mmap.c revision 1363c3cd8603a913a27e2995dccbd70d5312d8e6
1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code	<alan@redhat.com>
7 */
8
9#include <linux/slab.h>
10#include <linux/mm.h>
11#include <linux/shm.h>
12#include <linux/mman.h>
13#include <linux/pagemap.h>
14#include <linux/swap.h>
15#include <linux/syscalls.h>
16#include <linux/init.h>
17#include <linux/file.h>
18#include <linux/fs.h>
19#include <linux/personality.h>
20#include <linux/security.h>
21#include <linux/hugetlb.h>
22#include <linux/profile.h>
23#include <linux/module.h>
24#include <linux/mount.h>
25#include <linux/mempolicy.h>
26#include <linux/rmap.h>
27
28#include <asm/uaccess.h>
29#include <asm/cacheflush.h>
30#include <asm/tlb.h>
31
32static void unmap_region(struct mm_struct *mm,
33		struct vm_area_struct *vma, struct vm_area_struct *prev,
34		unsigned long start, unsigned long end);
35
36/*
37 * WARNING: the debugging will use recursive algorithms so never enable this
38 * unless you know what you are doing.
39 */
40#undef DEBUG_MM_RB
41
42/* description of effects of mapping type and prot in current implementation.
43 * this is due to the limited x86 page protection hardware.  The expected
44 * behavior is in parens:
45 *
46 * map_type	prot
47 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
48 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
49 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
50 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
51 *
52 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
53 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
54 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
55 *
56 */
57pgprot_t protection_map[16] = {
58	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
59	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
60};
61
62int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
63int sysctl_overcommit_ratio = 50;	/* default is 50% */
64int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
65atomic_t vm_committed_space = ATOMIC_INIT(0);
66
67/*
68 * Check that a process has enough memory to allocate a new virtual
69 * mapping. 0 means there is enough memory for the allocation to
70 * succeed and -ENOMEM implies there is not.
71 *
72 * We currently support three overcommit policies, which are set via the
73 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
74 *
75 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
76 * Additional code 2002 Jul 20 by Robert Love.
77 *
78 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
79 *
80 * Note this is a helper function intended to be used by LSMs which
81 * wish to use this logic.
82 */
83int __vm_enough_memory(long pages, int cap_sys_admin)
84{
85	unsigned long free, allowed;
86
87	vm_acct_memory(pages);
88
89	/*
90	 * Sometimes we want to use more memory than we have
91	 */
92	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
93		return 0;
94
95	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
96		unsigned long n;
97
98		free = get_page_cache_size();
99		free += nr_swap_pages;
100
101		/*
102		 * Any slabs which are created with the
103		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
104		 * which are reclaimable, under pressure.  The dentry
105		 * cache and most inode caches should fall into this
106		 */
107		free += atomic_read(&slab_reclaim_pages);
108
109		/*
110		 * Leave the last 3% for root
111		 */
112		if (!cap_sys_admin)
113			free -= free / 32;
114
115		if (free > pages)
116			return 0;
117
118		/*
119		 * nr_free_pages() is very expensive on large systems,
120		 * only call if we're about to fail.
121		 */
122		n = nr_free_pages();
123		if (!cap_sys_admin)
124			n -= n / 32;
125		free += n;
126
127		if (free > pages)
128			return 0;
129		vm_unacct_memory(pages);
130		return -ENOMEM;
131	}
132
133	allowed = (totalram_pages - hugetlb_total_pages())
134	       	* sysctl_overcommit_ratio / 100;
135	/*
136	 * Leave the last 3% for root
137	 */
138	if (!cap_sys_admin)
139		allowed -= allowed / 32;
140	allowed += total_swap_pages;
141
142	/* Don't let a single process grow too big:
143	   leave 3% of the size of this process for other processes */
144	allowed -= current->mm->total_vm / 32;
145
146	if (atomic_read(&vm_committed_space) < allowed)
147		return 0;
148
149	vm_unacct_memory(pages);
150
151	return -ENOMEM;
152}
153
154EXPORT_SYMBOL(sysctl_overcommit_memory);
155EXPORT_SYMBOL(sysctl_overcommit_ratio);
156EXPORT_SYMBOL(sysctl_max_map_count);
157EXPORT_SYMBOL(vm_committed_space);
158EXPORT_SYMBOL(__vm_enough_memory);
159
160/*
161 * Requires inode->i_mapping->i_mmap_lock
162 */
163static void __remove_shared_vm_struct(struct vm_area_struct *vma,
164		struct file *file, struct address_space *mapping)
165{
166	if (vma->vm_flags & VM_DENYWRITE)
167		atomic_inc(&file->f_dentry->d_inode->i_writecount);
168	if (vma->vm_flags & VM_SHARED)
169		mapping->i_mmap_writable--;
170
171	flush_dcache_mmap_lock(mapping);
172	if (unlikely(vma->vm_flags & VM_NONLINEAR))
173		list_del_init(&vma->shared.vm_set.list);
174	else
175		vma_prio_tree_remove(vma, &mapping->i_mmap);
176	flush_dcache_mmap_unlock(mapping);
177}
178
179/*
180 * Remove one vm structure and free it.
181 */
182static void remove_vm_struct(struct vm_area_struct *vma)
183{
184	struct file *file = vma->vm_file;
185
186	might_sleep();
187	if (file) {
188		struct address_space *mapping = file->f_mapping;
189		spin_lock(&mapping->i_mmap_lock);
190		__remove_shared_vm_struct(vma, file, mapping);
191		spin_unlock(&mapping->i_mmap_lock);
192	}
193	if (vma->vm_ops && vma->vm_ops->close)
194		vma->vm_ops->close(vma);
195	if (file)
196		fput(file);
197	anon_vma_unlink(vma);
198	mpol_free(vma_policy(vma));
199	kmem_cache_free(vm_area_cachep, vma);
200}
201
202/*
203 *  sys_brk() for the most part doesn't need the global kernel
204 *  lock, except when an application is doing something nasty
205 *  like trying to un-brk an area that has already been mapped
206 *  to a regular file.  in this case, the unmapping will need
207 *  to invoke file system routines that need the global lock.
208 */
209asmlinkage unsigned long sys_brk(unsigned long brk)
210{
211	unsigned long rlim, retval;
212	unsigned long newbrk, oldbrk;
213	struct mm_struct *mm = current->mm;
214
215	down_write(&mm->mmap_sem);
216
217	if (brk < mm->end_code)
218		goto out;
219	newbrk = PAGE_ALIGN(brk);
220	oldbrk = PAGE_ALIGN(mm->brk);
221	if (oldbrk == newbrk)
222		goto set_brk;
223
224	/* Always allow shrinking brk. */
225	if (brk <= mm->brk) {
226		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
227			goto set_brk;
228		goto out;
229	}
230
231	/* Check against rlimit.. */
232	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
233	if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
234		goto out;
235
236	/* Check against existing mmap mappings. */
237	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
238		goto out;
239
240	/* Ok, looks good - let it rip. */
241	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
242		goto out;
243set_brk:
244	mm->brk = brk;
245out:
246	retval = mm->brk;
247	up_write(&mm->mmap_sem);
248	return retval;
249}
250
251#ifdef DEBUG_MM_RB
252static int browse_rb(struct rb_root *root)
253{
254	int i = 0, j;
255	struct rb_node *nd, *pn = NULL;
256	unsigned long prev = 0, pend = 0;
257
258	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
259		struct vm_area_struct *vma;
260		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
261		if (vma->vm_start < prev)
262			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
263		if (vma->vm_start < pend)
264			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
265		if (vma->vm_start > vma->vm_end)
266			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
267		i++;
268		pn = nd;
269	}
270	j = 0;
271	for (nd = pn; nd; nd = rb_prev(nd)) {
272		j++;
273	}
274	if (i != j)
275		printk("backwards %d, forwards %d\n", j, i), i = 0;
276	return i;
277}
278
279void validate_mm(struct mm_struct *mm)
280{
281	int bug = 0;
282	int i = 0;
283	struct vm_area_struct *tmp = mm->mmap;
284	while (tmp) {
285		tmp = tmp->vm_next;
286		i++;
287	}
288	if (i != mm->map_count)
289		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
290	i = browse_rb(&mm->mm_rb);
291	if (i != mm->map_count)
292		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
293	if (bug)
294		BUG();
295}
296#else
297#define validate_mm(mm) do { } while (0)
298#endif
299
300static struct vm_area_struct *
301find_vma_prepare(struct mm_struct *mm, unsigned long addr,
302		struct vm_area_struct **pprev, struct rb_node ***rb_link,
303		struct rb_node ** rb_parent)
304{
305	struct vm_area_struct * vma;
306	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
307
308	__rb_link = &mm->mm_rb.rb_node;
309	rb_prev = __rb_parent = NULL;
310	vma = NULL;
311
312	while (*__rb_link) {
313		struct vm_area_struct *vma_tmp;
314
315		__rb_parent = *__rb_link;
316		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
317
318		if (vma_tmp->vm_end > addr) {
319			vma = vma_tmp;
320			if (vma_tmp->vm_start <= addr)
321				return vma;
322			__rb_link = &__rb_parent->rb_left;
323		} else {
324			rb_prev = __rb_parent;
325			__rb_link = &__rb_parent->rb_right;
326		}
327	}
328
329	*pprev = NULL;
330	if (rb_prev)
331		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
332	*rb_link = __rb_link;
333	*rb_parent = __rb_parent;
334	return vma;
335}
336
337static inline void
338__vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
339		struct vm_area_struct *prev, struct rb_node *rb_parent)
340{
341	if (prev) {
342		vma->vm_next = prev->vm_next;
343		prev->vm_next = vma;
344	} else {
345		mm->mmap = vma;
346		if (rb_parent)
347			vma->vm_next = rb_entry(rb_parent,
348					struct vm_area_struct, vm_rb);
349		else
350			vma->vm_next = NULL;
351	}
352}
353
354void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
355		struct rb_node **rb_link, struct rb_node *rb_parent)
356{
357	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
358	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
359}
360
361static inline void __vma_link_file(struct vm_area_struct *vma)
362{
363	struct file * file;
364
365	file = vma->vm_file;
366	if (file) {
367		struct address_space *mapping = file->f_mapping;
368
369		if (vma->vm_flags & VM_DENYWRITE)
370			atomic_dec(&file->f_dentry->d_inode->i_writecount);
371		if (vma->vm_flags & VM_SHARED)
372			mapping->i_mmap_writable++;
373
374		flush_dcache_mmap_lock(mapping);
375		if (unlikely(vma->vm_flags & VM_NONLINEAR))
376			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
377		else
378			vma_prio_tree_insert(vma, &mapping->i_mmap);
379		flush_dcache_mmap_unlock(mapping);
380	}
381}
382
383static void
384__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
385	struct vm_area_struct *prev, struct rb_node **rb_link,
386	struct rb_node *rb_parent)
387{
388	__vma_link_list(mm, vma, prev, rb_parent);
389	__vma_link_rb(mm, vma, rb_link, rb_parent);
390	__anon_vma_link(vma);
391}
392
393static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
394			struct vm_area_struct *prev, struct rb_node **rb_link,
395			struct rb_node *rb_parent)
396{
397	struct address_space *mapping = NULL;
398
399	if (vma->vm_file)
400		mapping = vma->vm_file->f_mapping;
401
402	if (mapping) {
403		spin_lock(&mapping->i_mmap_lock);
404		vma->vm_truncate_count = mapping->truncate_count;
405	}
406	anon_vma_lock(vma);
407
408	__vma_link(mm, vma, prev, rb_link, rb_parent);
409	__vma_link_file(vma);
410
411	anon_vma_unlock(vma);
412	if (mapping)
413		spin_unlock(&mapping->i_mmap_lock);
414
415	mm->map_count++;
416	validate_mm(mm);
417}
418
419/*
420 * Helper for vma_adjust in the split_vma insert case:
421 * insert vm structure into list and rbtree and anon_vma,
422 * but it has already been inserted into prio_tree earlier.
423 */
424static void
425__insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
426{
427	struct vm_area_struct * __vma, * prev;
428	struct rb_node ** rb_link, * rb_parent;
429
430	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
431	if (__vma && __vma->vm_start < vma->vm_end)
432		BUG();
433	__vma_link(mm, vma, prev, rb_link, rb_parent);
434	mm->map_count++;
435}
436
437static inline void
438__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
439		struct vm_area_struct *prev)
440{
441	prev->vm_next = vma->vm_next;
442	rb_erase(&vma->vm_rb, &mm->mm_rb);
443	if (mm->mmap_cache == vma)
444		mm->mmap_cache = prev;
445}
446
447/*
448 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
449 * is already present in an i_mmap tree without adjusting the tree.
450 * The following helper function should be used when such adjustments
451 * are necessary.  The "insert" vma (if any) is to be inserted
452 * before we drop the necessary locks.
453 */
454void vma_adjust(struct vm_area_struct *vma, unsigned long start,
455	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
456{
457	struct mm_struct *mm = vma->vm_mm;
458	struct vm_area_struct *next = vma->vm_next;
459	struct vm_area_struct *importer = NULL;
460	struct address_space *mapping = NULL;
461	struct prio_tree_root *root = NULL;
462	struct file *file = vma->vm_file;
463	struct anon_vma *anon_vma = NULL;
464	long adjust_next = 0;
465	int remove_next = 0;
466
467	if (next && !insert) {
468		if (end >= next->vm_end) {
469			/*
470			 * vma expands, overlapping all the next, and
471			 * perhaps the one after too (mprotect case 6).
472			 */
473again:			remove_next = 1 + (end > next->vm_end);
474			end = next->vm_end;
475			anon_vma = next->anon_vma;
476			importer = vma;
477		} else if (end > next->vm_start) {
478			/*
479			 * vma expands, overlapping part of the next:
480			 * mprotect case 5 shifting the boundary up.
481			 */
482			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
483			anon_vma = next->anon_vma;
484			importer = vma;
485		} else if (end < vma->vm_end) {
486			/*
487			 * vma shrinks, and !insert tells it's not
488			 * split_vma inserting another: so it must be
489			 * mprotect case 4 shifting the boundary down.
490			 */
491			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
492			anon_vma = next->anon_vma;
493			importer = next;
494		}
495	}
496
497	if (file) {
498		mapping = file->f_mapping;
499		if (!(vma->vm_flags & VM_NONLINEAR))
500			root = &mapping->i_mmap;
501		spin_lock(&mapping->i_mmap_lock);
502		if (importer &&
503		    vma->vm_truncate_count != next->vm_truncate_count) {
504			/*
505			 * unmap_mapping_range might be in progress:
506			 * ensure that the expanding vma is rescanned.
507			 */
508			importer->vm_truncate_count = 0;
509		}
510		if (insert) {
511			insert->vm_truncate_count = vma->vm_truncate_count;
512			/*
513			 * Put into prio_tree now, so instantiated pages
514			 * are visible to arm/parisc __flush_dcache_page
515			 * throughout; but we cannot insert into address
516			 * space until vma start or end is updated.
517			 */
518			__vma_link_file(insert);
519		}
520	}
521
522	/*
523	 * When changing only vma->vm_end, we don't really need
524	 * anon_vma lock: but is that case worth optimizing out?
525	 */
526	if (vma->anon_vma)
527		anon_vma = vma->anon_vma;
528	if (anon_vma) {
529		spin_lock(&anon_vma->lock);
530		/*
531		 * Easily overlooked: when mprotect shifts the boundary,
532		 * make sure the expanding vma has anon_vma set if the
533		 * shrinking vma had, to cover any anon pages imported.
534		 */
535		if (importer && !importer->anon_vma) {
536			importer->anon_vma = anon_vma;
537			__anon_vma_link(importer);
538		}
539	}
540
541	if (root) {
542		flush_dcache_mmap_lock(mapping);
543		vma_prio_tree_remove(vma, root);
544		if (adjust_next)
545			vma_prio_tree_remove(next, root);
546	}
547
548	vma->vm_start = start;
549	vma->vm_end = end;
550	vma->vm_pgoff = pgoff;
551	if (adjust_next) {
552		next->vm_start += adjust_next << PAGE_SHIFT;
553		next->vm_pgoff += adjust_next;
554	}
555
556	if (root) {
557		if (adjust_next)
558			vma_prio_tree_insert(next, root);
559		vma_prio_tree_insert(vma, root);
560		flush_dcache_mmap_unlock(mapping);
561	}
562
563	if (remove_next) {
564		/*
565		 * vma_merge has merged next into vma, and needs
566		 * us to remove next before dropping the locks.
567		 */
568		__vma_unlink(mm, next, vma);
569		if (file)
570			__remove_shared_vm_struct(next, file, mapping);
571		if (next->anon_vma)
572			__anon_vma_merge(vma, next);
573	} else if (insert) {
574		/*
575		 * split_vma has split insert from vma, and needs
576		 * us to insert it before dropping the locks
577		 * (it may either follow vma or precede it).
578		 */
579		__insert_vm_struct(mm, insert);
580	}
581
582	if (anon_vma)
583		spin_unlock(&anon_vma->lock);
584	if (mapping)
585		spin_unlock(&mapping->i_mmap_lock);
586
587	if (remove_next) {
588		if (file)
589			fput(file);
590		mm->map_count--;
591		mpol_free(vma_policy(next));
592		kmem_cache_free(vm_area_cachep, next);
593		/*
594		 * In mprotect's case 6 (see comments on vma_merge),
595		 * we must remove another next too. It would clutter
596		 * up the code too much to do both in one go.
597		 */
598		if (remove_next == 2) {
599			next = vma->vm_next;
600			goto again;
601		}
602	}
603
604	validate_mm(mm);
605}
606
607/*
608 * If the vma has a ->close operation then the driver probably needs to release
609 * per-vma resources, so we don't attempt to merge those.
610 */
611#define VM_SPECIAL (VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_RESERVED)
612
613static inline int is_mergeable_vma(struct vm_area_struct *vma,
614			struct file *file, unsigned long vm_flags)
615{
616	if (vma->vm_flags != vm_flags)
617		return 0;
618	if (vma->vm_file != file)
619		return 0;
620	if (vma->vm_ops && vma->vm_ops->close)
621		return 0;
622	return 1;
623}
624
625static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
626					struct anon_vma *anon_vma2)
627{
628	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
629}
630
631/*
632 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
633 * in front of (at a lower virtual address and file offset than) the vma.
634 *
635 * We cannot merge two vmas if they have differently assigned (non-NULL)
636 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
637 *
638 * We don't check here for the merged mmap wrapping around the end of pagecache
639 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
640 * wrap, nor mmaps which cover the final page at index -1UL.
641 */
642static int
643can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
644	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
645{
646	if (is_mergeable_vma(vma, file, vm_flags) &&
647	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
648		if (vma->vm_pgoff == vm_pgoff)
649			return 1;
650	}
651	return 0;
652}
653
654/*
655 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
656 * beyond (at a higher virtual address and file offset than) the vma.
657 *
658 * We cannot merge two vmas if they have differently assigned (non-NULL)
659 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
660 */
661static int
662can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
663	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
664{
665	if (is_mergeable_vma(vma, file, vm_flags) &&
666	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
667		pgoff_t vm_pglen;
668		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
669		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
670			return 1;
671	}
672	return 0;
673}
674
675/*
676 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
677 * whether that can be merged with its predecessor or its successor.
678 * Or both (it neatly fills a hole).
679 *
680 * In most cases - when called for mmap, brk or mremap - [addr,end) is
681 * certain not to be mapped by the time vma_merge is called; but when
682 * called for mprotect, it is certain to be already mapped (either at
683 * an offset within prev, or at the start of next), and the flags of
684 * this area are about to be changed to vm_flags - and the no-change
685 * case has already been eliminated.
686 *
687 * The following mprotect cases have to be considered, where AAAA is
688 * the area passed down from mprotect_fixup, never extending beyond one
689 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
690 *
691 *     AAAA             AAAA                AAAA          AAAA
692 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
693 *    cannot merge    might become    might become    might become
694 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
695 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
696 *    mremap move:                                    PPPPNNNNNNNN 8
697 *        AAAA
698 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
699 *    might become    case 1 below    case 2 below    case 3 below
700 *
701 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
702 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
703 */
704struct vm_area_struct *vma_merge(struct mm_struct *mm,
705			struct vm_area_struct *prev, unsigned long addr,
706			unsigned long end, unsigned long vm_flags,
707		     	struct anon_vma *anon_vma, struct file *file,
708			pgoff_t pgoff, struct mempolicy *policy)
709{
710	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
711	struct vm_area_struct *area, *next;
712
713	/*
714	 * We later require that vma->vm_flags == vm_flags,
715	 * so this tests vma->vm_flags & VM_SPECIAL, too.
716	 */
717	if (vm_flags & VM_SPECIAL)
718		return NULL;
719
720	if (prev)
721		next = prev->vm_next;
722	else
723		next = mm->mmap;
724	area = next;
725	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
726		next = next->vm_next;
727
728	/*
729	 * Can it merge with the predecessor?
730	 */
731	if (prev && prev->vm_end == addr &&
732  			mpol_equal(vma_policy(prev), policy) &&
733			can_vma_merge_after(prev, vm_flags,
734						anon_vma, file, pgoff)) {
735		/*
736		 * OK, it can.  Can we now merge in the successor as well?
737		 */
738		if (next && end == next->vm_start &&
739				mpol_equal(policy, vma_policy(next)) &&
740				can_vma_merge_before(next, vm_flags,
741					anon_vma, file, pgoff+pglen) &&
742				is_mergeable_anon_vma(prev->anon_vma,
743						      next->anon_vma)) {
744							/* cases 1, 6 */
745			vma_adjust(prev, prev->vm_start,
746				next->vm_end, prev->vm_pgoff, NULL);
747		} else					/* cases 2, 5, 7 */
748			vma_adjust(prev, prev->vm_start,
749				end, prev->vm_pgoff, NULL);
750		return prev;
751	}
752
753	/*
754	 * Can this new request be merged in front of next?
755	 */
756	if (next && end == next->vm_start &&
757 			mpol_equal(policy, vma_policy(next)) &&
758			can_vma_merge_before(next, vm_flags,
759					anon_vma, file, pgoff+pglen)) {
760		if (prev && addr < prev->vm_end)	/* case 4 */
761			vma_adjust(prev, prev->vm_start,
762				addr, prev->vm_pgoff, NULL);
763		else					/* cases 3, 8 */
764			vma_adjust(area, addr, next->vm_end,
765				next->vm_pgoff - pglen, NULL);
766		return area;
767	}
768
769	return NULL;
770}
771
772/*
773 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
774 * neighbouring vmas for a suitable anon_vma, before it goes off
775 * to allocate a new anon_vma.  It checks because a repetitive
776 * sequence of mprotects and faults may otherwise lead to distinct
777 * anon_vmas being allocated, preventing vma merge in subsequent
778 * mprotect.
779 */
780struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
781{
782	struct vm_area_struct *near;
783	unsigned long vm_flags;
784
785	near = vma->vm_next;
786	if (!near)
787		goto try_prev;
788
789	/*
790	 * Since only mprotect tries to remerge vmas, match flags
791	 * which might be mprotected into each other later on.
792	 * Neither mlock nor madvise tries to remerge at present,
793	 * so leave their flags as obstructing a merge.
794	 */
795	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
796	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
797
798	if (near->anon_vma && vma->vm_end == near->vm_start &&
799 			mpol_equal(vma_policy(vma), vma_policy(near)) &&
800			can_vma_merge_before(near, vm_flags,
801				NULL, vma->vm_file, vma->vm_pgoff +
802				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
803		return near->anon_vma;
804try_prev:
805	/*
806	 * It is potentially slow to have to call find_vma_prev here.
807	 * But it's only on the first write fault on the vma, not
808	 * every time, and we could devise a way to avoid it later
809	 * (e.g. stash info in next's anon_vma_node when assigning
810	 * an anon_vma, or when trying vma_merge).  Another time.
811	 */
812	if (find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma)
813		BUG();
814	if (!near)
815		goto none;
816
817	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
818	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
819
820	if (near->anon_vma && near->vm_end == vma->vm_start &&
821  			mpol_equal(vma_policy(near), vma_policy(vma)) &&
822			can_vma_merge_after(near, vm_flags,
823				NULL, vma->vm_file, vma->vm_pgoff))
824		return near->anon_vma;
825none:
826	/*
827	 * There's no absolute need to look only at touching neighbours:
828	 * we could search further afield for "compatible" anon_vmas.
829	 * But it would probably just be a waste of time searching,
830	 * or lead to too many vmas hanging off the same anon_vma.
831	 * We're trying to allow mprotect remerging later on,
832	 * not trying to minimize memory used for anon_vmas.
833	 */
834	return NULL;
835}
836
837#ifdef CONFIG_PROC_FS
838void __vm_stat_account(struct mm_struct *mm, unsigned long flags,
839						struct file *file, long pages)
840{
841	const unsigned long stack_flags
842		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
843
844#ifdef CONFIG_HUGETLB
845	if (flags & VM_HUGETLB) {
846		if (!(flags & VM_DONTCOPY))
847			mm->shared_vm += pages;
848		return;
849	}
850#endif /* CONFIG_HUGETLB */
851
852	if (file) {
853		mm->shared_vm += pages;
854		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
855			mm->exec_vm += pages;
856	} else if (flags & stack_flags)
857		mm->stack_vm += pages;
858	if (flags & (VM_RESERVED|VM_IO))
859		mm->reserved_vm += pages;
860}
861#endif /* CONFIG_PROC_FS */
862
863/*
864 * The caller must hold down_write(current->mm->mmap_sem).
865 */
866
867unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
868			unsigned long len, unsigned long prot,
869			unsigned long flags, unsigned long pgoff)
870{
871	struct mm_struct * mm = current->mm;
872	struct vm_area_struct * vma, * prev;
873	struct inode *inode;
874	unsigned int vm_flags;
875	int correct_wcount = 0;
876	int error;
877	struct rb_node ** rb_link, * rb_parent;
878	int accountable = 1;
879	unsigned long charged = 0, reqprot = prot;
880
881	if (file) {
882		if (is_file_hugepages(file))
883			accountable = 0;
884
885		if (!file->f_op || !file->f_op->mmap)
886			return -ENODEV;
887
888		if ((prot & PROT_EXEC) &&
889		    (file->f_vfsmnt->mnt_flags & MNT_NOEXEC))
890			return -EPERM;
891	}
892	/*
893	 * Does the application expect PROT_READ to imply PROT_EXEC?
894	 *
895	 * (the exception is when the underlying filesystem is noexec
896	 *  mounted, in which case we dont add PROT_EXEC.)
897	 */
898	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
899		if (!(file && (file->f_vfsmnt->mnt_flags & MNT_NOEXEC)))
900			prot |= PROT_EXEC;
901
902	if (!len)
903		return -EINVAL;
904
905	/* Careful about overflows.. */
906	len = PAGE_ALIGN(len);
907	if (!len || len > TASK_SIZE)
908		return -ENOMEM;
909
910	/* offset overflow? */
911	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
912               return -EOVERFLOW;
913
914	/* Too many mappings? */
915	if (mm->map_count > sysctl_max_map_count)
916		return -ENOMEM;
917
918	/* Obtain the address to map to. we verify (or select) it and ensure
919	 * that it represents a valid section of the address space.
920	 */
921	addr = get_unmapped_area(file, addr, len, pgoff, flags);
922	if (addr & ~PAGE_MASK)
923		return addr;
924
925	/* Do simple checking here so the lower-level routines won't have
926	 * to. we assume access permissions have been handled by the open
927	 * of the memory object, so we don't do any here.
928	 */
929	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
930			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
931
932	if (flags & MAP_LOCKED) {
933		if (!can_do_mlock())
934			return -EPERM;
935		vm_flags |= VM_LOCKED;
936	}
937	/* mlock MCL_FUTURE? */
938	if (vm_flags & VM_LOCKED) {
939		unsigned long locked, lock_limit;
940		locked = len >> PAGE_SHIFT;
941		locked += mm->locked_vm;
942		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
943		lock_limit >>= PAGE_SHIFT;
944		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
945			return -EAGAIN;
946	}
947
948	inode = file ? file->f_dentry->d_inode : NULL;
949
950	if (file) {
951		switch (flags & MAP_TYPE) {
952		case MAP_SHARED:
953			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
954				return -EACCES;
955
956			/*
957			 * Make sure we don't allow writing to an append-only
958			 * file..
959			 */
960			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
961				return -EACCES;
962
963			/*
964			 * Make sure there are no mandatory locks on the file.
965			 */
966			if (locks_verify_locked(inode))
967				return -EAGAIN;
968
969			vm_flags |= VM_SHARED | VM_MAYSHARE;
970			if (!(file->f_mode & FMODE_WRITE))
971				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
972
973			/* fall through */
974		case MAP_PRIVATE:
975			if (!(file->f_mode & FMODE_READ))
976				return -EACCES;
977			break;
978
979		default:
980			return -EINVAL;
981		}
982	} else {
983		switch (flags & MAP_TYPE) {
984		case MAP_SHARED:
985			vm_flags |= VM_SHARED | VM_MAYSHARE;
986			break;
987		case MAP_PRIVATE:
988			/*
989			 * Set pgoff according to addr for anon_vma.
990			 */
991			pgoff = addr >> PAGE_SHIFT;
992			break;
993		default:
994			return -EINVAL;
995		}
996	}
997
998	error = security_file_mmap(file, reqprot, prot, flags);
999	if (error)
1000		return error;
1001
1002	/* Clear old maps */
1003	error = -ENOMEM;
1004munmap_back:
1005	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1006	if (vma && vma->vm_start < addr + len) {
1007		if (do_munmap(mm, addr, len))
1008			return -ENOMEM;
1009		goto munmap_back;
1010	}
1011
1012	/* Check against address space limit. */
1013	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1014		return -ENOMEM;
1015
1016	if (accountable && (!(flags & MAP_NORESERVE) ||
1017			    sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1018		if (vm_flags & VM_SHARED) {
1019			/* Check memory availability in shmem_file_setup? */
1020			vm_flags |= VM_ACCOUNT;
1021		} else if (vm_flags & VM_WRITE) {
1022			/*
1023			 * Private writable mapping: check memory availability
1024			 */
1025			charged = len >> PAGE_SHIFT;
1026			if (security_vm_enough_memory(charged))
1027				return -ENOMEM;
1028			vm_flags |= VM_ACCOUNT;
1029		}
1030	}
1031
1032	/*
1033	 * Can we just expand an old private anonymous mapping?
1034	 * The VM_SHARED test is necessary because shmem_zero_setup
1035	 * will create the file object for a shared anonymous map below.
1036	 */
1037	if (!file && !(vm_flags & VM_SHARED) &&
1038	    vma_merge(mm, prev, addr, addr + len, vm_flags,
1039					NULL, NULL, pgoff, NULL))
1040		goto out;
1041
1042	/*
1043	 * Determine the object being mapped and call the appropriate
1044	 * specific mapper. the address has already been validated, but
1045	 * not unmapped, but the maps are removed from the list.
1046	 */
1047	vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1048	if (!vma) {
1049		error = -ENOMEM;
1050		goto unacct_error;
1051	}
1052	memset(vma, 0, sizeof(*vma));
1053
1054	vma->vm_mm = mm;
1055	vma->vm_start = addr;
1056	vma->vm_end = addr + len;
1057	vma->vm_flags = vm_flags;
1058	vma->vm_page_prot = protection_map[vm_flags & 0x0f];
1059	vma->vm_pgoff = pgoff;
1060
1061	if (file) {
1062		error = -EINVAL;
1063		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1064			goto free_vma;
1065		if (vm_flags & VM_DENYWRITE) {
1066			error = deny_write_access(file);
1067			if (error)
1068				goto free_vma;
1069			correct_wcount = 1;
1070		}
1071		vma->vm_file = file;
1072		get_file(file);
1073		error = file->f_op->mmap(file, vma);
1074		if (error)
1075			goto unmap_and_free_vma;
1076	} else if (vm_flags & VM_SHARED) {
1077		error = shmem_zero_setup(vma);
1078		if (error)
1079			goto free_vma;
1080	}
1081
1082	/* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1083	 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1084	 * that memory reservation must be checked; but that reservation
1085	 * belongs to shared memory object, not to vma: so now clear it.
1086	 */
1087	if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1088		vma->vm_flags &= ~VM_ACCOUNT;
1089
1090	/* Can addr have changed??
1091	 *
1092	 * Answer: Yes, several device drivers can do it in their
1093	 *         f_op->mmap method. -DaveM
1094	 */
1095	addr = vma->vm_start;
1096	pgoff = vma->vm_pgoff;
1097	vm_flags = vma->vm_flags;
1098
1099	if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1100			vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1101		file = vma->vm_file;
1102		vma_link(mm, vma, prev, rb_link, rb_parent);
1103		if (correct_wcount)
1104			atomic_inc(&inode->i_writecount);
1105	} else {
1106		if (file) {
1107			if (correct_wcount)
1108				atomic_inc(&inode->i_writecount);
1109			fput(file);
1110		}
1111		mpol_free(vma_policy(vma));
1112		kmem_cache_free(vm_area_cachep, vma);
1113	}
1114out:
1115	mm->total_vm += len >> PAGE_SHIFT;
1116	__vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1117	if (vm_flags & VM_LOCKED) {
1118		mm->locked_vm += len >> PAGE_SHIFT;
1119		make_pages_present(addr, addr + len);
1120	}
1121	if (flags & MAP_POPULATE) {
1122		up_write(&mm->mmap_sem);
1123		sys_remap_file_pages(addr, len, 0,
1124					pgoff, flags & MAP_NONBLOCK);
1125		down_write(&mm->mmap_sem);
1126	}
1127	return addr;
1128
1129unmap_and_free_vma:
1130	if (correct_wcount)
1131		atomic_inc(&inode->i_writecount);
1132	vma->vm_file = NULL;
1133	fput(file);
1134
1135	/* Undo any partial mapping done by a device driver. */
1136	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1137	charged = 0;
1138free_vma:
1139	kmem_cache_free(vm_area_cachep, vma);
1140unacct_error:
1141	if (charged)
1142		vm_unacct_memory(charged);
1143	return error;
1144}
1145
1146EXPORT_SYMBOL(do_mmap_pgoff);
1147
1148/* Get an address range which is currently unmapped.
1149 * For shmat() with addr=0.
1150 *
1151 * Ugly calling convention alert:
1152 * Return value with the low bits set means error value,
1153 * ie
1154 *	if (ret & ~PAGE_MASK)
1155 *		error = ret;
1156 *
1157 * This function "knows" that -ENOMEM has the bits set.
1158 */
1159#ifndef HAVE_ARCH_UNMAPPED_AREA
1160unsigned long
1161arch_get_unmapped_area(struct file *filp, unsigned long addr,
1162		unsigned long len, unsigned long pgoff, unsigned long flags)
1163{
1164	struct mm_struct *mm = current->mm;
1165	struct vm_area_struct *vma;
1166	unsigned long start_addr;
1167
1168	if (len > TASK_SIZE)
1169		return -ENOMEM;
1170
1171	if (addr) {
1172		addr = PAGE_ALIGN(addr);
1173		vma = find_vma(mm, addr);
1174		if (TASK_SIZE - len >= addr &&
1175		    (!vma || addr + len <= vma->vm_start))
1176			return addr;
1177	}
1178	if (len > mm->cached_hole_size) {
1179	        start_addr = addr = mm->free_area_cache;
1180	} else {
1181	        start_addr = addr = TASK_UNMAPPED_BASE;
1182	        mm->cached_hole_size = 0;
1183	}
1184
1185full_search:
1186	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1187		/* At this point:  (!vma || addr < vma->vm_end). */
1188		if (TASK_SIZE - len < addr) {
1189			/*
1190			 * Start a new search - just in case we missed
1191			 * some holes.
1192			 */
1193			if (start_addr != TASK_UNMAPPED_BASE) {
1194				addr = TASK_UNMAPPED_BASE;
1195			        start_addr = addr;
1196				mm->cached_hole_size = 0;
1197				goto full_search;
1198			}
1199			return -ENOMEM;
1200		}
1201		if (!vma || addr + len <= vma->vm_start) {
1202			/*
1203			 * Remember the place where we stopped the search:
1204			 */
1205			mm->free_area_cache = addr + len;
1206			return addr;
1207		}
1208		if (addr + mm->cached_hole_size < vma->vm_start)
1209		        mm->cached_hole_size = vma->vm_start - addr;
1210		addr = vma->vm_end;
1211	}
1212}
1213#endif
1214
1215void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1216{
1217	/*
1218	 * Is this a new hole at the lowest possible address?
1219	 */
1220	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1221		mm->free_area_cache = addr;
1222		mm->cached_hole_size = ~0UL;
1223	}
1224}
1225
1226/*
1227 * This mmap-allocator allocates new areas top-down from below the
1228 * stack's low limit (the base):
1229 */
1230#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1231unsigned long
1232arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1233			  const unsigned long len, const unsigned long pgoff,
1234			  const unsigned long flags)
1235{
1236	struct vm_area_struct *vma;
1237	struct mm_struct *mm = current->mm;
1238	unsigned long addr = addr0;
1239
1240	/* requested length too big for entire address space */
1241	if (len > TASK_SIZE)
1242		return -ENOMEM;
1243
1244	/* requesting a specific address */
1245	if (addr) {
1246		addr = PAGE_ALIGN(addr);
1247		vma = find_vma(mm, addr);
1248		if (TASK_SIZE - len >= addr &&
1249				(!vma || addr + len <= vma->vm_start))
1250			return addr;
1251	}
1252
1253	/* check if free_area_cache is useful for us */
1254	if (len <= mm->cached_hole_size) {
1255 	        mm->cached_hole_size = 0;
1256 		mm->free_area_cache = mm->mmap_base;
1257 	}
1258
1259	/* either no address requested or can't fit in requested address hole */
1260	addr = mm->free_area_cache;
1261
1262	/* make sure it can fit in the remaining address space */
1263	if (addr > len) {
1264		vma = find_vma(mm, addr-len);
1265		if (!vma || addr <= vma->vm_start)
1266			/* remember the address as a hint for next time */
1267			return (mm->free_area_cache = addr-len);
1268	}
1269
1270	addr = mm->mmap_base-len;
1271
1272	do {
1273		/*
1274		 * Lookup failure means no vma is above this address,
1275		 * else if new region fits below vma->vm_start,
1276		 * return with success:
1277		 */
1278		vma = find_vma(mm, addr);
1279		if (!vma || addr+len <= vma->vm_start)
1280			/* remember the address as a hint for next time */
1281			return (mm->free_area_cache = addr);
1282
1283 		/* remember the largest hole we saw so far */
1284 		if (addr + mm->cached_hole_size < vma->vm_start)
1285 		        mm->cached_hole_size = vma->vm_start - addr;
1286
1287		/* try just below the current vma->vm_start */
1288		addr = vma->vm_start-len;
1289	} while (len < vma->vm_start);
1290
1291	/*
1292	 * A failed mmap() very likely causes application failure,
1293	 * so fall back to the bottom-up function here. This scenario
1294	 * can happen with large stack limits and large mmap()
1295	 * allocations.
1296	 */
1297	mm->cached_hole_size = ~0UL;
1298  	mm->free_area_cache = TASK_UNMAPPED_BASE;
1299	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1300	/*
1301	 * Restore the topdown base:
1302	 */
1303	mm->free_area_cache = mm->mmap_base;
1304	mm->cached_hole_size = ~0UL;
1305
1306	return addr;
1307}
1308#endif
1309
1310void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1311{
1312	/*
1313	 * Is this a new hole at the highest possible address?
1314	 */
1315	if (addr > mm->free_area_cache)
1316		mm->free_area_cache = addr;
1317
1318	/* dont allow allocations above current base */
1319	if (mm->free_area_cache > mm->mmap_base)
1320		mm->free_area_cache = mm->mmap_base;
1321}
1322
1323unsigned long
1324get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1325		unsigned long pgoff, unsigned long flags)
1326{
1327	unsigned long ret;
1328
1329	if (!(flags & MAP_FIXED)) {
1330		unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1331
1332		get_area = current->mm->get_unmapped_area;
1333		if (file && file->f_op && file->f_op->get_unmapped_area)
1334			get_area = file->f_op->get_unmapped_area;
1335		addr = get_area(file, addr, len, pgoff, flags);
1336		if (IS_ERR_VALUE(addr))
1337			return addr;
1338	}
1339
1340	if (addr > TASK_SIZE - len)
1341		return -ENOMEM;
1342	if (addr & ~PAGE_MASK)
1343		return -EINVAL;
1344	if (file && is_file_hugepages(file))  {
1345		/*
1346		 * Check if the given range is hugepage aligned, and
1347		 * can be made suitable for hugepages.
1348		 */
1349		ret = prepare_hugepage_range(addr, len);
1350	} else {
1351		/*
1352		 * Ensure that a normal request is not falling in a
1353		 * reserved hugepage range.  For some archs like IA-64,
1354		 * there is a separate region for hugepages.
1355		 */
1356		ret = is_hugepage_only_range(current->mm, addr, len);
1357	}
1358	if (ret)
1359		return -EINVAL;
1360	return addr;
1361}
1362
1363EXPORT_SYMBOL(get_unmapped_area);
1364
1365/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1366struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1367{
1368	struct vm_area_struct *vma = NULL;
1369
1370	if (mm) {
1371		/* Check the cache first. */
1372		/* (Cache hit rate is typically around 35%.) */
1373		vma = mm->mmap_cache;
1374		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1375			struct rb_node * rb_node;
1376
1377			rb_node = mm->mm_rb.rb_node;
1378			vma = NULL;
1379
1380			while (rb_node) {
1381				struct vm_area_struct * vma_tmp;
1382
1383				vma_tmp = rb_entry(rb_node,
1384						struct vm_area_struct, vm_rb);
1385
1386				if (vma_tmp->vm_end > addr) {
1387					vma = vma_tmp;
1388					if (vma_tmp->vm_start <= addr)
1389						break;
1390					rb_node = rb_node->rb_left;
1391				} else
1392					rb_node = rb_node->rb_right;
1393			}
1394			if (vma)
1395				mm->mmap_cache = vma;
1396		}
1397	}
1398	return vma;
1399}
1400
1401EXPORT_SYMBOL(find_vma);
1402
1403/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1404struct vm_area_struct *
1405find_vma_prev(struct mm_struct *mm, unsigned long addr,
1406			struct vm_area_struct **pprev)
1407{
1408	struct vm_area_struct *vma = NULL, *prev = NULL;
1409	struct rb_node * rb_node;
1410	if (!mm)
1411		goto out;
1412
1413	/* Guard against addr being lower than the first VMA */
1414	vma = mm->mmap;
1415
1416	/* Go through the RB tree quickly. */
1417	rb_node = mm->mm_rb.rb_node;
1418
1419	while (rb_node) {
1420		struct vm_area_struct *vma_tmp;
1421		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1422
1423		if (addr < vma_tmp->vm_end) {
1424			rb_node = rb_node->rb_left;
1425		} else {
1426			prev = vma_tmp;
1427			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1428				break;
1429			rb_node = rb_node->rb_right;
1430		}
1431	}
1432
1433out:
1434	*pprev = prev;
1435	return prev ? prev->vm_next : vma;
1436}
1437
1438/*
1439 * Verify that the stack growth is acceptable and
1440 * update accounting. This is shared with both the
1441 * grow-up and grow-down cases.
1442 */
1443static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1444{
1445	struct mm_struct *mm = vma->vm_mm;
1446	struct rlimit *rlim = current->signal->rlim;
1447
1448	/* address space limit tests */
1449	if (!may_expand_vm(mm, grow))
1450		return -ENOMEM;
1451
1452	/* Stack limit test */
1453	if (size > rlim[RLIMIT_STACK].rlim_cur)
1454		return -ENOMEM;
1455
1456	/* mlock limit tests */
1457	if (vma->vm_flags & VM_LOCKED) {
1458		unsigned long locked;
1459		unsigned long limit;
1460		locked = mm->locked_vm + grow;
1461		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1462		if (locked > limit && !capable(CAP_IPC_LOCK))
1463			return -ENOMEM;
1464	}
1465
1466	/*
1467	 * Overcommit..  This must be the final test, as it will
1468	 * update security statistics.
1469	 */
1470	if (security_vm_enough_memory(grow))
1471		return -ENOMEM;
1472
1473	/* Ok, everything looks good - let it rip */
1474	mm->total_vm += grow;
1475	if (vma->vm_flags & VM_LOCKED)
1476		mm->locked_vm += grow;
1477	__vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1478	return 0;
1479}
1480
1481#ifdef CONFIG_STACK_GROWSUP
1482/*
1483 * vma is the first one with address > vma->vm_end.  Have to extend vma.
1484 */
1485int expand_stack(struct vm_area_struct * vma, unsigned long address)
1486{
1487	int error;
1488
1489	if (!(vma->vm_flags & VM_GROWSUP))
1490		return -EFAULT;
1491
1492	/*
1493	 * We must make sure the anon_vma is allocated
1494	 * so that the anon_vma locking is not a noop.
1495	 */
1496	if (unlikely(anon_vma_prepare(vma)))
1497		return -ENOMEM;
1498	anon_vma_lock(vma);
1499
1500	/*
1501	 * vma->vm_start/vm_end cannot change under us because the caller
1502	 * is required to hold the mmap_sem in read mode.  We need the
1503	 * anon_vma lock to serialize against concurrent expand_stacks.
1504	 */
1505	address += 4 + PAGE_SIZE - 1;
1506	address &= PAGE_MASK;
1507	error = 0;
1508
1509	/* Somebody else might have raced and expanded it already */
1510	if (address > vma->vm_end) {
1511		unsigned long size, grow;
1512
1513		size = address - vma->vm_start;
1514		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1515
1516		error = acct_stack_growth(vma, size, grow);
1517		if (!error)
1518			vma->vm_end = address;
1519	}
1520	anon_vma_unlock(vma);
1521	return error;
1522}
1523
1524struct vm_area_struct *
1525find_extend_vma(struct mm_struct *mm, unsigned long addr)
1526{
1527	struct vm_area_struct *vma, *prev;
1528
1529	addr &= PAGE_MASK;
1530	vma = find_vma_prev(mm, addr, &prev);
1531	if (vma && (vma->vm_start <= addr))
1532		return vma;
1533	if (!prev || expand_stack(prev, addr))
1534		return NULL;
1535	if (prev->vm_flags & VM_LOCKED) {
1536		make_pages_present(addr, prev->vm_end);
1537	}
1538	return prev;
1539}
1540#else
1541/*
1542 * vma is the first one with address < vma->vm_start.  Have to extend vma.
1543 */
1544int expand_stack(struct vm_area_struct *vma, unsigned long address)
1545{
1546	int error;
1547
1548	/*
1549	 * We must make sure the anon_vma is allocated
1550	 * so that the anon_vma locking is not a noop.
1551	 */
1552	if (unlikely(anon_vma_prepare(vma)))
1553		return -ENOMEM;
1554	anon_vma_lock(vma);
1555
1556	/*
1557	 * vma->vm_start/vm_end cannot change under us because the caller
1558	 * is required to hold the mmap_sem in read mode.  We need the
1559	 * anon_vma lock to serialize against concurrent expand_stacks.
1560	 */
1561	address &= PAGE_MASK;
1562	error = 0;
1563
1564	/* Somebody else might have raced and expanded it already */
1565	if (address < vma->vm_start) {
1566		unsigned long size, grow;
1567
1568		size = vma->vm_end - address;
1569		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1570
1571		error = acct_stack_growth(vma, size, grow);
1572		if (!error) {
1573			vma->vm_start = address;
1574			vma->vm_pgoff -= grow;
1575		}
1576	}
1577	anon_vma_unlock(vma);
1578	return error;
1579}
1580
1581struct vm_area_struct *
1582find_extend_vma(struct mm_struct * mm, unsigned long addr)
1583{
1584	struct vm_area_struct * vma;
1585	unsigned long start;
1586
1587	addr &= PAGE_MASK;
1588	vma = find_vma(mm,addr);
1589	if (!vma)
1590		return NULL;
1591	if (vma->vm_start <= addr)
1592		return vma;
1593	if (!(vma->vm_flags & VM_GROWSDOWN))
1594		return NULL;
1595	start = vma->vm_start;
1596	if (expand_stack(vma, addr))
1597		return NULL;
1598	if (vma->vm_flags & VM_LOCKED) {
1599		make_pages_present(addr, start);
1600	}
1601	return vma;
1602}
1603#endif
1604
1605/* Normal function to fix up a mapping
1606 * This function is the default for when an area has no specific
1607 * function.  This may be used as part of a more specific routine.
1608 *
1609 * By the time this function is called, the area struct has been
1610 * removed from the process mapping list.
1611 */
1612static void unmap_vma(struct mm_struct *mm, struct vm_area_struct *area)
1613{
1614	size_t len = area->vm_end - area->vm_start;
1615
1616	area->vm_mm->total_vm -= len >> PAGE_SHIFT;
1617	if (area->vm_flags & VM_LOCKED)
1618		area->vm_mm->locked_vm -= len >> PAGE_SHIFT;
1619	vm_stat_unaccount(area);
1620	remove_vm_struct(area);
1621}
1622
1623/*
1624 * Update the VMA and inode share lists.
1625 *
1626 * Ok - we have the memory areas we should free on the 'free' list,
1627 * so release them, and do the vma updates.
1628 */
1629static void unmap_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1630{
1631	do {
1632		struct vm_area_struct *next = vma->vm_next;
1633		unmap_vma(mm, vma);
1634		vma = next;
1635	} while (vma);
1636	validate_mm(mm);
1637}
1638
1639/*
1640 * Get rid of page table information in the indicated region.
1641 *
1642 * Called with the page table lock held.
1643 */
1644static void unmap_region(struct mm_struct *mm,
1645		struct vm_area_struct *vma, struct vm_area_struct *prev,
1646		unsigned long start, unsigned long end)
1647{
1648	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1649	struct mmu_gather *tlb;
1650	unsigned long nr_accounted = 0;
1651
1652	lru_add_drain();
1653	spin_lock(&mm->page_table_lock);
1654	tlb = tlb_gather_mmu(mm, 0);
1655	unmap_vmas(&tlb, mm, vma, start, end, &nr_accounted, NULL);
1656	vm_unacct_memory(nr_accounted);
1657	free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1658				 next? next->vm_start: 0);
1659	tlb_finish_mmu(tlb, start, end);
1660	spin_unlock(&mm->page_table_lock);
1661}
1662
1663/*
1664 * Create a list of vma's touched by the unmap, removing them from the mm's
1665 * vma list as we go..
1666 */
1667static void
1668detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1669	struct vm_area_struct *prev, unsigned long end)
1670{
1671	struct vm_area_struct **insertion_point;
1672	struct vm_area_struct *tail_vma = NULL;
1673	unsigned long addr;
1674
1675	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1676	do {
1677		rb_erase(&vma->vm_rb, &mm->mm_rb);
1678		mm->map_count--;
1679		tail_vma = vma;
1680		vma = vma->vm_next;
1681	} while (vma && vma->vm_start < end);
1682	*insertion_point = vma;
1683	tail_vma->vm_next = NULL;
1684	if (mm->unmap_area == arch_unmap_area)
1685		addr = prev ? prev->vm_end : mm->mmap_base;
1686	else
1687		addr = vma ?  vma->vm_start : mm->mmap_base;
1688	mm->unmap_area(mm, addr);
1689	mm->mmap_cache = NULL;		/* Kill the cache. */
1690}
1691
1692/*
1693 * Split a vma into two pieces at address 'addr', a new vma is allocated
1694 * either for the first part or the the tail.
1695 */
1696int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1697	      unsigned long addr, int new_below)
1698{
1699	struct mempolicy *pol;
1700	struct vm_area_struct *new;
1701
1702	if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1703		return -EINVAL;
1704
1705	if (mm->map_count >= sysctl_max_map_count)
1706		return -ENOMEM;
1707
1708	new = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1709	if (!new)
1710		return -ENOMEM;
1711
1712	/* most fields are the same, copy all, and then fixup */
1713	*new = *vma;
1714
1715	if (new_below)
1716		new->vm_end = addr;
1717	else {
1718		new->vm_start = addr;
1719		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1720	}
1721
1722	pol = mpol_copy(vma_policy(vma));
1723	if (IS_ERR(pol)) {
1724		kmem_cache_free(vm_area_cachep, new);
1725		return PTR_ERR(pol);
1726	}
1727	vma_set_policy(new, pol);
1728
1729	if (new->vm_file)
1730		get_file(new->vm_file);
1731
1732	if (new->vm_ops && new->vm_ops->open)
1733		new->vm_ops->open(new);
1734
1735	if (new_below)
1736		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1737			((addr - new->vm_start) >> PAGE_SHIFT), new);
1738	else
1739		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1740
1741	return 0;
1742}
1743
1744/* Munmap is split into 2 main parts -- this part which finds
1745 * what needs doing, and the areas themselves, which do the
1746 * work.  This now handles partial unmappings.
1747 * Jeremy Fitzhardinge <jeremy@goop.org>
1748 */
1749int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1750{
1751	unsigned long end;
1752	struct vm_area_struct *vma, *prev, *last;
1753
1754	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1755		return -EINVAL;
1756
1757	if ((len = PAGE_ALIGN(len)) == 0)
1758		return -EINVAL;
1759
1760	/* Find the first overlapping VMA */
1761	vma = find_vma_prev(mm, start, &prev);
1762	if (!vma)
1763		return 0;
1764	/* we have  start < vma->vm_end  */
1765
1766	/* if it doesn't overlap, we have nothing.. */
1767	end = start + len;
1768	if (vma->vm_start >= end)
1769		return 0;
1770
1771	/*
1772	 * If we need to split any vma, do it now to save pain later.
1773	 *
1774	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1775	 * unmapped vm_area_struct will remain in use: so lower split_vma
1776	 * places tmp vma above, and higher split_vma places tmp vma below.
1777	 */
1778	if (start > vma->vm_start) {
1779		int error = split_vma(mm, vma, start, 0);
1780		if (error)
1781			return error;
1782		prev = vma;
1783	}
1784
1785	/* Does it split the last one? */
1786	last = find_vma(mm, end);
1787	if (last && end > last->vm_start) {
1788		int error = split_vma(mm, last, end, 1);
1789		if (error)
1790			return error;
1791	}
1792	vma = prev? prev->vm_next: mm->mmap;
1793
1794	/*
1795	 * Remove the vma's, and unmap the actual pages
1796	 */
1797	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1798	unmap_region(mm, vma, prev, start, end);
1799
1800	/* Fix up all other VM information */
1801	unmap_vma_list(mm, vma);
1802
1803	return 0;
1804}
1805
1806EXPORT_SYMBOL(do_munmap);
1807
1808asmlinkage long sys_munmap(unsigned long addr, size_t len)
1809{
1810	int ret;
1811	struct mm_struct *mm = current->mm;
1812
1813	profile_munmap(addr);
1814
1815	down_write(&mm->mmap_sem);
1816	ret = do_munmap(mm, addr, len);
1817	up_write(&mm->mmap_sem);
1818	return ret;
1819}
1820
1821static inline void verify_mm_writelocked(struct mm_struct *mm)
1822{
1823#ifdef CONFIG_DEBUG_KERNEL
1824	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1825		WARN_ON(1);
1826		up_read(&mm->mmap_sem);
1827	}
1828#endif
1829}
1830
1831/*
1832 *  this is really a simplified "do_mmap".  it only handles
1833 *  anonymous maps.  eventually we may be able to do some
1834 *  brk-specific accounting here.
1835 */
1836unsigned long do_brk(unsigned long addr, unsigned long len)
1837{
1838	struct mm_struct * mm = current->mm;
1839	struct vm_area_struct * vma, * prev;
1840	unsigned long flags;
1841	struct rb_node ** rb_link, * rb_parent;
1842	pgoff_t pgoff = addr >> PAGE_SHIFT;
1843
1844	len = PAGE_ALIGN(len);
1845	if (!len)
1846		return addr;
1847
1848	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1849		return -EINVAL;
1850
1851	/*
1852	 * mlock MCL_FUTURE?
1853	 */
1854	if (mm->def_flags & VM_LOCKED) {
1855		unsigned long locked, lock_limit;
1856		locked = len >> PAGE_SHIFT;
1857		locked += mm->locked_vm;
1858		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1859		lock_limit >>= PAGE_SHIFT;
1860		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1861			return -EAGAIN;
1862	}
1863
1864	/*
1865	 * mm->mmap_sem is required to protect against another thread
1866	 * changing the mappings in case we sleep.
1867	 */
1868	verify_mm_writelocked(mm);
1869
1870	/*
1871	 * Clear old maps.  this also does some error checking for us
1872	 */
1873 munmap_back:
1874	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1875	if (vma && vma->vm_start < addr + len) {
1876		if (do_munmap(mm, addr, len))
1877			return -ENOMEM;
1878		goto munmap_back;
1879	}
1880
1881	/* Check against address space limits *after* clearing old maps... */
1882	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1883		return -ENOMEM;
1884
1885	if (mm->map_count > sysctl_max_map_count)
1886		return -ENOMEM;
1887
1888	if (security_vm_enough_memory(len >> PAGE_SHIFT))
1889		return -ENOMEM;
1890
1891	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1892
1893	/* Can we just expand an old private anonymous mapping? */
1894	if (vma_merge(mm, prev, addr, addr + len, flags,
1895					NULL, NULL, pgoff, NULL))
1896		goto out;
1897
1898	/*
1899	 * create a vma struct for an anonymous mapping
1900	 */
1901	vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1902	if (!vma) {
1903		vm_unacct_memory(len >> PAGE_SHIFT);
1904		return -ENOMEM;
1905	}
1906	memset(vma, 0, sizeof(*vma));
1907
1908	vma->vm_mm = mm;
1909	vma->vm_start = addr;
1910	vma->vm_end = addr + len;
1911	vma->vm_pgoff = pgoff;
1912	vma->vm_flags = flags;
1913	vma->vm_page_prot = protection_map[flags & 0x0f];
1914	vma_link(mm, vma, prev, rb_link, rb_parent);
1915out:
1916	mm->total_vm += len >> PAGE_SHIFT;
1917	if (flags & VM_LOCKED) {
1918		mm->locked_vm += len >> PAGE_SHIFT;
1919		make_pages_present(addr, addr + len);
1920	}
1921	return addr;
1922}
1923
1924EXPORT_SYMBOL(do_brk);
1925
1926/* Release all mmaps. */
1927void exit_mmap(struct mm_struct *mm)
1928{
1929	struct mmu_gather *tlb;
1930	struct vm_area_struct *vma = mm->mmap;
1931	unsigned long nr_accounted = 0;
1932	unsigned long end;
1933
1934	lru_add_drain();
1935
1936	spin_lock(&mm->page_table_lock);
1937
1938	flush_cache_mm(mm);
1939	tlb = tlb_gather_mmu(mm, 1);
1940	/* Use -1 here to ensure all VMAs in the mm are unmapped */
1941	end = unmap_vmas(&tlb, mm, vma, 0, -1, &nr_accounted, NULL);
1942	vm_unacct_memory(nr_accounted);
1943	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
1944	tlb_finish_mmu(tlb, 0, end);
1945
1946	mm->mmap = mm->mmap_cache = NULL;
1947	mm->mm_rb = RB_ROOT;
1948	set_mm_counter(mm, rss, 0);
1949	mm->total_vm = 0;
1950	mm->locked_vm = 0;
1951
1952	spin_unlock(&mm->page_table_lock);
1953
1954	/*
1955	 * Walk the list again, actually closing and freeing it
1956	 * without holding any MM locks.
1957	 */
1958	while (vma) {
1959		struct vm_area_struct *next = vma->vm_next;
1960		remove_vm_struct(vma);
1961		vma = next;
1962	}
1963
1964	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
1965}
1966
1967/* Insert vm structure into process list sorted by address
1968 * and into the inode's i_mmap tree.  If vm_file is non-NULL
1969 * then i_mmap_lock is taken here.
1970 */
1971int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
1972{
1973	struct vm_area_struct * __vma, * prev;
1974	struct rb_node ** rb_link, * rb_parent;
1975
1976	/*
1977	 * The vm_pgoff of a purely anonymous vma should be irrelevant
1978	 * until its first write fault, when page's anon_vma and index
1979	 * are set.  But now set the vm_pgoff it will almost certainly
1980	 * end up with (unless mremap moves it elsewhere before that
1981	 * first wfault), so /proc/pid/maps tells a consistent story.
1982	 *
1983	 * By setting it to reflect the virtual start address of the
1984	 * vma, merges and splits can happen in a seamless way, just
1985	 * using the existing file pgoff checks and manipulations.
1986	 * Similarly in do_mmap_pgoff and in do_brk.
1987	 */
1988	if (!vma->vm_file) {
1989		BUG_ON(vma->anon_vma);
1990		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
1991	}
1992	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
1993	if (__vma && __vma->vm_start < vma->vm_end)
1994		return -ENOMEM;
1995	vma_link(mm, vma, prev, rb_link, rb_parent);
1996	return 0;
1997}
1998
1999/*
2000 * Copy the vma structure to a new location in the same mm,
2001 * prior to moving page table entries, to effect an mremap move.
2002 */
2003struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2004	unsigned long addr, unsigned long len, pgoff_t pgoff)
2005{
2006	struct vm_area_struct *vma = *vmap;
2007	unsigned long vma_start = vma->vm_start;
2008	struct mm_struct *mm = vma->vm_mm;
2009	struct vm_area_struct *new_vma, *prev;
2010	struct rb_node **rb_link, *rb_parent;
2011	struct mempolicy *pol;
2012
2013	/*
2014	 * If anonymous vma has not yet been faulted, update new pgoff
2015	 * to match new location, to increase its chance of merging.
2016	 */
2017	if (!vma->vm_file && !vma->anon_vma)
2018		pgoff = addr >> PAGE_SHIFT;
2019
2020	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2021	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2022			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2023	if (new_vma) {
2024		/*
2025		 * Source vma may have been merged into new_vma
2026		 */
2027		if (vma_start >= new_vma->vm_start &&
2028		    vma_start < new_vma->vm_end)
2029			*vmap = new_vma;
2030	} else {
2031		new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2032		if (new_vma) {
2033			*new_vma = *vma;
2034			pol = mpol_copy(vma_policy(vma));
2035			if (IS_ERR(pol)) {
2036				kmem_cache_free(vm_area_cachep, new_vma);
2037				return NULL;
2038			}
2039			vma_set_policy(new_vma, pol);
2040			new_vma->vm_start = addr;
2041			new_vma->vm_end = addr + len;
2042			new_vma->vm_pgoff = pgoff;
2043			if (new_vma->vm_file)
2044				get_file(new_vma->vm_file);
2045			if (new_vma->vm_ops && new_vma->vm_ops->open)
2046				new_vma->vm_ops->open(new_vma);
2047			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2048		}
2049	}
2050	return new_vma;
2051}
2052
2053/*
2054 * Return true if the calling process may expand its vm space by the passed
2055 * number of pages
2056 */
2057int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2058{
2059	unsigned long cur = mm->total_vm;	/* pages */
2060	unsigned long lim;
2061
2062	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2063
2064	if (cur + npages > lim)
2065		return 0;
2066	return 1;
2067}
2068