mmap.c revision 34b4e4aa3c470ce8fa2bd78abb1741b4b58baad7
1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code	<alan@redhat.com>
7 */
8
9#include <linux/slab.h>
10#include <linux/mm.h>
11#include <linux/shm.h>
12#include <linux/mman.h>
13#include <linux/pagemap.h>
14#include <linux/swap.h>
15#include <linux/syscalls.h>
16#include <linux/capability.h>
17#include <linux/init.h>
18#include <linux/file.h>
19#include <linux/fs.h>
20#include <linux/personality.h>
21#include <linux/security.h>
22#include <linux/hugetlb.h>
23#include <linux/profile.h>
24#include <linux/module.h>
25#include <linux/mount.h>
26#include <linux/mempolicy.h>
27#include <linux/rmap.h>
28
29#include <asm/uaccess.h>
30#include <asm/cacheflush.h>
31#include <asm/tlb.h>
32#include <asm/mmu_context.h>
33
34#ifndef arch_mmap_check
35#define arch_mmap_check(addr, len, flags)	(0)
36#endif
37
38static void unmap_region(struct mm_struct *mm,
39		struct vm_area_struct *vma, struct vm_area_struct *prev,
40		unsigned long start, unsigned long end);
41
42/*
43 * WARNING: the debugging will use recursive algorithms so never enable this
44 * unless you know what you are doing.
45 */
46#undef DEBUG_MM_RB
47
48/* description of effects of mapping type and prot in current implementation.
49 * this is due to the limited x86 page protection hardware.  The expected
50 * behavior is in parens:
51 *
52 * map_type	prot
53 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
54 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
55 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
56 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
57 *
58 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
59 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
60 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
61 *
62 */
63pgprot_t protection_map[16] = {
64	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
65	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
66};
67
68pgprot_t vm_get_page_prot(unsigned long vm_flags)
69{
70	return protection_map[vm_flags &
71				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
72}
73EXPORT_SYMBOL(vm_get_page_prot);
74
75int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
76int sysctl_overcommit_ratio = 50;	/* default is 50% */
77int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
78atomic_t vm_committed_space = ATOMIC_INIT(0);
79
80/*
81 * Check that a process has enough memory to allocate a new virtual
82 * mapping. 0 means there is enough memory for the allocation to
83 * succeed and -ENOMEM implies there is not.
84 *
85 * We currently support three overcommit policies, which are set via the
86 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
87 *
88 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
89 * Additional code 2002 Jul 20 by Robert Love.
90 *
91 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
92 *
93 * Note this is a helper function intended to be used by LSMs which
94 * wish to use this logic.
95 */
96int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
97{
98	unsigned long free, allowed;
99
100	vm_acct_memory(pages);
101
102	/*
103	 * Sometimes we want to use more memory than we have
104	 */
105	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
106		return 0;
107
108	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
109		unsigned long n;
110
111		free = global_page_state(NR_FILE_PAGES);
112		free += nr_swap_pages;
113
114		/*
115		 * Any slabs which are created with the
116		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
117		 * which are reclaimable, under pressure.  The dentry
118		 * cache and most inode caches should fall into this
119		 */
120		free += global_page_state(NR_SLAB_RECLAIMABLE);
121
122		/*
123		 * Leave the last 3% for root
124		 */
125		if (!cap_sys_admin)
126			free -= free / 32;
127
128		if (free > pages)
129			return 0;
130
131		/*
132		 * nr_free_pages() is very expensive on large systems,
133		 * only call if we're about to fail.
134		 */
135		n = nr_free_pages();
136
137		/*
138		 * Leave reserved pages. The pages are not for anonymous pages.
139		 */
140		if (n <= totalreserve_pages)
141			goto error;
142		else
143			n -= totalreserve_pages;
144
145		/*
146		 * Leave the last 3% for root
147		 */
148		if (!cap_sys_admin)
149			n -= n / 32;
150		free += n;
151
152		if (free > pages)
153			return 0;
154
155		goto error;
156	}
157
158	allowed = (totalram_pages - hugetlb_total_pages())
159	       	* sysctl_overcommit_ratio / 100;
160	/*
161	 * Leave the last 3% for root
162	 */
163	if (!cap_sys_admin)
164		allowed -= allowed / 32;
165	allowed += total_swap_pages;
166
167	/* Don't let a single process grow too big:
168	   leave 3% of the size of this process for other processes */
169	allowed -= mm->total_vm / 32;
170
171	/*
172	 * cast `allowed' as a signed long because vm_committed_space
173	 * sometimes has a negative value
174	 */
175	if (atomic_read(&vm_committed_space) < (long)allowed)
176		return 0;
177error:
178	vm_unacct_memory(pages);
179
180	return -ENOMEM;
181}
182
183EXPORT_SYMBOL(__vm_enough_memory);
184
185/*
186 * Requires inode->i_mapping->i_mmap_lock
187 */
188static void __remove_shared_vm_struct(struct vm_area_struct *vma,
189		struct file *file, struct address_space *mapping)
190{
191	if (vma->vm_flags & VM_DENYWRITE)
192		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
193	if (vma->vm_flags & VM_SHARED)
194		mapping->i_mmap_writable--;
195
196	flush_dcache_mmap_lock(mapping);
197	if (unlikely(vma->vm_flags & VM_NONLINEAR))
198		list_del_init(&vma->shared.vm_set.list);
199	else
200		vma_prio_tree_remove(vma, &mapping->i_mmap);
201	flush_dcache_mmap_unlock(mapping);
202}
203
204/*
205 * Unlink a file-based vm structure from its prio_tree, to hide
206 * vma from rmap and vmtruncate before freeing its page tables.
207 */
208void unlink_file_vma(struct vm_area_struct *vma)
209{
210	struct file *file = vma->vm_file;
211
212	if (file) {
213		struct address_space *mapping = file->f_mapping;
214		spin_lock(&mapping->i_mmap_lock);
215		__remove_shared_vm_struct(vma, file, mapping);
216		spin_unlock(&mapping->i_mmap_lock);
217	}
218}
219
220/*
221 * Close a vm structure and free it, returning the next.
222 */
223static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
224{
225	struct vm_area_struct *next = vma->vm_next;
226
227	might_sleep();
228	if (vma->vm_ops && vma->vm_ops->close)
229		vma->vm_ops->close(vma);
230	if (vma->vm_file)
231		fput(vma->vm_file);
232	mpol_free(vma_policy(vma));
233	kmem_cache_free(vm_area_cachep, vma);
234	return next;
235}
236
237asmlinkage unsigned long sys_brk(unsigned long brk)
238{
239	unsigned long rlim, retval;
240	unsigned long newbrk, oldbrk;
241	struct mm_struct *mm = current->mm;
242
243	down_write(&mm->mmap_sem);
244
245	if (brk < mm->end_code)
246		goto out;
247
248	/*
249	 * Check against rlimit here. If this check is done later after the test
250	 * of oldbrk with newbrk then it can escape the test and let the data
251	 * segment grow beyond its set limit the in case where the limit is
252	 * not page aligned -Ram Gupta
253	 */
254	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
255	if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
256		goto out;
257
258	newbrk = PAGE_ALIGN(brk);
259	oldbrk = PAGE_ALIGN(mm->brk);
260	if (oldbrk == newbrk)
261		goto set_brk;
262
263	/* Always allow shrinking brk. */
264	if (brk <= mm->brk) {
265		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
266			goto set_brk;
267		goto out;
268	}
269
270	/* Check against existing mmap mappings. */
271	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
272		goto out;
273
274	/* Ok, looks good - let it rip. */
275	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
276		goto out;
277set_brk:
278	mm->brk = brk;
279out:
280	retval = mm->brk;
281	up_write(&mm->mmap_sem);
282	return retval;
283}
284
285#ifdef DEBUG_MM_RB
286static int browse_rb(struct rb_root *root)
287{
288	int i = 0, j;
289	struct rb_node *nd, *pn = NULL;
290	unsigned long prev = 0, pend = 0;
291
292	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
293		struct vm_area_struct *vma;
294		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
295		if (vma->vm_start < prev)
296			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
297		if (vma->vm_start < pend)
298			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
299		if (vma->vm_start > vma->vm_end)
300			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
301		i++;
302		pn = nd;
303		prev = vma->vm_start;
304		pend = vma->vm_end;
305	}
306	j = 0;
307	for (nd = pn; nd; nd = rb_prev(nd)) {
308		j++;
309	}
310	if (i != j)
311		printk("backwards %d, forwards %d\n", j, i), i = 0;
312	return i;
313}
314
315void validate_mm(struct mm_struct *mm)
316{
317	int bug = 0;
318	int i = 0;
319	struct vm_area_struct *tmp = mm->mmap;
320	while (tmp) {
321		tmp = tmp->vm_next;
322		i++;
323	}
324	if (i != mm->map_count)
325		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
326	i = browse_rb(&mm->mm_rb);
327	if (i != mm->map_count)
328		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
329	BUG_ON(bug);
330}
331#else
332#define validate_mm(mm) do { } while (0)
333#endif
334
335static struct vm_area_struct *
336find_vma_prepare(struct mm_struct *mm, unsigned long addr,
337		struct vm_area_struct **pprev, struct rb_node ***rb_link,
338		struct rb_node ** rb_parent)
339{
340	struct vm_area_struct * vma;
341	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
342
343	__rb_link = &mm->mm_rb.rb_node;
344	rb_prev = __rb_parent = NULL;
345	vma = NULL;
346
347	while (*__rb_link) {
348		struct vm_area_struct *vma_tmp;
349
350		__rb_parent = *__rb_link;
351		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
352
353		if (vma_tmp->vm_end > addr) {
354			vma = vma_tmp;
355			if (vma_tmp->vm_start <= addr)
356				return vma;
357			__rb_link = &__rb_parent->rb_left;
358		} else {
359			rb_prev = __rb_parent;
360			__rb_link = &__rb_parent->rb_right;
361		}
362	}
363
364	*pprev = NULL;
365	if (rb_prev)
366		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
367	*rb_link = __rb_link;
368	*rb_parent = __rb_parent;
369	return vma;
370}
371
372static inline void
373__vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
374		struct vm_area_struct *prev, struct rb_node *rb_parent)
375{
376	if (prev) {
377		vma->vm_next = prev->vm_next;
378		prev->vm_next = vma;
379	} else {
380		mm->mmap = vma;
381		if (rb_parent)
382			vma->vm_next = rb_entry(rb_parent,
383					struct vm_area_struct, vm_rb);
384		else
385			vma->vm_next = NULL;
386	}
387}
388
389void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
390		struct rb_node **rb_link, struct rb_node *rb_parent)
391{
392	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
393	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
394}
395
396static inline void __vma_link_file(struct vm_area_struct *vma)
397{
398	struct file * file;
399
400	file = vma->vm_file;
401	if (file) {
402		struct address_space *mapping = file->f_mapping;
403
404		if (vma->vm_flags & VM_DENYWRITE)
405			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
406		if (vma->vm_flags & VM_SHARED)
407			mapping->i_mmap_writable++;
408
409		flush_dcache_mmap_lock(mapping);
410		if (unlikely(vma->vm_flags & VM_NONLINEAR))
411			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
412		else
413			vma_prio_tree_insert(vma, &mapping->i_mmap);
414		flush_dcache_mmap_unlock(mapping);
415	}
416}
417
418static void
419__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
420	struct vm_area_struct *prev, struct rb_node **rb_link,
421	struct rb_node *rb_parent)
422{
423	__vma_link_list(mm, vma, prev, rb_parent);
424	__vma_link_rb(mm, vma, rb_link, rb_parent);
425	__anon_vma_link(vma);
426}
427
428static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
429			struct vm_area_struct *prev, struct rb_node **rb_link,
430			struct rb_node *rb_parent)
431{
432	struct address_space *mapping = NULL;
433
434	if (vma->vm_file)
435		mapping = vma->vm_file->f_mapping;
436
437	if (mapping) {
438		spin_lock(&mapping->i_mmap_lock);
439		vma->vm_truncate_count = mapping->truncate_count;
440	}
441	anon_vma_lock(vma);
442
443	__vma_link(mm, vma, prev, rb_link, rb_parent);
444	__vma_link_file(vma);
445
446	anon_vma_unlock(vma);
447	if (mapping)
448		spin_unlock(&mapping->i_mmap_lock);
449
450	mm->map_count++;
451	validate_mm(mm);
452}
453
454/*
455 * Helper for vma_adjust in the split_vma insert case:
456 * insert vm structure into list and rbtree and anon_vma,
457 * but it has already been inserted into prio_tree earlier.
458 */
459static void
460__insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
461{
462	struct vm_area_struct * __vma, * prev;
463	struct rb_node ** rb_link, * rb_parent;
464
465	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
466	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
467	__vma_link(mm, vma, prev, rb_link, rb_parent);
468	mm->map_count++;
469}
470
471static inline void
472__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
473		struct vm_area_struct *prev)
474{
475	prev->vm_next = vma->vm_next;
476	rb_erase(&vma->vm_rb, &mm->mm_rb);
477	if (mm->mmap_cache == vma)
478		mm->mmap_cache = prev;
479}
480
481/*
482 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
483 * is already present in an i_mmap tree without adjusting the tree.
484 * The following helper function should be used when such adjustments
485 * are necessary.  The "insert" vma (if any) is to be inserted
486 * before we drop the necessary locks.
487 */
488void vma_adjust(struct vm_area_struct *vma, unsigned long start,
489	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
490{
491	struct mm_struct *mm = vma->vm_mm;
492	struct vm_area_struct *next = vma->vm_next;
493	struct vm_area_struct *importer = NULL;
494	struct address_space *mapping = NULL;
495	struct prio_tree_root *root = NULL;
496	struct file *file = vma->vm_file;
497	struct anon_vma *anon_vma = NULL;
498	long adjust_next = 0;
499	int remove_next = 0;
500
501	if (next && !insert) {
502		if (end >= next->vm_end) {
503			/*
504			 * vma expands, overlapping all the next, and
505			 * perhaps the one after too (mprotect case 6).
506			 */
507again:			remove_next = 1 + (end > next->vm_end);
508			end = next->vm_end;
509			anon_vma = next->anon_vma;
510			importer = vma;
511		} else if (end > next->vm_start) {
512			/*
513			 * vma expands, overlapping part of the next:
514			 * mprotect case 5 shifting the boundary up.
515			 */
516			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
517			anon_vma = next->anon_vma;
518			importer = vma;
519		} else if (end < vma->vm_end) {
520			/*
521			 * vma shrinks, and !insert tells it's not
522			 * split_vma inserting another: so it must be
523			 * mprotect case 4 shifting the boundary down.
524			 */
525			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
526			anon_vma = next->anon_vma;
527			importer = next;
528		}
529	}
530
531	if (file) {
532		mapping = file->f_mapping;
533		if (!(vma->vm_flags & VM_NONLINEAR))
534			root = &mapping->i_mmap;
535		spin_lock(&mapping->i_mmap_lock);
536		if (importer &&
537		    vma->vm_truncate_count != next->vm_truncate_count) {
538			/*
539			 * unmap_mapping_range might be in progress:
540			 * ensure that the expanding vma is rescanned.
541			 */
542			importer->vm_truncate_count = 0;
543		}
544		if (insert) {
545			insert->vm_truncate_count = vma->vm_truncate_count;
546			/*
547			 * Put into prio_tree now, so instantiated pages
548			 * are visible to arm/parisc __flush_dcache_page
549			 * throughout; but we cannot insert into address
550			 * space until vma start or end is updated.
551			 */
552			__vma_link_file(insert);
553		}
554	}
555
556	/*
557	 * When changing only vma->vm_end, we don't really need
558	 * anon_vma lock: but is that case worth optimizing out?
559	 */
560	if (vma->anon_vma)
561		anon_vma = vma->anon_vma;
562	if (anon_vma) {
563		spin_lock(&anon_vma->lock);
564		/*
565		 * Easily overlooked: when mprotect shifts the boundary,
566		 * make sure the expanding vma has anon_vma set if the
567		 * shrinking vma had, to cover any anon pages imported.
568		 */
569		if (importer && !importer->anon_vma) {
570			importer->anon_vma = anon_vma;
571			__anon_vma_link(importer);
572		}
573	}
574
575	if (root) {
576		flush_dcache_mmap_lock(mapping);
577		vma_prio_tree_remove(vma, root);
578		if (adjust_next)
579			vma_prio_tree_remove(next, root);
580	}
581
582	vma->vm_start = start;
583	vma->vm_end = end;
584	vma->vm_pgoff = pgoff;
585	if (adjust_next) {
586		next->vm_start += adjust_next << PAGE_SHIFT;
587		next->vm_pgoff += adjust_next;
588	}
589
590	if (root) {
591		if (adjust_next)
592			vma_prio_tree_insert(next, root);
593		vma_prio_tree_insert(vma, root);
594		flush_dcache_mmap_unlock(mapping);
595	}
596
597	if (remove_next) {
598		/*
599		 * vma_merge has merged next into vma, and needs
600		 * us to remove next before dropping the locks.
601		 */
602		__vma_unlink(mm, next, vma);
603		if (file)
604			__remove_shared_vm_struct(next, file, mapping);
605		if (next->anon_vma)
606			__anon_vma_merge(vma, next);
607	} else if (insert) {
608		/*
609		 * split_vma has split insert from vma, and needs
610		 * us to insert it before dropping the locks
611		 * (it may either follow vma or precede it).
612		 */
613		__insert_vm_struct(mm, insert);
614	}
615
616	if (anon_vma)
617		spin_unlock(&anon_vma->lock);
618	if (mapping)
619		spin_unlock(&mapping->i_mmap_lock);
620
621	if (remove_next) {
622		if (file)
623			fput(file);
624		mm->map_count--;
625		mpol_free(vma_policy(next));
626		kmem_cache_free(vm_area_cachep, next);
627		/*
628		 * In mprotect's case 6 (see comments on vma_merge),
629		 * we must remove another next too. It would clutter
630		 * up the code too much to do both in one go.
631		 */
632		if (remove_next == 2) {
633			next = vma->vm_next;
634			goto again;
635		}
636	}
637
638	validate_mm(mm);
639}
640
641/*
642 * If the vma has a ->close operation then the driver probably needs to release
643 * per-vma resources, so we don't attempt to merge those.
644 */
645#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
646
647static inline int is_mergeable_vma(struct vm_area_struct *vma,
648			struct file *file, unsigned long vm_flags)
649{
650	if (vma->vm_flags != vm_flags)
651		return 0;
652	if (vma->vm_file != file)
653		return 0;
654	if (vma->vm_ops && vma->vm_ops->close)
655		return 0;
656	return 1;
657}
658
659static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
660					struct anon_vma *anon_vma2)
661{
662	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
663}
664
665/*
666 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
667 * in front of (at a lower virtual address and file offset than) the vma.
668 *
669 * We cannot merge two vmas if they have differently assigned (non-NULL)
670 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
671 *
672 * We don't check here for the merged mmap wrapping around the end of pagecache
673 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
674 * wrap, nor mmaps which cover the final page at index -1UL.
675 */
676static int
677can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
678	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
679{
680	if (is_mergeable_vma(vma, file, vm_flags) &&
681	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
682		if (vma->vm_pgoff == vm_pgoff)
683			return 1;
684	}
685	return 0;
686}
687
688/*
689 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
690 * beyond (at a higher virtual address and file offset than) the vma.
691 *
692 * We cannot merge two vmas if they have differently assigned (non-NULL)
693 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
694 */
695static int
696can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
697	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
698{
699	if (is_mergeable_vma(vma, file, vm_flags) &&
700	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
701		pgoff_t vm_pglen;
702		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
703		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
704			return 1;
705	}
706	return 0;
707}
708
709/*
710 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
711 * whether that can be merged with its predecessor or its successor.
712 * Or both (it neatly fills a hole).
713 *
714 * In most cases - when called for mmap, brk or mremap - [addr,end) is
715 * certain not to be mapped by the time vma_merge is called; but when
716 * called for mprotect, it is certain to be already mapped (either at
717 * an offset within prev, or at the start of next), and the flags of
718 * this area are about to be changed to vm_flags - and the no-change
719 * case has already been eliminated.
720 *
721 * The following mprotect cases have to be considered, where AAAA is
722 * the area passed down from mprotect_fixup, never extending beyond one
723 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
724 *
725 *     AAAA             AAAA                AAAA          AAAA
726 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
727 *    cannot merge    might become    might become    might become
728 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
729 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
730 *    mremap move:                                    PPPPNNNNNNNN 8
731 *        AAAA
732 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
733 *    might become    case 1 below    case 2 below    case 3 below
734 *
735 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
736 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
737 */
738struct vm_area_struct *vma_merge(struct mm_struct *mm,
739			struct vm_area_struct *prev, unsigned long addr,
740			unsigned long end, unsigned long vm_flags,
741		     	struct anon_vma *anon_vma, struct file *file,
742			pgoff_t pgoff, struct mempolicy *policy)
743{
744	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
745	struct vm_area_struct *area, *next;
746
747	/*
748	 * We later require that vma->vm_flags == vm_flags,
749	 * so this tests vma->vm_flags & VM_SPECIAL, too.
750	 */
751	if (vm_flags & VM_SPECIAL)
752		return NULL;
753
754	if (prev)
755		next = prev->vm_next;
756	else
757		next = mm->mmap;
758	area = next;
759	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
760		next = next->vm_next;
761
762	/*
763	 * Can it merge with the predecessor?
764	 */
765	if (prev && prev->vm_end == addr &&
766  			mpol_equal(vma_policy(prev), policy) &&
767			can_vma_merge_after(prev, vm_flags,
768						anon_vma, file, pgoff)) {
769		/*
770		 * OK, it can.  Can we now merge in the successor as well?
771		 */
772		if (next && end == next->vm_start &&
773				mpol_equal(policy, vma_policy(next)) &&
774				can_vma_merge_before(next, vm_flags,
775					anon_vma, file, pgoff+pglen) &&
776				is_mergeable_anon_vma(prev->anon_vma,
777						      next->anon_vma)) {
778							/* cases 1, 6 */
779			vma_adjust(prev, prev->vm_start,
780				next->vm_end, prev->vm_pgoff, NULL);
781		} else					/* cases 2, 5, 7 */
782			vma_adjust(prev, prev->vm_start,
783				end, prev->vm_pgoff, NULL);
784		return prev;
785	}
786
787	/*
788	 * Can this new request be merged in front of next?
789	 */
790	if (next && end == next->vm_start &&
791 			mpol_equal(policy, vma_policy(next)) &&
792			can_vma_merge_before(next, vm_flags,
793					anon_vma, file, pgoff+pglen)) {
794		if (prev && addr < prev->vm_end)	/* case 4 */
795			vma_adjust(prev, prev->vm_start,
796				addr, prev->vm_pgoff, NULL);
797		else					/* cases 3, 8 */
798			vma_adjust(area, addr, next->vm_end,
799				next->vm_pgoff - pglen, NULL);
800		return area;
801	}
802
803	return NULL;
804}
805
806/*
807 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
808 * neighbouring vmas for a suitable anon_vma, before it goes off
809 * to allocate a new anon_vma.  It checks because a repetitive
810 * sequence of mprotects and faults may otherwise lead to distinct
811 * anon_vmas being allocated, preventing vma merge in subsequent
812 * mprotect.
813 */
814struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
815{
816	struct vm_area_struct *near;
817	unsigned long vm_flags;
818
819	near = vma->vm_next;
820	if (!near)
821		goto try_prev;
822
823	/*
824	 * Since only mprotect tries to remerge vmas, match flags
825	 * which might be mprotected into each other later on.
826	 * Neither mlock nor madvise tries to remerge at present,
827	 * so leave their flags as obstructing a merge.
828	 */
829	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
830	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
831
832	if (near->anon_vma && vma->vm_end == near->vm_start &&
833 			mpol_equal(vma_policy(vma), vma_policy(near)) &&
834			can_vma_merge_before(near, vm_flags,
835				NULL, vma->vm_file, vma->vm_pgoff +
836				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
837		return near->anon_vma;
838try_prev:
839	/*
840	 * It is potentially slow to have to call find_vma_prev here.
841	 * But it's only on the first write fault on the vma, not
842	 * every time, and we could devise a way to avoid it later
843	 * (e.g. stash info in next's anon_vma_node when assigning
844	 * an anon_vma, or when trying vma_merge).  Another time.
845	 */
846	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
847	if (!near)
848		goto none;
849
850	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
851	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
852
853	if (near->anon_vma && near->vm_end == vma->vm_start &&
854  			mpol_equal(vma_policy(near), vma_policy(vma)) &&
855			can_vma_merge_after(near, vm_flags,
856				NULL, vma->vm_file, vma->vm_pgoff))
857		return near->anon_vma;
858none:
859	/*
860	 * There's no absolute need to look only at touching neighbours:
861	 * we could search further afield for "compatible" anon_vmas.
862	 * But it would probably just be a waste of time searching,
863	 * or lead to too many vmas hanging off the same anon_vma.
864	 * We're trying to allow mprotect remerging later on,
865	 * not trying to minimize memory used for anon_vmas.
866	 */
867	return NULL;
868}
869
870#ifdef CONFIG_PROC_FS
871void vm_stat_account(struct mm_struct *mm, unsigned long flags,
872						struct file *file, long pages)
873{
874	const unsigned long stack_flags
875		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
876
877	if (file) {
878		mm->shared_vm += pages;
879		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
880			mm->exec_vm += pages;
881	} else if (flags & stack_flags)
882		mm->stack_vm += pages;
883	if (flags & (VM_RESERVED|VM_IO))
884		mm->reserved_vm += pages;
885}
886#endif /* CONFIG_PROC_FS */
887
888/*
889 * The caller must hold down_write(current->mm->mmap_sem).
890 */
891
892unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
893			unsigned long len, unsigned long prot,
894			unsigned long flags, unsigned long pgoff)
895{
896	struct mm_struct * mm = current->mm;
897	struct inode *inode;
898	unsigned int vm_flags;
899	int error;
900	int accountable = 1;
901	unsigned long reqprot = prot;
902
903	/*
904	 * Does the application expect PROT_READ to imply PROT_EXEC?
905	 *
906	 * (the exception is when the underlying filesystem is noexec
907	 *  mounted, in which case we dont add PROT_EXEC.)
908	 */
909	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
910		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
911			prot |= PROT_EXEC;
912
913	if (!len)
914		return -EINVAL;
915
916	error = arch_mmap_check(addr, len, flags);
917	if (error)
918		return error;
919
920	/* Careful about overflows.. */
921	len = PAGE_ALIGN(len);
922	if (!len || len > TASK_SIZE)
923		return -ENOMEM;
924
925	/* offset overflow? */
926	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
927               return -EOVERFLOW;
928
929	/* Too many mappings? */
930	if (mm->map_count > sysctl_max_map_count)
931		return -ENOMEM;
932
933	/* Obtain the address to map to. we verify (or select) it and ensure
934	 * that it represents a valid section of the address space.
935	 */
936	addr = get_unmapped_area(file, addr, len, pgoff, flags);
937	if (addr & ~PAGE_MASK)
938		return addr;
939
940	/* Do simple checking here so the lower-level routines won't have
941	 * to. we assume access permissions have been handled by the open
942	 * of the memory object, so we don't do any here.
943	 */
944	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
945			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
946
947	if (flags & MAP_LOCKED) {
948		if (!can_do_mlock())
949			return -EPERM;
950		vm_flags |= VM_LOCKED;
951	}
952	/* mlock MCL_FUTURE? */
953	if (vm_flags & VM_LOCKED) {
954		unsigned long locked, lock_limit;
955		locked = len >> PAGE_SHIFT;
956		locked += mm->locked_vm;
957		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
958		lock_limit >>= PAGE_SHIFT;
959		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
960			return -EAGAIN;
961	}
962
963	inode = file ? file->f_path.dentry->d_inode : NULL;
964
965	if (file) {
966		switch (flags & MAP_TYPE) {
967		case MAP_SHARED:
968			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
969				return -EACCES;
970
971			/*
972			 * Make sure we don't allow writing to an append-only
973			 * file..
974			 */
975			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
976				return -EACCES;
977
978			/*
979			 * Make sure there are no mandatory locks on the file.
980			 */
981			if (locks_verify_locked(inode))
982				return -EAGAIN;
983
984			vm_flags |= VM_SHARED | VM_MAYSHARE;
985			if (!(file->f_mode & FMODE_WRITE))
986				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
987
988			/* fall through */
989		case MAP_PRIVATE:
990			if (!(file->f_mode & FMODE_READ))
991				return -EACCES;
992			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
993				if (vm_flags & VM_EXEC)
994					return -EPERM;
995				vm_flags &= ~VM_MAYEXEC;
996			}
997			if (is_file_hugepages(file))
998				accountable = 0;
999
1000			if (!file->f_op || !file->f_op->mmap)
1001				return -ENODEV;
1002			break;
1003
1004		default:
1005			return -EINVAL;
1006		}
1007	} else {
1008		switch (flags & MAP_TYPE) {
1009		case MAP_SHARED:
1010			vm_flags |= VM_SHARED | VM_MAYSHARE;
1011			break;
1012		case MAP_PRIVATE:
1013			/*
1014			 * Set pgoff according to addr for anon_vma.
1015			 */
1016			pgoff = addr >> PAGE_SHIFT;
1017			break;
1018		default:
1019			return -EINVAL;
1020		}
1021	}
1022
1023	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1024	if (error)
1025		return error;
1026
1027	return mmap_region(file, addr, len, flags, vm_flags, pgoff,
1028			   accountable);
1029}
1030EXPORT_SYMBOL(do_mmap_pgoff);
1031
1032/*
1033 * Some shared mappigns will want the pages marked read-only
1034 * to track write events. If so, we'll downgrade vm_page_prot
1035 * to the private version (using protection_map[] without the
1036 * VM_SHARED bit).
1037 */
1038int vma_wants_writenotify(struct vm_area_struct *vma)
1039{
1040	unsigned int vm_flags = vma->vm_flags;
1041
1042	/* If it was private or non-writable, the write bit is already clear */
1043	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1044		return 0;
1045
1046	/* The backer wishes to know when pages are first written to? */
1047	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1048		return 1;
1049
1050	/* The open routine did something to the protections already? */
1051	if (pgprot_val(vma->vm_page_prot) !=
1052	    pgprot_val(protection_map[vm_flags &
1053		    (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
1054		return 0;
1055
1056	/* Specialty mapping? */
1057	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1058		return 0;
1059
1060	/* Can the mapping track the dirty pages? */
1061	return vma->vm_file && vma->vm_file->f_mapping &&
1062		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1063}
1064
1065
1066unsigned long mmap_region(struct file *file, unsigned long addr,
1067			  unsigned long len, unsigned long flags,
1068			  unsigned int vm_flags, unsigned long pgoff,
1069			  int accountable)
1070{
1071	struct mm_struct *mm = current->mm;
1072	struct vm_area_struct *vma, *prev;
1073	int correct_wcount = 0;
1074	int error;
1075	struct rb_node **rb_link, *rb_parent;
1076	unsigned long charged = 0;
1077	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1078
1079	/* Clear old maps */
1080	error = -ENOMEM;
1081munmap_back:
1082	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1083	if (vma && vma->vm_start < addr + len) {
1084		if (do_munmap(mm, addr, len))
1085			return -ENOMEM;
1086		goto munmap_back;
1087	}
1088
1089	/* Check against address space limit. */
1090	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1091		return -ENOMEM;
1092
1093	if (accountable && (!(flags & MAP_NORESERVE) ||
1094			    sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1095		if (vm_flags & VM_SHARED) {
1096			/* Check memory availability in shmem_file_setup? */
1097			vm_flags |= VM_ACCOUNT;
1098		} else if (vm_flags & VM_WRITE) {
1099			/*
1100			 * Private writable mapping: check memory availability
1101			 */
1102			charged = len >> PAGE_SHIFT;
1103			if (security_vm_enough_memory(charged))
1104				return -ENOMEM;
1105			vm_flags |= VM_ACCOUNT;
1106		}
1107	}
1108
1109	/*
1110	 * Can we just expand an old private anonymous mapping?
1111	 * The VM_SHARED test is necessary because shmem_zero_setup
1112	 * will create the file object for a shared anonymous map below.
1113	 */
1114	if (!file && !(vm_flags & VM_SHARED) &&
1115	    vma_merge(mm, prev, addr, addr + len, vm_flags,
1116					NULL, NULL, pgoff, NULL))
1117		goto out;
1118
1119	/*
1120	 * Determine the object being mapped and call the appropriate
1121	 * specific mapper. the address has already been validated, but
1122	 * not unmapped, but the maps are removed from the list.
1123	 */
1124	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1125	if (!vma) {
1126		error = -ENOMEM;
1127		goto unacct_error;
1128	}
1129
1130	vma->vm_mm = mm;
1131	vma->vm_start = addr;
1132	vma->vm_end = addr + len;
1133	vma->vm_flags = vm_flags;
1134	vma->vm_page_prot = protection_map[vm_flags &
1135				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
1136	vma->vm_pgoff = pgoff;
1137
1138	if (file) {
1139		error = -EINVAL;
1140		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1141			goto free_vma;
1142		if (vm_flags & VM_DENYWRITE) {
1143			error = deny_write_access(file);
1144			if (error)
1145				goto free_vma;
1146			correct_wcount = 1;
1147		}
1148		vma->vm_file = file;
1149		get_file(file);
1150		error = file->f_op->mmap(file, vma);
1151		if (error)
1152			goto unmap_and_free_vma;
1153	} else if (vm_flags & VM_SHARED) {
1154		error = shmem_zero_setup(vma);
1155		if (error)
1156			goto free_vma;
1157	}
1158
1159	/* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1160	 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1161	 * that memory reservation must be checked; but that reservation
1162	 * belongs to shared memory object, not to vma: so now clear it.
1163	 */
1164	if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1165		vma->vm_flags &= ~VM_ACCOUNT;
1166
1167	/* Can addr have changed??
1168	 *
1169	 * Answer: Yes, several device drivers can do it in their
1170	 *         f_op->mmap method. -DaveM
1171	 */
1172	addr = vma->vm_start;
1173	pgoff = vma->vm_pgoff;
1174	vm_flags = vma->vm_flags;
1175
1176	if (vma_wants_writenotify(vma))
1177		vma->vm_page_prot =
1178			protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC)];
1179
1180	if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1181			vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1182		file = vma->vm_file;
1183		vma_link(mm, vma, prev, rb_link, rb_parent);
1184		if (correct_wcount)
1185			atomic_inc(&inode->i_writecount);
1186	} else {
1187		if (file) {
1188			if (correct_wcount)
1189				atomic_inc(&inode->i_writecount);
1190			fput(file);
1191		}
1192		mpol_free(vma_policy(vma));
1193		kmem_cache_free(vm_area_cachep, vma);
1194	}
1195out:
1196	mm->total_vm += len >> PAGE_SHIFT;
1197	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1198	if (vm_flags & VM_LOCKED) {
1199		mm->locked_vm += len >> PAGE_SHIFT;
1200		make_pages_present(addr, addr + len);
1201	}
1202	if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1203		make_pages_present(addr, addr + len);
1204	return addr;
1205
1206unmap_and_free_vma:
1207	if (correct_wcount)
1208		atomic_inc(&inode->i_writecount);
1209	vma->vm_file = NULL;
1210	fput(file);
1211
1212	/* Undo any partial mapping done by a device driver. */
1213	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1214	charged = 0;
1215free_vma:
1216	kmem_cache_free(vm_area_cachep, vma);
1217unacct_error:
1218	if (charged)
1219		vm_unacct_memory(charged);
1220	return error;
1221}
1222
1223/* Get an address range which is currently unmapped.
1224 * For shmat() with addr=0.
1225 *
1226 * Ugly calling convention alert:
1227 * Return value with the low bits set means error value,
1228 * ie
1229 *	if (ret & ~PAGE_MASK)
1230 *		error = ret;
1231 *
1232 * This function "knows" that -ENOMEM has the bits set.
1233 */
1234#ifndef HAVE_ARCH_UNMAPPED_AREA
1235unsigned long
1236arch_get_unmapped_area(struct file *filp, unsigned long addr,
1237		unsigned long len, unsigned long pgoff, unsigned long flags)
1238{
1239	struct mm_struct *mm = current->mm;
1240	struct vm_area_struct *vma;
1241	unsigned long start_addr;
1242
1243	if (len > TASK_SIZE)
1244		return -ENOMEM;
1245
1246	if (flags & MAP_FIXED)
1247		return addr;
1248
1249	if (addr) {
1250		addr = PAGE_ALIGN(addr);
1251		vma = find_vma(mm, addr);
1252		if (TASK_SIZE - len >= addr &&
1253		    (!vma || addr + len <= vma->vm_start))
1254			return addr;
1255	}
1256	if (len > mm->cached_hole_size) {
1257	        start_addr = addr = mm->free_area_cache;
1258	} else {
1259	        start_addr = addr = TASK_UNMAPPED_BASE;
1260	        mm->cached_hole_size = 0;
1261	}
1262
1263full_search:
1264	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1265		/* At this point:  (!vma || addr < vma->vm_end). */
1266		if (TASK_SIZE - len < addr) {
1267			/*
1268			 * Start a new search - just in case we missed
1269			 * some holes.
1270			 */
1271			if (start_addr != TASK_UNMAPPED_BASE) {
1272				addr = TASK_UNMAPPED_BASE;
1273			        start_addr = addr;
1274				mm->cached_hole_size = 0;
1275				goto full_search;
1276			}
1277			return -ENOMEM;
1278		}
1279		if (!vma || addr + len <= vma->vm_start) {
1280			/*
1281			 * Remember the place where we stopped the search:
1282			 */
1283			mm->free_area_cache = addr + len;
1284			return addr;
1285		}
1286		if (addr + mm->cached_hole_size < vma->vm_start)
1287		        mm->cached_hole_size = vma->vm_start - addr;
1288		addr = vma->vm_end;
1289	}
1290}
1291#endif
1292
1293void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1294{
1295	/*
1296	 * Is this a new hole at the lowest possible address?
1297	 */
1298	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1299		mm->free_area_cache = addr;
1300		mm->cached_hole_size = ~0UL;
1301	}
1302}
1303
1304/*
1305 * This mmap-allocator allocates new areas top-down from below the
1306 * stack's low limit (the base):
1307 */
1308#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1309unsigned long
1310arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1311			  const unsigned long len, const unsigned long pgoff,
1312			  const unsigned long flags)
1313{
1314	struct vm_area_struct *vma;
1315	struct mm_struct *mm = current->mm;
1316	unsigned long addr = addr0;
1317
1318	/* requested length too big for entire address space */
1319	if (len > TASK_SIZE)
1320		return -ENOMEM;
1321
1322	if (flags & MAP_FIXED)
1323		return addr;
1324
1325	/* requesting a specific address */
1326	if (addr) {
1327		addr = PAGE_ALIGN(addr);
1328		vma = find_vma(mm, addr);
1329		if (TASK_SIZE - len >= addr &&
1330				(!vma || addr + len <= vma->vm_start))
1331			return addr;
1332	}
1333
1334	/* check if free_area_cache is useful for us */
1335	if (len <= mm->cached_hole_size) {
1336 	        mm->cached_hole_size = 0;
1337 		mm->free_area_cache = mm->mmap_base;
1338 	}
1339
1340	/* either no address requested or can't fit in requested address hole */
1341	addr = mm->free_area_cache;
1342
1343	/* make sure it can fit in the remaining address space */
1344	if (addr > len) {
1345		vma = find_vma(mm, addr-len);
1346		if (!vma || addr <= vma->vm_start)
1347			/* remember the address as a hint for next time */
1348			return (mm->free_area_cache = addr-len);
1349	}
1350
1351	if (mm->mmap_base < len)
1352		goto bottomup;
1353
1354	addr = mm->mmap_base-len;
1355
1356	do {
1357		/*
1358		 * Lookup failure means no vma is above this address,
1359		 * else if new region fits below vma->vm_start,
1360		 * return with success:
1361		 */
1362		vma = find_vma(mm, addr);
1363		if (!vma || addr+len <= vma->vm_start)
1364			/* remember the address as a hint for next time */
1365			return (mm->free_area_cache = addr);
1366
1367 		/* remember the largest hole we saw so far */
1368 		if (addr + mm->cached_hole_size < vma->vm_start)
1369 		        mm->cached_hole_size = vma->vm_start - addr;
1370
1371		/* try just below the current vma->vm_start */
1372		addr = vma->vm_start-len;
1373	} while (len < vma->vm_start);
1374
1375bottomup:
1376	/*
1377	 * A failed mmap() very likely causes application failure,
1378	 * so fall back to the bottom-up function here. This scenario
1379	 * can happen with large stack limits and large mmap()
1380	 * allocations.
1381	 */
1382	mm->cached_hole_size = ~0UL;
1383  	mm->free_area_cache = TASK_UNMAPPED_BASE;
1384	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1385	/*
1386	 * Restore the topdown base:
1387	 */
1388	mm->free_area_cache = mm->mmap_base;
1389	mm->cached_hole_size = ~0UL;
1390
1391	return addr;
1392}
1393#endif
1394
1395void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1396{
1397	/*
1398	 * Is this a new hole at the highest possible address?
1399	 */
1400	if (addr > mm->free_area_cache)
1401		mm->free_area_cache = addr;
1402
1403	/* dont allow allocations above current base */
1404	if (mm->free_area_cache > mm->mmap_base)
1405		mm->free_area_cache = mm->mmap_base;
1406}
1407
1408unsigned long
1409get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1410		unsigned long pgoff, unsigned long flags)
1411{
1412	unsigned long (*get_area)(struct file *, unsigned long,
1413				  unsigned long, unsigned long, unsigned long);
1414
1415	get_area = current->mm->get_unmapped_area;
1416	if (file && file->f_op && file->f_op->get_unmapped_area)
1417		get_area = file->f_op->get_unmapped_area;
1418	addr = get_area(file, addr, len, pgoff, flags);
1419	if (IS_ERR_VALUE(addr))
1420		return addr;
1421
1422	if (addr > TASK_SIZE - len)
1423		return -ENOMEM;
1424	if (addr & ~PAGE_MASK)
1425		return -EINVAL;
1426
1427	return addr;
1428}
1429
1430EXPORT_SYMBOL(get_unmapped_area);
1431
1432/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1433struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1434{
1435	struct vm_area_struct *vma = NULL;
1436
1437	if (mm) {
1438		/* Check the cache first. */
1439		/* (Cache hit rate is typically around 35%.) */
1440		vma = mm->mmap_cache;
1441		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1442			struct rb_node * rb_node;
1443
1444			rb_node = mm->mm_rb.rb_node;
1445			vma = NULL;
1446
1447			while (rb_node) {
1448				struct vm_area_struct * vma_tmp;
1449
1450				vma_tmp = rb_entry(rb_node,
1451						struct vm_area_struct, vm_rb);
1452
1453				if (vma_tmp->vm_end > addr) {
1454					vma = vma_tmp;
1455					if (vma_tmp->vm_start <= addr)
1456						break;
1457					rb_node = rb_node->rb_left;
1458				} else
1459					rb_node = rb_node->rb_right;
1460			}
1461			if (vma)
1462				mm->mmap_cache = vma;
1463		}
1464	}
1465	return vma;
1466}
1467
1468EXPORT_SYMBOL(find_vma);
1469
1470/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1471struct vm_area_struct *
1472find_vma_prev(struct mm_struct *mm, unsigned long addr,
1473			struct vm_area_struct **pprev)
1474{
1475	struct vm_area_struct *vma = NULL, *prev = NULL;
1476	struct rb_node * rb_node;
1477	if (!mm)
1478		goto out;
1479
1480	/* Guard against addr being lower than the first VMA */
1481	vma = mm->mmap;
1482
1483	/* Go through the RB tree quickly. */
1484	rb_node = mm->mm_rb.rb_node;
1485
1486	while (rb_node) {
1487		struct vm_area_struct *vma_tmp;
1488		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1489
1490		if (addr < vma_tmp->vm_end) {
1491			rb_node = rb_node->rb_left;
1492		} else {
1493			prev = vma_tmp;
1494			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1495				break;
1496			rb_node = rb_node->rb_right;
1497		}
1498	}
1499
1500out:
1501	*pprev = prev;
1502	return prev ? prev->vm_next : vma;
1503}
1504
1505/*
1506 * Verify that the stack growth is acceptable and
1507 * update accounting. This is shared with both the
1508 * grow-up and grow-down cases.
1509 */
1510static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1511{
1512	struct mm_struct *mm = vma->vm_mm;
1513	struct rlimit *rlim = current->signal->rlim;
1514	unsigned long new_start;
1515
1516	/* address space limit tests */
1517	if (!may_expand_vm(mm, grow))
1518		return -ENOMEM;
1519
1520	/* Stack limit test */
1521	if (size > rlim[RLIMIT_STACK].rlim_cur)
1522		return -ENOMEM;
1523
1524	/* mlock limit tests */
1525	if (vma->vm_flags & VM_LOCKED) {
1526		unsigned long locked;
1527		unsigned long limit;
1528		locked = mm->locked_vm + grow;
1529		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1530		if (locked > limit && !capable(CAP_IPC_LOCK))
1531			return -ENOMEM;
1532	}
1533
1534	/* Check to ensure the stack will not grow into a hugetlb-only region */
1535	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1536			vma->vm_end - size;
1537	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1538		return -EFAULT;
1539
1540	/*
1541	 * Overcommit..  This must be the final test, as it will
1542	 * update security statistics.
1543	 */
1544	if (security_vm_enough_memory(grow))
1545		return -ENOMEM;
1546
1547	/* Ok, everything looks good - let it rip */
1548	mm->total_vm += grow;
1549	if (vma->vm_flags & VM_LOCKED)
1550		mm->locked_vm += grow;
1551	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1552	return 0;
1553}
1554
1555#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1556/*
1557 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1558 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1559 */
1560#ifndef CONFIG_IA64
1561static inline
1562#endif
1563int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1564{
1565	int error;
1566
1567	if (!(vma->vm_flags & VM_GROWSUP))
1568		return -EFAULT;
1569
1570	/*
1571	 * We must make sure the anon_vma is allocated
1572	 * so that the anon_vma locking is not a noop.
1573	 */
1574	if (unlikely(anon_vma_prepare(vma)))
1575		return -ENOMEM;
1576	anon_vma_lock(vma);
1577
1578	/*
1579	 * vma->vm_start/vm_end cannot change under us because the caller
1580	 * is required to hold the mmap_sem in read mode.  We need the
1581	 * anon_vma lock to serialize against concurrent expand_stacks.
1582	 * Also guard against wrapping around to address 0.
1583	 */
1584	if (address < PAGE_ALIGN(address+4))
1585		address = PAGE_ALIGN(address+4);
1586	else {
1587		anon_vma_unlock(vma);
1588		return -ENOMEM;
1589	}
1590	error = 0;
1591
1592	/* Somebody else might have raced and expanded it already */
1593	if (address > vma->vm_end) {
1594		unsigned long size, grow;
1595
1596		size = address - vma->vm_start;
1597		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1598
1599		error = acct_stack_growth(vma, size, grow);
1600		if (!error)
1601			vma->vm_end = address;
1602	}
1603	anon_vma_unlock(vma);
1604	return error;
1605}
1606#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1607
1608/*
1609 * vma is the first one with address < vma->vm_start.  Have to extend vma.
1610 */
1611static inline int expand_downwards(struct vm_area_struct *vma,
1612				   unsigned long address)
1613{
1614	int error;
1615
1616	/*
1617	 * We must make sure the anon_vma is allocated
1618	 * so that the anon_vma locking is not a noop.
1619	 */
1620	if (unlikely(anon_vma_prepare(vma)))
1621		return -ENOMEM;
1622	anon_vma_lock(vma);
1623
1624	/*
1625	 * vma->vm_start/vm_end cannot change under us because the caller
1626	 * is required to hold the mmap_sem in read mode.  We need the
1627	 * anon_vma lock to serialize against concurrent expand_stacks.
1628	 */
1629	address &= PAGE_MASK;
1630	error = 0;
1631
1632	/* Somebody else might have raced and expanded it already */
1633	if (address < vma->vm_start) {
1634		unsigned long size, grow;
1635
1636		size = vma->vm_end - address;
1637		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1638
1639		error = acct_stack_growth(vma, size, grow);
1640		if (!error) {
1641			vma->vm_start = address;
1642			vma->vm_pgoff -= grow;
1643		}
1644	}
1645	anon_vma_unlock(vma);
1646	return error;
1647}
1648
1649int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1650{
1651	return expand_downwards(vma, address);
1652}
1653
1654#ifdef CONFIG_STACK_GROWSUP
1655int expand_stack(struct vm_area_struct *vma, unsigned long address)
1656{
1657	return expand_upwards(vma, address);
1658}
1659
1660struct vm_area_struct *
1661find_extend_vma(struct mm_struct *mm, unsigned long addr)
1662{
1663	struct vm_area_struct *vma, *prev;
1664
1665	addr &= PAGE_MASK;
1666	vma = find_vma_prev(mm, addr, &prev);
1667	if (vma && (vma->vm_start <= addr))
1668		return vma;
1669	if (!prev || expand_stack(prev, addr))
1670		return NULL;
1671	if (prev->vm_flags & VM_LOCKED)
1672		make_pages_present(addr, prev->vm_end);
1673	return prev;
1674}
1675#else
1676int expand_stack(struct vm_area_struct *vma, unsigned long address)
1677{
1678	return expand_downwards(vma, address);
1679}
1680
1681struct vm_area_struct *
1682find_extend_vma(struct mm_struct * mm, unsigned long addr)
1683{
1684	struct vm_area_struct * vma;
1685	unsigned long start;
1686
1687	addr &= PAGE_MASK;
1688	vma = find_vma(mm,addr);
1689	if (!vma)
1690		return NULL;
1691	if (vma->vm_start <= addr)
1692		return vma;
1693	if (!(vma->vm_flags & VM_GROWSDOWN))
1694		return NULL;
1695	start = vma->vm_start;
1696	if (expand_stack(vma, addr))
1697		return NULL;
1698	if (vma->vm_flags & VM_LOCKED)
1699		make_pages_present(addr, start);
1700	return vma;
1701}
1702#endif
1703
1704/*
1705 * Ok - we have the memory areas we should free on the vma list,
1706 * so release them, and do the vma updates.
1707 *
1708 * Called with the mm semaphore held.
1709 */
1710static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1711{
1712	/* Update high watermark before we lower total_vm */
1713	update_hiwater_vm(mm);
1714	do {
1715		long nrpages = vma_pages(vma);
1716
1717		mm->total_vm -= nrpages;
1718		if (vma->vm_flags & VM_LOCKED)
1719			mm->locked_vm -= nrpages;
1720		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1721		vma = remove_vma(vma);
1722	} while (vma);
1723	validate_mm(mm);
1724}
1725
1726/*
1727 * Get rid of page table information in the indicated region.
1728 *
1729 * Called with the mm semaphore held.
1730 */
1731static void unmap_region(struct mm_struct *mm,
1732		struct vm_area_struct *vma, struct vm_area_struct *prev,
1733		unsigned long start, unsigned long end)
1734{
1735	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1736	struct mmu_gather *tlb;
1737	unsigned long nr_accounted = 0;
1738
1739	lru_add_drain();
1740	tlb = tlb_gather_mmu(mm, 0);
1741	update_hiwater_rss(mm);
1742	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1743	vm_unacct_memory(nr_accounted);
1744	free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1745				 next? next->vm_start: 0);
1746	tlb_finish_mmu(tlb, start, end);
1747}
1748
1749/*
1750 * Create a list of vma's touched by the unmap, removing them from the mm's
1751 * vma list as we go..
1752 */
1753static void
1754detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1755	struct vm_area_struct *prev, unsigned long end)
1756{
1757	struct vm_area_struct **insertion_point;
1758	struct vm_area_struct *tail_vma = NULL;
1759	unsigned long addr;
1760
1761	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1762	do {
1763		rb_erase(&vma->vm_rb, &mm->mm_rb);
1764		mm->map_count--;
1765		tail_vma = vma;
1766		vma = vma->vm_next;
1767	} while (vma && vma->vm_start < end);
1768	*insertion_point = vma;
1769	tail_vma->vm_next = NULL;
1770	if (mm->unmap_area == arch_unmap_area)
1771		addr = prev ? prev->vm_end : mm->mmap_base;
1772	else
1773		addr = vma ?  vma->vm_start : mm->mmap_base;
1774	mm->unmap_area(mm, addr);
1775	mm->mmap_cache = NULL;		/* Kill the cache. */
1776}
1777
1778/*
1779 * Split a vma into two pieces at address 'addr', a new vma is allocated
1780 * either for the first part or the tail.
1781 */
1782int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1783	      unsigned long addr, int new_below)
1784{
1785	struct mempolicy *pol;
1786	struct vm_area_struct *new;
1787
1788	if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1789		return -EINVAL;
1790
1791	if (mm->map_count >= sysctl_max_map_count)
1792		return -ENOMEM;
1793
1794	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1795	if (!new)
1796		return -ENOMEM;
1797
1798	/* most fields are the same, copy all, and then fixup */
1799	*new = *vma;
1800
1801	if (new_below)
1802		new->vm_end = addr;
1803	else {
1804		new->vm_start = addr;
1805		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1806	}
1807
1808	pol = mpol_copy(vma_policy(vma));
1809	if (IS_ERR(pol)) {
1810		kmem_cache_free(vm_area_cachep, new);
1811		return PTR_ERR(pol);
1812	}
1813	vma_set_policy(new, pol);
1814
1815	if (new->vm_file)
1816		get_file(new->vm_file);
1817
1818	if (new->vm_ops && new->vm_ops->open)
1819		new->vm_ops->open(new);
1820
1821	if (new_below)
1822		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1823			((addr - new->vm_start) >> PAGE_SHIFT), new);
1824	else
1825		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1826
1827	return 0;
1828}
1829
1830/* Munmap is split into 2 main parts -- this part which finds
1831 * what needs doing, and the areas themselves, which do the
1832 * work.  This now handles partial unmappings.
1833 * Jeremy Fitzhardinge <jeremy@goop.org>
1834 */
1835int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1836{
1837	unsigned long end;
1838	struct vm_area_struct *vma, *prev, *last;
1839
1840	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1841		return -EINVAL;
1842
1843	if ((len = PAGE_ALIGN(len)) == 0)
1844		return -EINVAL;
1845
1846	/* Find the first overlapping VMA */
1847	vma = find_vma_prev(mm, start, &prev);
1848	if (!vma)
1849		return 0;
1850	/* we have  start < vma->vm_end  */
1851
1852	/* if it doesn't overlap, we have nothing.. */
1853	end = start + len;
1854	if (vma->vm_start >= end)
1855		return 0;
1856
1857	/*
1858	 * If we need to split any vma, do it now to save pain later.
1859	 *
1860	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1861	 * unmapped vm_area_struct will remain in use: so lower split_vma
1862	 * places tmp vma above, and higher split_vma places tmp vma below.
1863	 */
1864	if (start > vma->vm_start) {
1865		int error = split_vma(mm, vma, start, 0);
1866		if (error)
1867			return error;
1868		prev = vma;
1869	}
1870
1871	/* Does it split the last one? */
1872	last = find_vma(mm, end);
1873	if (last && end > last->vm_start) {
1874		int error = split_vma(mm, last, end, 1);
1875		if (error)
1876			return error;
1877	}
1878	vma = prev? prev->vm_next: mm->mmap;
1879
1880	/*
1881	 * Remove the vma's, and unmap the actual pages
1882	 */
1883	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1884	unmap_region(mm, vma, prev, start, end);
1885
1886	/* Fix up all other VM information */
1887	remove_vma_list(mm, vma);
1888
1889	return 0;
1890}
1891
1892EXPORT_SYMBOL(do_munmap);
1893
1894asmlinkage long sys_munmap(unsigned long addr, size_t len)
1895{
1896	int ret;
1897	struct mm_struct *mm = current->mm;
1898
1899	profile_munmap(addr);
1900
1901	down_write(&mm->mmap_sem);
1902	ret = do_munmap(mm, addr, len);
1903	up_write(&mm->mmap_sem);
1904	return ret;
1905}
1906
1907static inline void verify_mm_writelocked(struct mm_struct *mm)
1908{
1909#ifdef CONFIG_DEBUG_VM
1910	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1911		WARN_ON(1);
1912		up_read(&mm->mmap_sem);
1913	}
1914#endif
1915}
1916
1917/*
1918 *  this is really a simplified "do_mmap".  it only handles
1919 *  anonymous maps.  eventually we may be able to do some
1920 *  brk-specific accounting here.
1921 */
1922unsigned long do_brk(unsigned long addr, unsigned long len)
1923{
1924	struct mm_struct * mm = current->mm;
1925	struct vm_area_struct * vma, * prev;
1926	unsigned long flags;
1927	struct rb_node ** rb_link, * rb_parent;
1928	pgoff_t pgoff = addr >> PAGE_SHIFT;
1929	int error;
1930
1931	len = PAGE_ALIGN(len);
1932	if (!len)
1933		return addr;
1934
1935	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1936		return -EINVAL;
1937
1938	if (is_hugepage_only_range(mm, addr, len))
1939		return -EINVAL;
1940
1941	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1942
1943	error = arch_mmap_check(addr, len, flags);
1944	if (error)
1945		return error;
1946
1947	/*
1948	 * mlock MCL_FUTURE?
1949	 */
1950	if (mm->def_flags & VM_LOCKED) {
1951		unsigned long locked, lock_limit;
1952		locked = len >> PAGE_SHIFT;
1953		locked += mm->locked_vm;
1954		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1955		lock_limit >>= PAGE_SHIFT;
1956		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1957			return -EAGAIN;
1958	}
1959
1960	/*
1961	 * mm->mmap_sem is required to protect against another thread
1962	 * changing the mappings in case we sleep.
1963	 */
1964	verify_mm_writelocked(mm);
1965
1966	/*
1967	 * Clear old maps.  this also does some error checking for us
1968	 */
1969 munmap_back:
1970	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1971	if (vma && vma->vm_start < addr + len) {
1972		if (do_munmap(mm, addr, len))
1973			return -ENOMEM;
1974		goto munmap_back;
1975	}
1976
1977	/* Check against address space limits *after* clearing old maps... */
1978	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1979		return -ENOMEM;
1980
1981	if (mm->map_count > sysctl_max_map_count)
1982		return -ENOMEM;
1983
1984	if (security_vm_enough_memory(len >> PAGE_SHIFT))
1985		return -ENOMEM;
1986
1987	/* Can we just expand an old private anonymous mapping? */
1988	if (vma_merge(mm, prev, addr, addr + len, flags,
1989					NULL, NULL, pgoff, NULL))
1990		goto out;
1991
1992	/*
1993	 * create a vma struct for an anonymous mapping
1994	 */
1995	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1996	if (!vma) {
1997		vm_unacct_memory(len >> PAGE_SHIFT);
1998		return -ENOMEM;
1999	}
2000
2001	vma->vm_mm = mm;
2002	vma->vm_start = addr;
2003	vma->vm_end = addr + len;
2004	vma->vm_pgoff = pgoff;
2005	vma->vm_flags = flags;
2006	vma->vm_page_prot = protection_map[flags &
2007				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
2008	vma_link(mm, vma, prev, rb_link, rb_parent);
2009out:
2010	mm->total_vm += len >> PAGE_SHIFT;
2011	if (flags & VM_LOCKED) {
2012		mm->locked_vm += len >> PAGE_SHIFT;
2013		make_pages_present(addr, addr + len);
2014	}
2015	return addr;
2016}
2017
2018EXPORT_SYMBOL(do_brk);
2019
2020/* Release all mmaps. */
2021void exit_mmap(struct mm_struct *mm)
2022{
2023	struct mmu_gather *tlb;
2024	struct vm_area_struct *vma = mm->mmap;
2025	unsigned long nr_accounted = 0;
2026	unsigned long end;
2027
2028	/* mm's last user has gone, and its about to be pulled down */
2029	arch_exit_mmap(mm);
2030
2031	lru_add_drain();
2032	flush_cache_mm(mm);
2033	tlb = tlb_gather_mmu(mm, 1);
2034	/* Don't update_hiwater_rss(mm) here, do_exit already did */
2035	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2036	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2037	vm_unacct_memory(nr_accounted);
2038	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2039	tlb_finish_mmu(tlb, 0, end);
2040
2041	/*
2042	 * Walk the list again, actually closing and freeing it,
2043	 * with preemption enabled, without holding any MM locks.
2044	 */
2045	while (vma)
2046		vma = remove_vma(vma);
2047
2048	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2049}
2050
2051/* Insert vm structure into process list sorted by address
2052 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2053 * then i_mmap_lock is taken here.
2054 */
2055int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2056{
2057	struct vm_area_struct * __vma, * prev;
2058	struct rb_node ** rb_link, * rb_parent;
2059
2060	/*
2061	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2062	 * until its first write fault, when page's anon_vma and index
2063	 * are set.  But now set the vm_pgoff it will almost certainly
2064	 * end up with (unless mremap moves it elsewhere before that
2065	 * first wfault), so /proc/pid/maps tells a consistent story.
2066	 *
2067	 * By setting it to reflect the virtual start address of the
2068	 * vma, merges and splits can happen in a seamless way, just
2069	 * using the existing file pgoff checks and manipulations.
2070	 * Similarly in do_mmap_pgoff and in do_brk.
2071	 */
2072	if (!vma->vm_file) {
2073		BUG_ON(vma->anon_vma);
2074		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2075	}
2076	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2077	if (__vma && __vma->vm_start < vma->vm_end)
2078		return -ENOMEM;
2079	if ((vma->vm_flags & VM_ACCOUNT) &&
2080	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2081		return -ENOMEM;
2082	vma_link(mm, vma, prev, rb_link, rb_parent);
2083	return 0;
2084}
2085
2086/*
2087 * Copy the vma structure to a new location in the same mm,
2088 * prior to moving page table entries, to effect an mremap move.
2089 */
2090struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2091	unsigned long addr, unsigned long len, pgoff_t pgoff)
2092{
2093	struct vm_area_struct *vma = *vmap;
2094	unsigned long vma_start = vma->vm_start;
2095	struct mm_struct *mm = vma->vm_mm;
2096	struct vm_area_struct *new_vma, *prev;
2097	struct rb_node **rb_link, *rb_parent;
2098	struct mempolicy *pol;
2099
2100	/*
2101	 * If anonymous vma has not yet been faulted, update new pgoff
2102	 * to match new location, to increase its chance of merging.
2103	 */
2104	if (!vma->vm_file && !vma->anon_vma)
2105		pgoff = addr >> PAGE_SHIFT;
2106
2107	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2108	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2109			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2110	if (new_vma) {
2111		/*
2112		 * Source vma may have been merged into new_vma
2113		 */
2114		if (vma_start >= new_vma->vm_start &&
2115		    vma_start < new_vma->vm_end)
2116			*vmap = new_vma;
2117	} else {
2118		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2119		if (new_vma) {
2120			*new_vma = *vma;
2121			pol = mpol_copy(vma_policy(vma));
2122			if (IS_ERR(pol)) {
2123				kmem_cache_free(vm_area_cachep, new_vma);
2124				return NULL;
2125			}
2126			vma_set_policy(new_vma, pol);
2127			new_vma->vm_start = addr;
2128			new_vma->vm_end = addr + len;
2129			new_vma->vm_pgoff = pgoff;
2130			if (new_vma->vm_file)
2131				get_file(new_vma->vm_file);
2132			if (new_vma->vm_ops && new_vma->vm_ops->open)
2133				new_vma->vm_ops->open(new_vma);
2134			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2135		}
2136	}
2137	return new_vma;
2138}
2139
2140/*
2141 * Return true if the calling process may expand its vm space by the passed
2142 * number of pages
2143 */
2144int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2145{
2146	unsigned long cur = mm->total_vm;	/* pages */
2147	unsigned long lim;
2148
2149	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2150
2151	if (cur + npages > lim)
2152		return 0;
2153	return 1;
2154}
2155
2156
2157static struct page *special_mapping_nopage(struct vm_area_struct *vma,
2158					   unsigned long address, int *type)
2159{
2160	struct page **pages;
2161
2162	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2163
2164	address -= vma->vm_start;
2165	for (pages = vma->vm_private_data; address > 0 && *pages; ++pages)
2166		address -= PAGE_SIZE;
2167
2168	if (*pages) {
2169		struct page *page = *pages;
2170		get_page(page);
2171		return page;
2172	}
2173
2174	return NOPAGE_SIGBUS;
2175}
2176
2177/*
2178 * Having a close hook prevents vma merging regardless of flags.
2179 */
2180static void special_mapping_close(struct vm_area_struct *vma)
2181{
2182}
2183
2184static struct vm_operations_struct special_mapping_vmops = {
2185	.close = special_mapping_close,
2186	.nopage	= special_mapping_nopage,
2187};
2188
2189/*
2190 * Called with mm->mmap_sem held for writing.
2191 * Insert a new vma covering the given region, with the given flags.
2192 * Its pages are supplied by the given array of struct page *.
2193 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2194 * The region past the last page supplied will always produce SIGBUS.
2195 * The array pointer and the pages it points to are assumed to stay alive
2196 * for as long as this mapping might exist.
2197 */
2198int install_special_mapping(struct mm_struct *mm,
2199			    unsigned long addr, unsigned long len,
2200			    unsigned long vm_flags, struct page **pages)
2201{
2202	struct vm_area_struct *vma;
2203
2204	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2205	if (unlikely(vma == NULL))
2206		return -ENOMEM;
2207
2208	vma->vm_mm = mm;
2209	vma->vm_start = addr;
2210	vma->vm_end = addr + len;
2211
2212	vma->vm_flags = vm_flags | mm->def_flags;
2213	vma->vm_page_prot = protection_map[vma->vm_flags & 7];
2214
2215	vma->vm_ops = &special_mapping_vmops;
2216	vma->vm_private_data = pages;
2217
2218	if (unlikely(insert_vm_struct(mm, vma))) {
2219		kmem_cache_free(vm_area_cachep, vma);
2220		return -ENOMEM;
2221	}
2222
2223	mm->total_vm += len >> PAGE_SHIFT;
2224
2225	return 0;
2226}
2227