. This includes
2540 * vmtruncate, try_to_unmap, and all page faults.
2541 *
2542 * The caller must take the mmap_sem in write mode before calling
2543 * mm_take_all_locks(). The caller isn't allowed to release the
2544 * mmap_sem until mm_drop_all_locks() returns.
2545 *
2546 * mmap_sem in write mode is required in order to block all operations
2547 * that could modify pagetables and free pages without need of
2548 * altering the vma layout (for example populate_range() with
2549 * nonlinear vmas). It's also needed in write mode to avoid new
2550 * anon_vmas to be associated with existing vmas.
2551 *
2552 * A single task can't take more than one mm_take_all_locks() in a row
2553 * or it would deadlock.
2554 *
2555 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2556 * mapping->flags avoid to take the same lock twice, if more than one
2557 * vma in this mm is backed by the same anon_vma or address_space.
2558 *
2559 * We can take all the locks in random order because the VM code
2560 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2561 * takes more than one of them in a row. Secondly we're protected
2562 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2563 *
2564 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2565 * that may have to take thousand of locks.
2566 *
2567 * mm_take_all_locks() can fail if it's interrupted by signals.
2568 */
2569int mm_take_all_locks(struct mm_struct *mm)
2570{
2571	struct vm_area_struct *vma;
2572	struct anon_vma_chain *avc;
2573	int ret = -EINTR;
2574
2575	BUG_ON(down_read_trylock(&mm->mmap_sem));
2576
2577	mutex_lock(&mm_all_locks_mutex);
2578
2579	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2580		if (signal_pending(current))
2581			goto out_unlock;
2582		if (vma->vm_file && vma->vm_file->f_mapping)
2583			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2584	}
2585
2586	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2587		if (signal_pending(current))
2588			goto out_unlock;
2589		if (vma->anon_vma)
2590			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2591				vm_lock_anon_vma(mm, avc->anon_vma);
2592	}
2593
2594	ret = 0;
2595
2596out_unlock:
2597	if (ret)
2598		mm_drop_all_locks(mm);
2599
2600	return ret;
2601}
2602
2603static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2604{
2605	if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2606		/*
2607		 * The LSB of head.next can't change to 0 from under
2608		 * us because we hold the mm_all_locks_mutex.
2609		 *
2610		 * We must however clear the bitflag before unlocking
2611		 * the vma so the users using the anon_vma->head will
2612		 * never see our bitflag.
2613		 *
2614		 * No need of atomic instructions here, head.next
2615		 * can't change from under us until we release the
2616		 * anon_vma->root->lock.
2617		 */
2618		if (!__test_and_clear_bit(0, (unsigned long *)
2619					  &anon_vma->root->head.next))
2620			BUG();
2621		anon_vma_unlock(anon_vma);
2622	}
2623}
2624
2625static void vm_unlock_mapping(struct address_space *mapping)
2626{
2627	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2628		/*
2629		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2630		 * because we hold the mm_all_locks_mutex.
2631		 */
2632		spin_unlock(&mapping->i_mmap_lock);
2633		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2634					&mapping->flags))
2635			BUG();
2636	}
2637}
2638
2639/*
2640 * The mmap_sem cannot be released by the caller until
2641 * mm_drop_all_locks() returns.
2642 */
2643void mm_drop_all_locks(struct mm_struct *mm)
2644{
2645	struct vm_area_struct *vma;
2646	struct anon_vma_chain *avc;
2647
2648	BUG_ON(down_read_trylock(&mm->mmap_sem));
2649	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2650
2651	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2652		if (vma->anon_vma)
2653			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2654				vm_unlock_anon_vma(avc->anon_vma);
2655		if (vma->vm_file && vma->vm_file->f_mapping)
2656			vm_unlock_mapping(vma->vm_file->f_mapping);
2657	}
2658
2659	mutex_unlock(&mm_all_locks_mutex);
2660}
2661
2662/*
2663 * initialise the VMA slab
2664 */
2665void __init mmap_init(void)
2666{
2667	int ret;
2668
2669	ret = percpu_counter_init(&vm_committed_as, 0);
2670	VM_BUG_ON(ret);
2671}
2672