mmap.c revision 3ed75eb8f1cd89565966599c4f77d2edb086d5b0
1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code	<alan@redhat.com>
7 */
8
9#include <linux/slab.h>
10#include <linux/backing-dev.h>
11#include <linux/mm.h>
12#include <linux/shm.h>
13#include <linux/mman.h>
14#include <linux/pagemap.h>
15#include <linux/swap.h>
16#include <linux/syscalls.h>
17#include <linux/capability.h>
18#include <linux/init.h>
19#include <linux/file.h>
20#include <linux/fs.h>
21#include <linux/personality.h>
22#include <linux/security.h>
23#include <linux/hugetlb.h>
24#include <linux/profile.h>
25#include <linux/module.h>
26#include <linux/mount.h>
27#include <linux/mempolicy.h>
28#include <linux/rmap.h>
29
30#include <asm/uaccess.h>
31#include <asm/cacheflush.h>
32#include <asm/tlb.h>
33#include <asm/mmu_context.h>
34
35#ifndef arch_mmap_check
36#define arch_mmap_check(addr, len, flags)	(0)
37#endif
38
39static void unmap_region(struct mm_struct *mm,
40		struct vm_area_struct *vma, struct vm_area_struct *prev,
41		unsigned long start, unsigned long end);
42
43/*
44 * WARNING: the debugging will use recursive algorithms so never enable this
45 * unless you know what you are doing.
46 */
47#undef DEBUG_MM_RB
48
49/* description of effects of mapping type and prot in current implementation.
50 * this is due to the limited x86 page protection hardware.  The expected
51 * behavior is in parens:
52 *
53 * map_type	prot
54 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
55 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
56 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
57 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
58 *
59 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
60 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
61 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
62 *
63 */
64pgprot_t protection_map[16] = {
65	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
66	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
67};
68
69pgprot_t vm_get_page_prot(unsigned long vm_flags)
70{
71	return protection_map[vm_flags &
72				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
73}
74EXPORT_SYMBOL(vm_get_page_prot);
75
76int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
77int sysctl_overcommit_ratio = 50;	/* default is 50% */
78int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
79atomic_t vm_committed_space = ATOMIC_INIT(0);
80
81/*
82 * Check that a process has enough memory to allocate a new virtual
83 * mapping. 0 means there is enough memory for the allocation to
84 * succeed and -ENOMEM implies there is not.
85 *
86 * We currently support three overcommit policies, which are set via the
87 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
88 *
89 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
90 * Additional code 2002 Jul 20 by Robert Love.
91 *
92 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
93 *
94 * Note this is a helper function intended to be used by LSMs which
95 * wish to use this logic.
96 */
97int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
98{
99	unsigned long free, allowed;
100
101	vm_acct_memory(pages);
102
103	/*
104	 * Sometimes we want to use more memory than we have
105	 */
106	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
107		return 0;
108
109	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
110		unsigned long n;
111
112		free = global_page_state(NR_FILE_PAGES);
113		free += nr_swap_pages;
114
115		/*
116		 * Any slabs which are created with the
117		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
118		 * which are reclaimable, under pressure.  The dentry
119		 * cache and most inode caches should fall into this
120		 */
121		free += global_page_state(NR_SLAB_RECLAIMABLE);
122
123		/*
124		 * Leave the last 3% for root
125		 */
126		if (!cap_sys_admin)
127			free -= free / 32;
128
129		if (free > pages)
130			return 0;
131
132		/*
133		 * nr_free_pages() is very expensive on large systems,
134		 * only call if we're about to fail.
135		 */
136		n = nr_free_pages();
137
138		/*
139		 * Leave reserved pages. The pages are not for anonymous pages.
140		 */
141		if (n <= totalreserve_pages)
142			goto error;
143		else
144			n -= totalreserve_pages;
145
146		/*
147		 * Leave the last 3% for root
148		 */
149		if (!cap_sys_admin)
150			n -= n / 32;
151		free += n;
152
153		if (free > pages)
154			return 0;
155
156		goto error;
157	}
158
159	allowed = (totalram_pages - hugetlb_total_pages())
160	       	* sysctl_overcommit_ratio / 100;
161	/*
162	 * Leave the last 3% for root
163	 */
164	if (!cap_sys_admin)
165		allowed -= allowed / 32;
166	allowed += total_swap_pages;
167
168	/* Don't let a single process grow too big:
169	   leave 3% of the size of this process for other processes */
170	allowed -= mm->total_vm / 32;
171
172	/*
173	 * cast `allowed' as a signed long because vm_committed_space
174	 * sometimes has a negative value
175	 */
176	if (atomic_read(&vm_committed_space) < (long)allowed)
177		return 0;
178error:
179	vm_unacct_memory(pages);
180
181	return -ENOMEM;
182}
183
184/*
185 * Requires inode->i_mapping->i_mmap_lock
186 */
187static void __remove_shared_vm_struct(struct vm_area_struct *vma,
188		struct file *file, struct address_space *mapping)
189{
190	if (vma->vm_flags & VM_DENYWRITE)
191		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
192	if (vma->vm_flags & VM_SHARED)
193		mapping->i_mmap_writable--;
194
195	flush_dcache_mmap_lock(mapping);
196	if (unlikely(vma->vm_flags & VM_NONLINEAR))
197		list_del_init(&vma->shared.vm_set.list);
198	else
199		vma_prio_tree_remove(vma, &mapping->i_mmap);
200	flush_dcache_mmap_unlock(mapping);
201}
202
203/*
204 * Unlink a file-based vm structure from its prio_tree, to hide
205 * vma from rmap and vmtruncate before freeing its page tables.
206 */
207void unlink_file_vma(struct vm_area_struct *vma)
208{
209	struct file *file = vma->vm_file;
210
211	if (file) {
212		struct address_space *mapping = file->f_mapping;
213		spin_lock(&mapping->i_mmap_lock);
214		__remove_shared_vm_struct(vma, file, mapping);
215		spin_unlock(&mapping->i_mmap_lock);
216	}
217}
218
219/*
220 * Close a vm structure and free it, returning the next.
221 */
222static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
223{
224	struct vm_area_struct *next = vma->vm_next;
225
226	might_sleep();
227	if (vma->vm_ops && vma->vm_ops->close)
228		vma->vm_ops->close(vma);
229	if (vma->vm_file)
230		fput(vma->vm_file);
231	mpol_free(vma_policy(vma));
232	kmem_cache_free(vm_area_cachep, vma);
233	return next;
234}
235
236asmlinkage unsigned long sys_brk(unsigned long brk)
237{
238	unsigned long rlim, retval;
239	unsigned long newbrk, oldbrk;
240	struct mm_struct *mm = current->mm;
241
242	down_write(&mm->mmap_sem);
243
244	if (brk < mm->end_code)
245		goto out;
246
247	/*
248	 * Check against rlimit here. If this check is done later after the test
249	 * of oldbrk with newbrk then it can escape the test and let the data
250	 * segment grow beyond its set limit the in case where the limit is
251	 * not page aligned -Ram Gupta
252	 */
253	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
254	if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
255		goto out;
256
257	newbrk = PAGE_ALIGN(brk);
258	oldbrk = PAGE_ALIGN(mm->brk);
259	if (oldbrk == newbrk)
260		goto set_brk;
261
262	/* Always allow shrinking brk. */
263	if (brk <= mm->brk) {
264		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
265			goto set_brk;
266		goto out;
267	}
268
269	/* Check against existing mmap mappings. */
270	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
271		goto out;
272
273	/* Ok, looks good - let it rip. */
274	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
275		goto out;
276set_brk:
277	mm->brk = brk;
278out:
279	retval = mm->brk;
280	up_write(&mm->mmap_sem);
281	return retval;
282}
283
284#ifdef DEBUG_MM_RB
285static int browse_rb(struct rb_root *root)
286{
287	int i = 0, j;
288	struct rb_node *nd, *pn = NULL;
289	unsigned long prev = 0, pend = 0;
290
291	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
292		struct vm_area_struct *vma;
293		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
294		if (vma->vm_start < prev)
295			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
296		if (vma->vm_start < pend)
297			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
298		if (vma->vm_start > vma->vm_end)
299			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
300		i++;
301		pn = nd;
302		prev = vma->vm_start;
303		pend = vma->vm_end;
304	}
305	j = 0;
306	for (nd = pn; nd; nd = rb_prev(nd)) {
307		j++;
308	}
309	if (i != j)
310		printk("backwards %d, forwards %d\n", j, i), i = 0;
311	return i;
312}
313
314void validate_mm(struct mm_struct *mm)
315{
316	int bug = 0;
317	int i = 0;
318	struct vm_area_struct *tmp = mm->mmap;
319	while (tmp) {
320		tmp = tmp->vm_next;
321		i++;
322	}
323	if (i != mm->map_count)
324		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
325	i = browse_rb(&mm->mm_rb);
326	if (i != mm->map_count)
327		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
328	BUG_ON(bug);
329}
330#else
331#define validate_mm(mm) do { } while (0)
332#endif
333
334static struct vm_area_struct *
335find_vma_prepare(struct mm_struct *mm, unsigned long addr,
336		struct vm_area_struct **pprev, struct rb_node ***rb_link,
337		struct rb_node ** rb_parent)
338{
339	struct vm_area_struct * vma;
340	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
341
342	__rb_link = &mm->mm_rb.rb_node;
343	rb_prev = __rb_parent = NULL;
344	vma = NULL;
345
346	while (*__rb_link) {
347		struct vm_area_struct *vma_tmp;
348
349		__rb_parent = *__rb_link;
350		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
351
352		if (vma_tmp->vm_end > addr) {
353			vma = vma_tmp;
354			if (vma_tmp->vm_start <= addr)
355				return vma;
356			__rb_link = &__rb_parent->rb_left;
357		} else {
358			rb_prev = __rb_parent;
359			__rb_link = &__rb_parent->rb_right;
360		}
361	}
362
363	*pprev = NULL;
364	if (rb_prev)
365		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
366	*rb_link = __rb_link;
367	*rb_parent = __rb_parent;
368	return vma;
369}
370
371static inline void
372__vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
373		struct vm_area_struct *prev, struct rb_node *rb_parent)
374{
375	if (prev) {
376		vma->vm_next = prev->vm_next;
377		prev->vm_next = vma;
378	} else {
379		mm->mmap = vma;
380		if (rb_parent)
381			vma->vm_next = rb_entry(rb_parent,
382					struct vm_area_struct, vm_rb);
383		else
384			vma->vm_next = NULL;
385	}
386}
387
388void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
389		struct rb_node **rb_link, struct rb_node *rb_parent)
390{
391	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
392	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
393}
394
395static inline void __vma_link_file(struct vm_area_struct *vma)
396{
397	struct file * file;
398
399	file = vma->vm_file;
400	if (file) {
401		struct address_space *mapping = file->f_mapping;
402
403		if (vma->vm_flags & VM_DENYWRITE)
404			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
405		if (vma->vm_flags & VM_SHARED)
406			mapping->i_mmap_writable++;
407
408		flush_dcache_mmap_lock(mapping);
409		if (unlikely(vma->vm_flags & VM_NONLINEAR))
410			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
411		else
412			vma_prio_tree_insert(vma, &mapping->i_mmap);
413		flush_dcache_mmap_unlock(mapping);
414	}
415}
416
417static void
418__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
419	struct vm_area_struct *prev, struct rb_node **rb_link,
420	struct rb_node *rb_parent)
421{
422	__vma_link_list(mm, vma, prev, rb_parent);
423	__vma_link_rb(mm, vma, rb_link, rb_parent);
424	__anon_vma_link(vma);
425}
426
427static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
428			struct vm_area_struct *prev, struct rb_node **rb_link,
429			struct rb_node *rb_parent)
430{
431	struct address_space *mapping = NULL;
432
433	if (vma->vm_file)
434		mapping = vma->vm_file->f_mapping;
435
436	if (mapping) {
437		spin_lock(&mapping->i_mmap_lock);
438		vma->vm_truncate_count = mapping->truncate_count;
439	}
440	anon_vma_lock(vma);
441
442	__vma_link(mm, vma, prev, rb_link, rb_parent);
443	__vma_link_file(vma);
444
445	anon_vma_unlock(vma);
446	if (mapping)
447		spin_unlock(&mapping->i_mmap_lock);
448
449	mm->map_count++;
450	validate_mm(mm);
451}
452
453/*
454 * Helper for vma_adjust in the split_vma insert case:
455 * insert vm structure into list and rbtree and anon_vma,
456 * but it has already been inserted into prio_tree earlier.
457 */
458static void
459__insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
460{
461	struct vm_area_struct * __vma, * prev;
462	struct rb_node ** rb_link, * rb_parent;
463
464	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
465	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
466	__vma_link(mm, vma, prev, rb_link, rb_parent);
467	mm->map_count++;
468}
469
470static inline void
471__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
472		struct vm_area_struct *prev)
473{
474	prev->vm_next = vma->vm_next;
475	rb_erase(&vma->vm_rb, &mm->mm_rb);
476	if (mm->mmap_cache == vma)
477		mm->mmap_cache = prev;
478}
479
480/*
481 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
482 * is already present in an i_mmap tree without adjusting the tree.
483 * The following helper function should be used when such adjustments
484 * are necessary.  The "insert" vma (if any) is to be inserted
485 * before we drop the necessary locks.
486 */
487void vma_adjust(struct vm_area_struct *vma, unsigned long start,
488	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
489{
490	struct mm_struct *mm = vma->vm_mm;
491	struct vm_area_struct *next = vma->vm_next;
492	struct vm_area_struct *importer = NULL;
493	struct address_space *mapping = NULL;
494	struct prio_tree_root *root = NULL;
495	struct file *file = vma->vm_file;
496	struct anon_vma *anon_vma = NULL;
497	long adjust_next = 0;
498	int remove_next = 0;
499
500	if (next && !insert) {
501		if (end >= next->vm_end) {
502			/*
503			 * vma expands, overlapping all the next, and
504			 * perhaps the one after too (mprotect case 6).
505			 */
506again:			remove_next = 1 + (end > next->vm_end);
507			end = next->vm_end;
508			anon_vma = next->anon_vma;
509			importer = vma;
510		} else if (end > next->vm_start) {
511			/*
512			 * vma expands, overlapping part of the next:
513			 * mprotect case 5 shifting the boundary up.
514			 */
515			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
516			anon_vma = next->anon_vma;
517			importer = vma;
518		} else if (end < vma->vm_end) {
519			/*
520			 * vma shrinks, and !insert tells it's not
521			 * split_vma inserting another: so it must be
522			 * mprotect case 4 shifting the boundary down.
523			 */
524			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
525			anon_vma = next->anon_vma;
526			importer = next;
527		}
528	}
529
530	if (file) {
531		mapping = file->f_mapping;
532		if (!(vma->vm_flags & VM_NONLINEAR))
533			root = &mapping->i_mmap;
534		spin_lock(&mapping->i_mmap_lock);
535		if (importer &&
536		    vma->vm_truncate_count != next->vm_truncate_count) {
537			/*
538			 * unmap_mapping_range might be in progress:
539			 * ensure that the expanding vma is rescanned.
540			 */
541			importer->vm_truncate_count = 0;
542		}
543		if (insert) {
544			insert->vm_truncate_count = vma->vm_truncate_count;
545			/*
546			 * Put into prio_tree now, so instantiated pages
547			 * are visible to arm/parisc __flush_dcache_page
548			 * throughout; but we cannot insert into address
549			 * space until vma start or end is updated.
550			 */
551			__vma_link_file(insert);
552		}
553	}
554
555	/*
556	 * When changing only vma->vm_end, we don't really need
557	 * anon_vma lock: but is that case worth optimizing out?
558	 */
559	if (vma->anon_vma)
560		anon_vma = vma->anon_vma;
561	if (anon_vma) {
562		spin_lock(&anon_vma->lock);
563		/*
564		 * Easily overlooked: when mprotect shifts the boundary,
565		 * make sure the expanding vma has anon_vma set if the
566		 * shrinking vma had, to cover any anon pages imported.
567		 */
568		if (importer && !importer->anon_vma) {
569			importer->anon_vma = anon_vma;
570			__anon_vma_link(importer);
571		}
572	}
573
574	if (root) {
575		flush_dcache_mmap_lock(mapping);
576		vma_prio_tree_remove(vma, root);
577		if (adjust_next)
578			vma_prio_tree_remove(next, root);
579	}
580
581	vma->vm_start = start;
582	vma->vm_end = end;
583	vma->vm_pgoff = pgoff;
584	if (adjust_next) {
585		next->vm_start += adjust_next << PAGE_SHIFT;
586		next->vm_pgoff += adjust_next;
587	}
588
589	if (root) {
590		if (adjust_next)
591			vma_prio_tree_insert(next, root);
592		vma_prio_tree_insert(vma, root);
593		flush_dcache_mmap_unlock(mapping);
594	}
595
596	if (remove_next) {
597		/*
598		 * vma_merge has merged next into vma, and needs
599		 * us to remove next before dropping the locks.
600		 */
601		__vma_unlink(mm, next, vma);
602		if (file)
603			__remove_shared_vm_struct(next, file, mapping);
604		if (next->anon_vma)
605			__anon_vma_merge(vma, next);
606	} else if (insert) {
607		/*
608		 * split_vma has split insert from vma, and needs
609		 * us to insert it before dropping the locks
610		 * (it may either follow vma or precede it).
611		 */
612		__insert_vm_struct(mm, insert);
613	}
614
615	if (anon_vma)
616		spin_unlock(&anon_vma->lock);
617	if (mapping)
618		spin_unlock(&mapping->i_mmap_lock);
619
620	if (remove_next) {
621		if (file)
622			fput(file);
623		mm->map_count--;
624		mpol_free(vma_policy(next));
625		kmem_cache_free(vm_area_cachep, next);
626		/*
627		 * In mprotect's case 6 (see comments on vma_merge),
628		 * we must remove another next too. It would clutter
629		 * up the code too much to do both in one go.
630		 */
631		if (remove_next == 2) {
632			next = vma->vm_next;
633			goto again;
634		}
635	}
636
637	validate_mm(mm);
638}
639
640/*
641 * If the vma has a ->close operation then the driver probably needs to release
642 * per-vma resources, so we don't attempt to merge those.
643 */
644#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
645
646static inline int is_mergeable_vma(struct vm_area_struct *vma,
647			struct file *file, unsigned long vm_flags)
648{
649	if (vma->vm_flags != vm_flags)
650		return 0;
651	if (vma->vm_file != file)
652		return 0;
653	if (vma->vm_ops && vma->vm_ops->close)
654		return 0;
655	return 1;
656}
657
658static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
659					struct anon_vma *anon_vma2)
660{
661	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
662}
663
664/*
665 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
666 * in front of (at a lower virtual address and file offset than) the vma.
667 *
668 * We cannot merge two vmas if they have differently assigned (non-NULL)
669 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
670 *
671 * We don't check here for the merged mmap wrapping around the end of pagecache
672 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
673 * wrap, nor mmaps which cover the final page at index -1UL.
674 */
675static int
676can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
677	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
678{
679	if (is_mergeable_vma(vma, file, vm_flags) &&
680	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
681		if (vma->vm_pgoff == vm_pgoff)
682			return 1;
683	}
684	return 0;
685}
686
687/*
688 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
689 * beyond (at a higher virtual address and file offset than) the vma.
690 *
691 * We cannot merge two vmas if they have differently assigned (non-NULL)
692 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
693 */
694static int
695can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
696	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
697{
698	if (is_mergeable_vma(vma, file, vm_flags) &&
699	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
700		pgoff_t vm_pglen;
701		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
702		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
703			return 1;
704	}
705	return 0;
706}
707
708/*
709 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
710 * whether that can be merged with its predecessor or its successor.
711 * Or both (it neatly fills a hole).
712 *
713 * In most cases - when called for mmap, brk or mremap - [addr,end) is
714 * certain not to be mapped by the time vma_merge is called; but when
715 * called for mprotect, it is certain to be already mapped (either at
716 * an offset within prev, or at the start of next), and the flags of
717 * this area are about to be changed to vm_flags - and the no-change
718 * case has already been eliminated.
719 *
720 * The following mprotect cases have to be considered, where AAAA is
721 * the area passed down from mprotect_fixup, never extending beyond one
722 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
723 *
724 *     AAAA             AAAA                AAAA          AAAA
725 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
726 *    cannot merge    might become    might become    might become
727 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
728 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
729 *    mremap move:                                    PPPPNNNNNNNN 8
730 *        AAAA
731 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
732 *    might become    case 1 below    case 2 below    case 3 below
733 *
734 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
735 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
736 */
737struct vm_area_struct *vma_merge(struct mm_struct *mm,
738			struct vm_area_struct *prev, unsigned long addr,
739			unsigned long end, unsigned long vm_flags,
740		     	struct anon_vma *anon_vma, struct file *file,
741			pgoff_t pgoff, struct mempolicy *policy)
742{
743	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
744	struct vm_area_struct *area, *next;
745
746	/*
747	 * We later require that vma->vm_flags == vm_flags,
748	 * so this tests vma->vm_flags & VM_SPECIAL, too.
749	 */
750	if (vm_flags & VM_SPECIAL)
751		return NULL;
752
753	if (prev)
754		next = prev->vm_next;
755	else
756		next = mm->mmap;
757	area = next;
758	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
759		next = next->vm_next;
760
761	/*
762	 * Can it merge with the predecessor?
763	 */
764	if (prev && prev->vm_end == addr &&
765  			mpol_equal(vma_policy(prev), policy) &&
766			can_vma_merge_after(prev, vm_flags,
767						anon_vma, file, pgoff)) {
768		/*
769		 * OK, it can.  Can we now merge in the successor as well?
770		 */
771		if (next && end == next->vm_start &&
772				mpol_equal(policy, vma_policy(next)) &&
773				can_vma_merge_before(next, vm_flags,
774					anon_vma, file, pgoff+pglen) &&
775				is_mergeable_anon_vma(prev->anon_vma,
776						      next->anon_vma)) {
777							/* cases 1, 6 */
778			vma_adjust(prev, prev->vm_start,
779				next->vm_end, prev->vm_pgoff, NULL);
780		} else					/* cases 2, 5, 7 */
781			vma_adjust(prev, prev->vm_start,
782				end, prev->vm_pgoff, NULL);
783		return prev;
784	}
785
786	/*
787	 * Can this new request be merged in front of next?
788	 */
789	if (next && end == next->vm_start &&
790 			mpol_equal(policy, vma_policy(next)) &&
791			can_vma_merge_before(next, vm_flags,
792					anon_vma, file, pgoff+pglen)) {
793		if (prev && addr < prev->vm_end)	/* case 4 */
794			vma_adjust(prev, prev->vm_start,
795				addr, prev->vm_pgoff, NULL);
796		else					/* cases 3, 8 */
797			vma_adjust(area, addr, next->vm_end,
798				next->vm_pgoff - pglen, NULL);
799		return area;
800	}
801
802	return NULL;
803}
804
805/*
806 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
807 * neighbouring vmas for a suitable anon_vma, before it goes off
808 * to allocate a new anon_vma.  It checks because a repetitive
809 * sequence of mprotects and faults may otherwise lead to distinct
810 * anon_vmas being allocated, preventing vma merge in subsequent
811 * mprotect.
812 */
813struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
814{
815	struct vm_area_struct *near;
816	unsigned long vm_flags;
817
818	near = vma->vm_next;
819	if (!near)
820		goto try_prev;
821
822	/*
823	 * Since only mprotect tries to remerge vmas, match flags
824	 * which might be mprotected into each other later on.
825	 * Neither mlock nor madvise tries to remerge at present,
826	 * so leave their flags as obstructing a merge.
827	 */
828	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
829	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
830
831	if (near->anon_vma && vma->vm_end == near->vm_start &&
832 			mpol_equal(vma_policy(vma), vma_policy(near)) &&
833			can_vma_merge_before(near, vm_flags,
834				NULL, vma->vm_file, vma->vm_pgoff +
835				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
836		return near->anon_vma;
837try_prev:
838	/*
839	 * It is potentially slow to have to call find_vma_prev here.
840	 * But it's only on the first write fault on the vma, not
841	 * every time, and we could devise a way to avoid it later
842	 * (e.g. stash info in next's anon_vma_node when assigning
843	 * an anon_vma, or when trying vma_merge).  Another time.
844	 */
845	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
846	if (!near)
847		goto none;
848
849	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
850	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
851
852	if (near->anon_vma && near->vm_end == vma->vm_start &&
853  			mpol_equal(vma_policy(near), vma_policy(vma)) &&
854			can_vma_merge_after(near, vm_flags,
855				NULL, vma->vm_file, vma->vm_pgoff))
856		return near->anon_vma;
857none:
858	/*
859	 * There's no absolute need to look only at touching neighbours:
860	 * we could search further afield for "compatible" anon_vmas.
861	 * But it would probably just be a waste of time searching,
862	 * or lead to too many vmas hanging off the same anon_vma.
863	 * We're trying to allow mprotect remerging later on,
864	 * not trying to minimize memory used for anon_vmas.
865	 */
866	return NULL;
867}
868
869#ifdef CONFIG_PROC_FS
870void vm_stat_account(struct mm_struct *mm, unsigned long flags,
871						struct file *file, long pages)
872{
873	const unsigned long stack_flags
874		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
875
876	if (file) {
877		mm->shared_vm += pages;
878		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
879			mm->exec_vm += pages;
880	} else if (flags & stack_flags)
881		mm->stack_vm += pages;
882	if (flags & (VM_RESERVED|VM_IO))
883		mm->reserved_vm += pages;
884}
885#endif /* CONFIG_PROC_FS */
886
887/*
888 * The caller must hold down_write(current->mm->mmap_sem).
889 */
890
891unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
892			unsigned long len, unsigned long prot,
893			unsigned long flags, unsigned long pgoff)
894{
895	struct mm_struct * mm = current->mm;
896	struct inode *inode;
897	unsigned int vm_flags;
898	int error;
899	int accountable = 1;
900	unsigned long reqprot = prot;
901
902	/*
903	 * Does the application expect PROT_READ to imply PROT_EXEC?
904	 *
905	 * (the exception is when the underlying filesystem is noexec
906	 *  mounted, in which case we dont add PROT_EXEC.)
907	 */
908	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
909		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
910			prot |= PROT_EXEC;
911
912	if (!len)
913		return -EINVAL;
914
915	error = arch_mmap_check(addr, len, flags);
916	if (error)
917		return error;
918
919	/* Careful about overflows.. */
920	len = PAGE_ALIGN(len);
921	if (!len || len > TASK_SIZE)
922		return -ENOMEM;
923
924	/* offset overflow? */
925	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
926               return -EOVERFLOW;
927
928	/* Too many mappings? */
929	if (mm->map_count > sysctl_max_map_count)
930		return -ENOMEM;
931
932	/* Obtain the address to map to. we verify (or select) it and ensure
933	 * that it represents a valid section of the address space.
934	 */
935	addr = get_unmapped_area(file, addr, len, pgoff, flags);
936	if (addr & ~PAGE_MASK)
937		return addr;
938
939	/* Do simple checking here so the lower-level routines won't have
940	 * to. we assume access permissions have been handled by the open
941	 * of the memory object, so we don't do any here.
942	 */
943	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
944			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
945
946	if (flags & MAP_LOCKED) {
947		if (!can_do_mlock())
948			return -EPERM;
949		vm_flags |= VM_LOCKED;
950	}
951	/* mlock MCL_FUTURE? */
952	if (vm_flags & VM_LOCKED) {
953		unsigned long locked, lock_limit;
954		locked = len >> PAGE_SHIFT;
955		locked += mm->locked_vm;
956		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
957		lock_limit >>= PAGE_SHIFT;
958		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
959			return -EAGAIN;
960	}
961
962	inode = file ? file->f_path.dentry->d_inode : NULL;
963
964	if (file) {
965		switch (flags & MAP_TYPE) {
966		case MAP_SHARED:
967			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
968				return -EACCES;
969
970			/*
971			 * Make sure we don't allow writing to an append-only
972			 * file..
973			 */
974			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
975				return -EACCES;
976
977			/*
978			 * Make sure there are no mandatory locks on the file.
979			 */
980			if (locks_verify_locked(inode))
981				return -EAGAIN;
982
983			vm_flags |= VM_SHARED | VM_MAYSHARE;
984			if (!(file->f_mode & FMODE_WRITE))
985				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
986
987			/* fall through */
988		case MAP_PRIVATE:
989			if (!(file->f_mode & FMODE_READ))
990				return -EACCES;
991			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
992				if (vm_flags & VM_EXEC)
993					return -EPERM;
994				vm_flags &= ~VM_MAYEXEC;
995			}
996			if (is_file_hugepages(file))
997				accountable = 0;
998
999			if (!file->f_op || !file->f_op->mmap)
1000				return -ENODEV;
1001			break;
1002
1003		default:
1004			return -EINVAL;
1005		}
1006	} else {
1007		switch (flags & MAP_TYPE) {
1008		case MAP_SHARED:
1009			vm_flags |= VM_SHARED | VM_MAYSHARE;
1010			break;
1011		case MAP_PRIVATE:
1012			/*
1013			 * Set pgoff according to addr for anon_vma.
1014			 */
1015			pgoff = addr >> PAGE_SHIFT;
1016			break;
1017		default:
1018			return -EINVAL;
1019		}
1020	}
1021
1022	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1023	if (error)
1024		return error;
1025
1026	return mmap_region(file, addr, len, flags, vm_flags, pgoff,
1027			   accountable);
1028}
1029EXPORT_SYMBOL(do_mmap_pgoff);
1030
1031/*
1032 * Some shared mappigns will want the pages marked read-only
1033 * to track write events. If so, we'll downgrade vm_page_prot
1034 * to the private version (using protection_map[] without the
1035 * VM_SHARED bit).
1036 */
1037int vma_wants_writenotify(struct vm_area_struct *vma)
1038{
1039	unsigned int vm_flags = vma->vm_flags;
1040
1041	/* If it was private or non-writable, the write bit is already clear */
1042	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1043		return 0;
1044
1045	/* The backer wishes to know when pages are first written to? */
1046	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1047		return 1;
1048
1049	/* The open routine did something to the protections already? */
1050	if (pgprot_val(vma->vm_page_prot) !=
1051	    pgprot_val(vm_get_page_prot(vm_flags)))
1052		return 0;
1053
1054	/* Specialty mapping? */
1055	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1056		return 0;
1057
1058	/* Can the mapping track the dirty pages? */
1059	return vma->vm_file && vma->vm_file->f_mapping &&
1060		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1061}
1062
1063
1064unsigned long mmap_region(struct file *file, unsigned long addr,
1065			  unsigned long len, unsigned long flags,
1066			  unsigned int vm_flags, unsigned long pgoff,
1067			  int accountable)
1068{
1069	struct mm_struct *mm = current->mm;
1070	struct vm_area_struct *vma, *prev;
1071	int correct_wcount = 0;
1072	int error;
1073	struct rb_node **rb_link, *rb_parent;
1074	unsigned long charged = 0;
1075	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1076
1077	/* Clear old maps */
1078	error = -ENOMEM;
1079munmap_back:
1080	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1081	if (vma && vma->vm_start < addr + len) {
1082		if (do_munmap(mm, addr, len))
1083			return -ENOMEM;
1084		goto munmap_back;
1085	}
1086
1087	/* Check against address space limit. */
1088	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1089		return -ENOMEM;
1090
1091	if (accountable && (!(flags & MAP_NORESERVE) ||
1092			    sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1093		if (vm_flags & VM_SHARED) {
1094			/* Check memory availability in shmem_file_setup? */
1095			vm_flags |= VM_ACCOUNT;
1096		} else if (vm_flags & VM_WRITE) {
1097			/*
1098			 * Private writable mapping: check memory availability
1099			 */
1100			charged = len >> PAGE_SHIFT;
1101			if (security_vm_enough_memory(charged))
1102				return -ENOMEM;
1103			vm_flags |= VM_ACCOUNT;
1104		}
1105	}
1106
1107	/*
1108	 * Can we just expand an old private anonymous mapping?
1109	 * The VM_SHARED test is necessary because shmem_zero_setup
1110	 * will create the file object for a shared anonymous map below.
1111	 */
1112	if (!file && !(vm_flags & VM_SHARED) &&
1113	    vma_merge(mm, prev, addr, addr + len, vm_flags,
1114					NULL, NULL, pgoff, NULL))
1115		goto out;
1116
1117	/*
1118	 * Determine the object being mapped and call the appropriate
1119	 * specific mapper. the address has already been validated, but
1120	 * not unmapped, but the maps are removed from the list.
1121	 */
1122	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1123	if (!vma) {
1124		error = -ENOMEM;
1125		goto unacct_error;
1126	}
1127
1128	vma->vm_mm = mm;
1129	vma->vm_start = addr;
1130	vma->vm_end = addr + len;
1131	vma->vm_flags = vm_flags;
1132	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1133	vma->vm_pgoff = pgoff;
1134
1135	if (file) {
1136		error = -EINVAL;
1137		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1138			goto free_vma;
1139		if (vm_flags & VM_DENYWRITE) {
1140			error = deny_write_access(file);
1141			if (error)
1142				goto free_vma;
1143			correct_wcount = 1;
1144		}
1145		vma->vm_file = file;
1146		get_file(file);
1147		error = file->f_op->mmap(file, vma);
1148		if (error)
1149			goto unmap_and_free_vma;
1150	} else if (vm_flags & VM_SHARED) {
1151		error = shmem_zero_setup(vma);
1152		if (error)
1153			goto free_vma;
1154	}
1155
1156	/* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1157	 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1158	 * that memory reservation must be checked; but that reservation
1159	 * belongs to shared memory object, not to vma: so now clear it.
1160	 */
1161	if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1162		vma->vm_flags &= ~VM_ACCOUNT;
1163
1164	/* Can addr have changed??
1165	 *
1166	 * Answer: Yes, several device drivers can do it in their
1167	 *         f_op->mmap method. -DaveM
1168	 */
1169	addr = vma->vm_start;
1170	pgoff = vma->vm_pgoff;
1171	vm_flags = vma->vm_flags;
1172
1173	if (vma_wants_writenotify(vma))
1174		vma->vm_page_prot =
1175			protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC)];
1176
1177	if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1178			vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1179		file = vma->vm_file;
1180		vma_link(mm, vma, prev, rb_link, rb_parent);
1181		if (correct_wcount)
1182			atomic_inc(&inode->i_writecount);
1183	} else {
1184		if (file) {
1185			if (correct_wcount)
1186				atomic_inc(&inode->i_writecount);
1187			fput(file);
1188		}
1189		mpol_free(vma_policy(vma));
1190		kmem_cache_free(vm_area_cachep, vma);
1191	}
1192out:
1193	mm->total_vm += len >> PAGE_SHIFT;
1194	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1195	if (vm_flags & VM_LOCKED) {
1196		mm->locked_vm += len >> PAGE_SHIFT;
1197		make_pages_present(addr, addr + len);
1198	}
1199	if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1200		make_pages_present(addr, addr + len);
1201	return addr;
1202
1203unmap_and_free_vma:
1204	if (correct_wcount)
1205		atomic_inc(&inode->i_writecount);
1206	vma->vm_file = NULL;
1207	fput(file);
1208
1209	/* Undo any partial mapping done by a device driver. */
1210	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1211	charged = 0;
1212free_vma:
1213	kmem_cache_free(vm_area_cachep, vma);
1214unacct_error:
1215	if (charged)
1216		vm_unacct_memory(charged);
1217	return error;
1218}
1219
1220/* Get an address range which is currently unmapped.
1221 * For shmat() with addr=0.
1222 *
1223 * Ugly calling convention alert:
1224 * Return value with the low bits set means error value,
1225 * ie
1226 *	if (ret & ~PAGE_MASK)
1227 *		error = ret;
1228 *
1229 * This function "knows" that -ENOMEM has the bits set.
1230 */
1231#ifndef HAVE_ARCH_UNMAPPED_AREA
1232unsigned long
1233arch_get_unmapped_area(struct file *filp, unsigned long addr,
1234		unsigned long len, unsigned long pgoff, unsigned long flags)
1235{
1236	struct mm_struct *mm = current->mm;
1237	struct vm_area_struct *vma;
1238	unsigned long start_addr;
1239
1240	if (len > TASK_SIZE)
1241		return -ENOMEM;
1242
1243	if (flags & MAP_FIXED)
1244		return addr;
1245
1246	if (addr) {
1247		addr = PAGE_ALIGN(addr);
1248		vma = find_vma(mm, addr);
1249		if (TASK_SIZE - len >= addr &&
1250		    (!vma || addr + len <= vma->vm_start))
1251			return addr;
1252	}
1253	if (len > mm->cached_hole_size) {
1254	        start_addr = addr = mm->free_area_cache;
1255	} else {
1256	        start_addr = addr = TASK_UNMAPPED_BASE;
1257	        mm->cached_hole_size = 0;
1258	}
1259
1260full_search:
1261	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1262		/* At this point:  (!vma || addr < vma->vm_end). */
1263		if (TASK_SIZE - len < addr) {
1264			/*
1265			 * Start a new search - just in case we missed
1266			 * some holes.
1267			 */
1268			if (start_addr != TASK_UNMAPPED_BASE) {
1269				addr = TASK_UNMAPPED_BASE;
1270			        start_addr = addr;
1271				mm->cached_hole_size = 0;
1272				goto full_search;
1273			}
1274			return -ENOMEM;
1275		}
1276		if (!vma || addr + len <= vma->vm_start) {
1277			/*
1278			 * Remember the place where we stopped the search:
1279			 */
1280			mm->free_area_cache = addr + len;
1281			return addr;
1282		}
1283		if (addr + mm->cached_hole_size < vma->vm_start)
1284		        mm->cached_hole_size = vma->vm_start - addr;
1285		addr = vma->vm_end;
1286	}
1287}
1288#endif
1289
1290void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1291{
1292	/*
1293	 * Is this a new hole at the lowest possible address?
1294	 */
1295	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1296		mm->free_area_cache = addr;
1297		mm->cached_hole_size = ~0UL;
1298	}
1299}
1300
1301/*
1302 * This mmap-allocator allocates new areas top-down from below the
1303 * stack's low limit (the base):
1304 */
1305#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1306unsigned long
1307arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1308			  const unsigned long len, const unsigned long pgoff,
1309			  const unsigned long flags)
1310{
1311	struct vm_area_struct *vma;
1312	struct mm_struct *mm = current->mm;
1313	unsigned long addr = addr0;
1314
1315	/* requested length too big for entire address space */
1316	if (len > TASK_SIZE)
1317		return -ENOMEM;
1318
1319	if (flags & MAP_FIXED)
1320		return addr;
1321
1322	/* requesting a specific address */
1323	if (addr) {
1324		addr = PAGE_ALIGN(addr);
1325		vma = find_vma(mm, addr);
1326		if (TASK_SIZE - len >= addr &&
1327				(!vma || addr + len <= vma->vm_start))
1328			return addr;
1329	}
1330
1331	/* check if free_area_cache is useful for us */
1332	if (len <= mm->cached_hole_size) {
1333 	        mm->cached_hole_size = 0;
1334 		mm->free_area_cache = mm->mmap_base;
1335 	}
1336
1337	/* either no address requested or can't fit in requested address hole */
1338	addr = mm->free_area_cache;
1339
1340	/* make sure it can fit in the remaining address space */
1341	if (addr > len) {
1342		vma = find_vma(mm, addr-len);
1343		if (!vma || addr <= vma->vm_start)
1344			/* remember the address as a hint for next time */
1345			return (mm->free_area_cache = addr-len);
1346	}
1347
1348	if (mm->mmap_base < len)
1349		goto bottomup;
1350
1351	addr = mm->mmap_base-len;
1352
1353	do {
1354		/*
1355		 * Lookup failure means no vma is above this address,
1356		 * else if new region fits below vma->vm_start,
1357		 * return with success:
1358		 */
1359		vma = find_vma(mm, addr);
1360		if (!vma || addr+len <= vma->vm_start)
1361			/* remember the address as a hint for next time */
1362			return (mm->free_area_cache = addr);
1363
1364 		/* remember the largest hole we saw so far */
1365 		if (addr + mm->cached_hole_size < vma->vm_start)
1366 		        mm->cached_hole_size = vma->vm_start - addr;
1367
1368		/* try just below the current vma->vm_start */
1369		addr = vma->vm_start-len;
1370	} while (len < vma->vm_start);
1371
1372bottomup:
1373	/*
1374	 * A failed mmap() very likely causes application failure,
1375	 * so fall back to the bottom-up function here. This scenario
1376	 * can happen with large stack limits and large mmap()
1377	 * allocations.
1378	 */
1379	mm->cached_hole_size = ~0UL;
1380  	mm->free_area_cache = TASK_UNMAPPED_BASE;
1381	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1382	/*
1383	 * Restore the topdown base:
1384	 */
1385	mm->free_area_cache = mm->mmap_base;
1386	mm->cached_hole_size = ~0UL;
1387
1388	return addr;
1389}
1390#endif
1391
1392void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1393{
1394	/*
1395	 * Is this a new hole at the highest possible address?
1396	 */
1397	if (addr > mm->free_area_cache)
1398		mm->free_area_cache = addr;
1399
1400	/* dont allow allocations above current base */
1401	if (mm->free_area_cache > mm->mmap_base)
1402		mm->free_area_cache = mm->mmap_base;
1403}
1404
1405unsigned long
1406get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1407		unsigned long pgoff, unsigned long flags)
1408{
1409	unsigned long (*get_area)(struct file *, unsigned long,
1410				  unsigned long, unsigned long, unsigned long);
1411
1412	get_area = current->mm->get_unmapped_area;
1413	if (file && file->f_op && file->f_op->get_unmapped_area)
1414		get_area = file->f_op->get_unmapped_area;
1415	addr = get_area(file, addr, len, pgoff, flags);
1416	if (IS_ERR_VALUE(addr))
1417		return addr;
1418
1419	if (addr > TASK_SIZE - len)
1420		return -ENOMEM;
1421	if (addr & ~PAGE_MASK)
1422		return -EINVAL;
1423
1424	return addr;
1425}
1426
1427EXPORT_SYMBOL(get_unmapped_area);
1428
1429/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1430struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1431{
1432	struct vm_area_struct *vma = NULL;
1433
1434	if (mm) {
1435		/* Check the cache first. */
1436		/* (Cache hit rate is typically around 35%.) */
1437		vma = mm->mmap_cache;
1438		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1439			struct rb_node * rb_node;
1440
1441			rb_node = mm->mm_rb.rb_node;
1442			vma = NULL;
1443
1444			while (rb_node) {
1445				struct vm_area_struct * vma_tmp;
1446
1447				vma_tmp = rb_entry(rb_node,
1448						struct vm_area_struct, vm_rb);
1449
1450				if (vma_tmp->vm_end > addr) {
1451					vma = vma_tmp;
1452					if (vma_tmp->vm_start <= addr)
1453						break;
1454					rb_node = rb_node->rb_left;
1455				} else
1456					rb_node = rb_node->rb_right;
1457			}
1458			if (vma)
1459				mm->mmap_cache = vma;
1460		}
1461	}
1462	return vma;
1463}
1464
1465EXPORT_SYMBOL(find_vma);
1466
1467/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1468struct vm_area_struct *
1469find_vma_prev(struct mm_struct *mm, unsigned long addr,
1470			struct vm_area_struct **pprev)
1471{
1472	struct vm_area_struct *vma = NULL, *prev = NULL;
1473	struct rb_node * rb_node;
1474	if (!mm)
1475		goto out;
1476
1477	/* Guard against addr being lower than the first VMA */
1478	vma = mm->mmap;
1479
1480	/* Go through the RB tree quickly. */
1481	rb_node = mm->mm_rb.rb_node;
1482
1483	while (rb_node) {
1484		struct vm_area_struct *vma_tmp;
1485		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1486
1487		if (addr < vma_tmp->vm_end) {
1488			rb_node = rb_node->rb_left;
1489		} else {
1490			prev = vma_tmp;
1491			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1492				break;
1493			rb_node = rb_node->rb_right;
1494		}
1495	}
1496
1497out:
1498	*pprev = prev;
1499	return prev ? prev->vm_next : vma;
1500}
1501
1502/*
1503 * Verify that the stack growth is acceptable and
1504 * update accounting. This is shared with both the
1505 * grow-up and grow-down cases.
1506 */
1507static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1508{
1509	struct mm_struct *mm = vma->vm_mm;
1510	struct rlimit *rlim = current->signal->rlim;
1511	unsigned long new_start;
1512
1513	/* address space limit tests */
1514	if (!may_expand_vm(mm, grow))
1515		return -ENOMEM;
1516
1517	/* Stack limit test */
1518	if (size > rlim[RLIMIT_STACK].rlim_cur)
1519		return -ENOMEM;
1520
1521	/* mlock limit tests */
1522	if (vma->vm_flags & VM_LOCKED) {
1523		unsigned long locked;
1524		unsigned long limit;
1525		locked = mm->locked_vm + grow;
1526		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1527		if (locked > limit && !capable(CAP_IPC_LOCK))
1528			return -ENOMEM;
1529	}
1530
1531	/* Check to ensure the stack will not grow into a hugetlb-only region */
1532	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1533			vma->vm_end - size;
1534	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1535		return -EFAULT;
1536
1537	/*
1538	 * Overcommit..  This must be the final test, as it will
1539	 * update security statistics.
1540	 */
1541	if (security_vm_enough_memory(grow))
1542		return -ENOMEM;
1543
1544	/* Ok, everything looks good - let it rip */
1545	mm->total_vm += grow;
1546	if (vma->vm_flags & VM_LOCKED)
1547		mm->locked_vm += grow;
1548	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1549	return 0;
1550}
1551
1552#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1553/*
1554 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1555 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1556 */
1557#ifndef CONFIG_IA64
1558static inline
1559#endif
1560int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1561{
1562	int error;
1563
1564	if (!(vma->vm_flags & VM_GROWSUP))
1565		return -EFAULT;
1566
1567	/*
1568	 * We must make sure the anon_vma is allocated
1569	 * so that the anon_vma locking is not a noop.
1570	 */
1571	if (unlikely(anon_vma_prepare(vma)))
1572		return -ENOMEM;
1573	anon_vma_lock(vma);
1574
1575	/*
1576	 * vma->vm_start/vm_end cannot change under us because the caller
1577	 * is required to hold the mmap_sem in read mode.  We need the
1578	 * anon_vma lock to serialize against concurrent expand_stacks.
1579	 * Also guard against wrapping around to address 0.
1580	 */
1581	if (address < PAGE_ALIGN(address+4))
1582		address = PAGE_ALIGN(address+4);
1583	else {
1584		anon_vma_unlock(vma);
1585		return -ENOMEM;
1586	}
1587	error = 0;
1588
1589	/* Somebody else might have raced and expanded it already */
1590	if (address > vma->vm_end) {
1591		unsigned long size, grow;
1592
1593		size = address - vma->vm_start;
1594		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1595
1596		error = acct_stack_growth(vma, size, grow);
1597		if (!error)
1598			vma->vm_end = address;
1599	}
1600	anon_vma_unlock(vma);
1601	return error;
1602}
1603#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1604
1605/*
1606 * vma is the first one with address < vma->vm_start.  Have to extend vma.
1607 */
1608static inline int expand_downwards(struct vm_area_struct *vma,
1609				   unsigned long address)
1610{
1611	int error;
1612
1613	/*
1614	 * We must make sure the anon_vma is allocated
1615	 * so that the anon_vma locking is not a noop.
1616	 */
1617	if (unlikely(anon_vma_prepare(vma)))
1618		return -ENOMEM;
1619	anon_vma_lock(vma);
1620
1621	/*
1622	 * vma->vm_start/vm_end cannot change under us because the caller
1623	 * is required to hold the mmap_sem in read mode.  We need the
1624	 * anon_vma lock to serialize against concurrent expand_stacks.
1625	 */
1626	address &= PAGE_MASK;
1627	error = 0;
1628
1629	/* Somebody else might have raced and expanded it already */
1630	if (address < vma->vm_start) {
1631		unsigned long size, grow;
1632
1633		size = vma->vm_end - address;
1634		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1635
1636		error = acct_stack_growth(vma, size, grow);
1637		if (!error) {
1638			vma->vm_start = address;
1639			vma->vm_pgoff -= grow;
1640		}
1641	}
1642	anon_vma_unlock(vma);
1643	return error;
1644}
1645
1646int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1647{
1648	return expand_downwards(vma, address);
1649}
1650
1651#ifdef CONFIG_STACK_GROWSUP
1652int expand_stack(struct vm_area_struct *vma, unsigned long address)
1653{
1654	return expand_upwards(vma, address);
1655}
1656
1657struct vm_area_struct *
1658find_extend_vma(struct mm_struct *mm, unsigned long addr)
1659{
1660	struct vm_area_struct *vma, *prev;
1661
1662	addr &= PAGE_MASK;
1663	vma = find_vma_prev(mm, addr, &prev);
1664	if (vma && (vma->vm_start <= addr))
1665		return vma;
1666	if (!prev || expand_stack(prev, addr))
1667		return NULL;
1668	if (prev->vm_flags & VM_LOCKED)
1669		make_pages_present(addr, prev->vm_end);
1670	return prev;
1671}
1672#else
1673int expand_stack(struct vm_area_struct *vma, unsigned long address)
1674{
1675	return expand_downwards(vma, address);
1676}
1677
1678struct vm_area_struct *
1679find_extend_vma(struct mm_struct * mm, unsigned long addr)
1680{
1681	struct vm_area_struct * vma;
1682	unsigned long start;
1683
1684	addr &= PAGE_MASK;
1685	vma = find_vma(mm,addr);
1686	if (!vma)
1687		return NULL;
1688	if (vma->vm_start <= addr)
1689		return vma;
1690	if (!(vma->vm_flags & VM_GROWSDOWN))
1691		return NULL;
1692	start = vma->vm_start;
1693	if (expand_stack(vma, addr))
1694		return NULL;
1695	if (vma->vm_flags & VM_LOCKED)
1696		make_pages_present(addr, start);
1697	return vma;
1698}
1699#endif
1700
1701/*
1702 * Ok - we have the memory areas we should free on the vma list,
1703 * so release them, and do the vma updates.
1704 *
1705 * Called with the mm semaphore held.
1706 */
1707static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1708{
1709	/* Update high watermark before we lower total_vm */
1710	update_hiwater_vm(mm);
1711	do {
1712		long nrpages = vma_pages(vma);
1713
1714		mm->total_vm -= nrpages;
1715		if (vma->vm_flags & VM_LOCKED)
1716			mm->locked_vm -= nrpages;
1717		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1718		vma = remove_vma(vma);
1719	} while (vma);
1720	validate_mm(mm);
1721}
1722
1723/*
1724 * Get rid of page table information in the indicated region.
1725 *
1726 * Called with the mm semaphore held.
1727 */
1728static void unmap_region(struct mm_struct *mm,
1729		struct vm_area_struct *vma, struct vm_area_struct *prev,
1730		unsigned long start, unsigned long end)
1731{
1732	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1733	struct mmu_gather *tlb;
1734	unsigned long nr_accounted = 0;
1735
1736	lru_add_drain();
1737	tlb = tlb_gather_mmu(mm, 0);
1738	update_hiwater_rss(mm);
1739	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1740	vm_unacct_memory(nr_accounted);
1741	free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1742				 next? next->vm_start: 0);
1743	tlb_finish_mmu(tlb, start, end);
1744}
1745
1746/*
1747 * Create a list of vma's touched by the unmap, removing them from the mm's
1748 * vma list as we go..
1749 */
1750static void
1751detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1752	struct vm_area_struct *prev, unsigned long end)
1753{
1754	struct vm_area_struct **insertion_point;
1755	struct vm_area_struct *tail_vma = NULL;
1756	unsigned long addr;
1757
1758	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1759	do {
1760		rb_erase(&vma->vm_rb, &mm->mm_rb);
1761		mm->map_count--;
1762		tail_vma = vma;
1763		vma = vma->vm_next;
1764	} while (vma && vma->vm_start < end);
1765	*insertion_point = vma;
1766	tail_vma->vm_next = NULL;
1767	if (mm->unmap_area == arch_unmap_area)
1768		addr = prev ? prev->vm_end : mm->mmap_base;
1769	else
1770		addr = vma ?  vma->vm_start : mm->mmap_base;
1771	mm->unmap_area(mm, addr);
1772	mm->mmap_cache = NULL;		/* Kill the cache. */
1773}
1774
1775/*
1776 * Split a vma into two pieces at address 'addr', a new vma is allocated
1777 * either for the first part or the tail.
1778 */
1779int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1780	      unsigned long addr, int new_below)
1781{
1782	struct mempolicy *pol;
1783	struct vm_area_struct *new;
1784
1785	if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1786		return -EINVAL;
1787
1788	if (mm->map_count >= sysctl_max_map_count)
1789		return -ENOMEM;
1790
1791	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1792	if (!new)
1793		return -ENOMEM;
1794
1795	/* most fields are the same, copy all, and then fixup */
1796	*new = *vma;
1797
1798	if (new_below)
1799		new->vm_end = addr;
1800	else {
1801		new->vm_start = addr;
1802		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1803	}
1804
1805	pol = mpol_copy(vma_policy(vma));
1806	if (IS_ERR(pol)) {
1807		kmem_cache_free(vm_area_cachep, new);
1808		return PTR_ERR(pol);
1809	}
1810	vma_set_policy(new, pol);
1811
1812	if (new->vm_file)
1813		get_file(new->vm_file);
1814
1815	if (new->vm_ops && new->vm_ops->open)
1816		new->vm_ops->open(new);
1817
1818	if (new_below)
1819		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1820			((addr - new->vm_start) >> PAGE_SHIFT), new);
1821	else
1822		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1823
1824	return 0;
1825}
1826
1827/* Munmap is split into 2 main parts -- this part which finds
1828 * what needs doing, and the areas themselves, which do the
1829 * work.  This now handles partial unmappings.
1830 * Jeremy Fitzhardinge <jeremy@goop.org>
1831 */
1832int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1833{
1834	unsigned long end;
1835	struct vm_area_struct *vma, *prev, *last;
1836
1837	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1838		return -EINVAL;
1839
1840	if ((len = PAGE_ALIGN(len)) == 0)
1841		return -EINVAL;
1842
1843	/* Find the first overlapping VMA */
1844	vma = find_vma_prev(mm, start, &prev);
1845	if (!vma)
1846		return 0;
1847	/* we have  start < vma->vm_end  */
1848
1849	/* if it doesn't overlap, we have nothing.. */
1850	end = start + len;
1851	if (vma->vm_start >= end)
1852		return 0;
1853
1854	/*
1855	 * If we need to split any vma, do it now to save pain later.
1856	 *
1857	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1858	 * unmapped vm_area_struct will remain in use: so lower split_vma
1859	 * places tmp vma above, and higher split_vma places tmp vma below.
1860	 */
1861	if (start > vma->vm_start) {
1862		int error = split_vma(mm, vma, start, 0);
1863		if (error)
1864			return error;
1865		prev = vma;
1866	}
1867
1868	/* Does it split the last one? */
1869	last = find_vma(mm, end);
1870	if (last && end > last->vm_start) {
1871		int error = split_vma(mm, last, end, 1);
1872		if (error)
1873			return error;
1874	}
1875	vma = prev? prev->vm_next: mm->mmap;
1876
1877	/*
1878	 * Remove the vma's, and unmap the actual pages
1879	 */
1880	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1881	unmap_region(mm, vma, prev, start, end);
1882
1883	/* Fix up all other VM information */
1884	remove_vma_list(mm, vma);
1885
1886	return 0;
1887}
1888
1889EXPORT_SYMBOL(do_munmap);
1890
1891asmlinkage long sys_munmap(unsigned long addr, size_t len)
1892{
1893	int ret;
1894	struct mm_struct *mm = current->mm;
1895
1896	profile_munmap(addr);
1897
1898	down_write(&mm->mmap_sem);
1899	ret = do_munmap(mm, addr, len);
1900	up_write(&mm->mmap_sem);
1901	return ret;
1902}
1903
1904static inline void verify_mm_writelocked(struct mm_struct *mm)
1905{
1906#ifdef CONFIG_DEBUG_VM
1907	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1908		WARN_ON(1);
1909		up_read(&mm->mmap_sem);
1910	}
1911#endif
1912}
1913
1914/*
1915 *  this is really a simplified "do_mmap".  it only handles
1916 *  anonymous maps.  eventually we may be able to do some
1917 *  brk-specific accounting here.
1918 */
1919unsigned long do_brk(unsigned long addr, unsigned long len)
1920{
1921	struct mm_struct * mm = current->mm;
1922	struct vm_area_struct * vma, * prev;
1923	unsigned long flags;
1924	struct rb_node ** rb_link, * rb_parent;
1925	pgoff_t pgoff = addr >> PAGE_SHIFT;
1926	int error;
1927
1928	len = PAGE_ALIGN(len);
1929	if (!len)
1930		return addr;
1931
1932	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1933		return -EINVAL;
1934
1935	if (is_hugepage_only_range(mm, addr, len))
1936		return -EINVAL;
1937
1938	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1939
1940	error = arch_mmap_check(addr, len, flags);
1941	if (error)
1942		return error;
1943
1944	/*
1945	 * mlock MCL_FUTURE?
1946	 */
1947	if (mm->def_flags & VM_LOCKED) {
1948		unsigned long locked, lock_limit;
1949		locked = len >> PAGE_SHIFT;
1950		locked += mm->locked_vm;
1951		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1952		lock_limit >>= PAGE_SHIFT;
1953		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1954			return -EAGAIN;
1955	}
1956
1957	/*
1958	 * mm->mmap_sem is required to protect against another thread
1959	 * changing the mappings in case we sleep.
1960	 */
1961	verify_mm_writelocked(mm);
1962
1963	/*
1964	 * Clear old maps.  this also does some error checking for us
1965	 */
1966 munmap_back:
1967	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1968	if (vma && vma->vm_start < addr + len) {
1969		if (do_munmap(mm, addr, len))
1970			return -ENOMEM;
1971		goto munmap_back;
1972	}
1973
1974	/* Check against address space limits *after* clearing old maps... */
1975	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1976		return -ENOMEM;
1977
1978	if (mm->map_count > sysctl_max_map_count)
1979		return -ENOMEM;
1980
1981	if (security_vm_enough_memory(len >> PAGE_SHIFT))
1982		return -ENOMEM;
1983
1984	/* Can we just expand an old private anonymous mapping? */
1985	if (vma_merge(mm, prev, addr, addr + len, flags,
1986					NULL, NULL, pgoff, NULL))
1987		goto out;
1988
1989	/*
1990	 * create a vma struct for an anonymous mapping
1991	 */
1992	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1993	if (!vma) {
1994		vm_unacct_memory(len >> PAGE_SHIFT);
1995		return -ENOMEM;
1996	}
1997
1998	vma->vm_mm = mm;
1999	vma->vm_start = addr;
2000	vma->vm_end = addr + len;
2001	vma->vm_pgoff = pgoff;
2002	vma->vm_flags = flags;
2003	vma->vm_page_prot = vm_get_page_prot(flags);
2004	vma_link(mm, vma, prev, rb_link, rb_parent);
2005out:
2006	mm->total_vm += len >> PAGE_SHIFT;
2007	if (flags & VM_LOCKED) {
2008		mm->locked_vm += len >> PAGE_SHIFT;
2009		make_pages_present(addr, addr + len);
2010	}
2011	return addr;
2012}
2013
2014EXPORT_SYMBOL(do_brk);
2015
2016/* Release all mmaps. */
2017void exit_mmap(struct mm_struct *mm)
2018{
2019	struct mmu_gather *tlb;
2020	struct vm_area_struct *vma = mm->mmap;
2021	unsigned long nr_accounted = 0;
2022	unsigned long end;
2023
2024	/* mm's last user has gone, and its about to be pulled down */
2025	arch_exit_mmap(mm);
2026
2027	lru_add_drain();
2028	flush_cache_mm(mm);
2029	tlb = tlb_gather_mmu(mm, 1);
2030	/* Don't update_hiwater_rss(mm) here, do_exit already did */
2031	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2032	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2033	vm_unacct_memory(nr_accounted);
2034	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2035	tlb_finish_mmu(tlb, 0, end);
2036
2037	/*
2038	 * Walk the list again, actually closing and freeing it,
2039	 * with preemption enabled, without holding any MM locks.
2040	 */
2041	while (vma)
2042		vma = remove_vma(vma);
2043
2044	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2045}
2046
2047/* Insert vm structure into process list sorted by address
2048 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2049 * then i_mmap_lock is taken here.
2050 */
2051int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2052{
2053	struct vm_area_struct * __vma, * prev;
2054	struct rb_node ** rb_link, * rb_parent;
2055
2056	/*
2057	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2058	 * until its first write fault, when page's anon_vma and index
2059	 * are set.  But now set the vm_pgoff it will almost certainly
2060	 * end up with (unless mremap moves it elsewhere before that
2061	 * first wfault), so /proc/pid/maps tells a consistent story.
2062	 *
2063	 * By setting it to reflect the virtual start address of the
2064	 * vma, merges and splits can happen in a seamless way, just
2065	 * using the existing file pgoff checks and manipulations.
2066	 * Similarly in do_mmap_pgoff and in do_brk.
2067	 */
2068	if (!vma->vm_file) {
2069		BUG_ON(vma->anon_vma);
2070		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2071	}
2072	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2073	if (__vma && __vma->vm_start < vma->vm_end)
2074		return -ENOMEM;
2075	if ((vma->vm_flags & VM_ACCOUNT) &&
2076	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2077		return -ENOMEM;
2078	vma_link(mm, vma, prev, rb_link, rb_parent);
2079	return 0;
2080}
2081
2082/*
2083 * Copy the vma structure to a new location in the same mm,
2084 * prior to moving page table entries, to effect an mremap move.
2085 */
2086struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2087	unsigned long addr, unsigned long len, pgoff_t pgoff)
2088{
2089	struct vm_area_struct *vma = *vmap;
2090	unsigned long vma_start = vma->vm_start;
2091	struct mm_struct *mm = vma->vm_mm;
2092	struct vm_area_struct *new_vma, *prev;
2093	struct rb_node **rb_link, *rb_parent;
2094	struct mempolicy *pol;
2095
2096	/*
2097	 * If anonymous vma has not yet been faulted, update new pgoff
2098	 * to match new location, to increase its chance of merging.
2099	 */
2100	if (!vma->vm_file && !vma->anon_vma)
2101		pgoff = addr >> PAGE_SHIFT;
2102
2103	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2104	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2105			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2106	if (new_vma) {
2107		/*
2108		 * Source vma may have been merged into new_vma
2109		 */
2110		if (vma_start >= new_vma->vm_start &&
2111		    vma_start < new_vma->vm_end)
2112			*vmap = new_vma;
2113	} else {
2114		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2115		if (new_vma) {
2116			*new_vma = *vma;
2117			pol = mpol_copy(vma_policy(vma));
2118			if (IS_ERR(pol)) {
2119				kmem_cache_free(vm_area_cachep, new_vma);
2120				return NULL;
2121			}
2122			vma_set_policy(new_vma, pol);
2123			new_vma->vm_start = addr;
2124			new_vma->vm_end = addr + len;
2125			new_vma->vm_pgoff = pgoff;
2126			if (new_vma->vm_file)
2127				get_file(new_vma->vm_file);
2128			if (new_vma->vm_ops && new_vma->vm_ops->open)
2129				new_vma->vm_ops->open(new_vma);
2130			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2131		}
2132	}
2133	return new_vma;
2134}
2135
2136/*
2137 * Return true if the calling process may expand its vm space by the passed
2138 * number of pages
2139 */
2140int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2141{
2142	unsigned long cur = mm->total_vm;	/* pages */
2143	unsigned long lim;
2144
2145	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2146
2147	if (cur + npages > lim)
2148		return 0;
2149	return 1;
2150}
2151
2152
2153static struct page *special_mapping_nopage(struct vm_area_struct *vma,
2154					   unsigned long address, int *type)
2155{
2156	struct page **pages;
2157
2158	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2159
2160	address -= vma->vm_start;
2161	for (pages = vma->vm_private_data; address > 0 && *pages; ++pages)
2162		address -= PAGE_SIZE;
2163
2164	if (*pages) {
2165		struct page *page = *pages;
2166		get_page(page);
2167		return page;
2168	}
2169
2170	return NOPAGE_SIGBUS;
2171}
2172
2173/*
2174 * Having a close hook prevents vma merging regardless of flags.
2175 */
2176static void special_mapping_close(struct vm_area_struct *vma)
2177{
2178}
2179
2180static struct vm_operations_struct special_mapping_vmops = {
2181	.close = special_mapping_close,
2182	.nopage	= special_mapping_nopage,
2183};
2184
2185/*
2186 * Called with mm->mmap_sem held for writing.
2187 * Insert a new vma covering the given region, with the given flags.
2188 * Its pages are supplied by the given array of struct page *.
2189 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2190 * The region past the last page supplied will always produce SIGBUS.
2191 * The array pointer and the pages it points to are assumed to stay alive
2192 * for as long as this mapping might exist.
2193 */
2194int install_special_mapping(struct mm_struct *mm,
2195			    unsigned long addr, unsigned long len,
2196			    unsigned long vm_flags, struct page **pages)
2197{
2198	struct vm_area_struct *vma;
2199
2200	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2201	if (unlikely(vma == NULL))
2202		return -ENOMEM;
2203
2204	vma->vm_mm = mm;
2205	vma->vm_start = addr;
2206	vma->vm_end = addr + len;
2207
2208	vma->vm_flags = vm_flags | mm->def_flags;
2209	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2210
2211	vma->vm_ops = &special_mapping_vmops;
2212	vma->vm_private_data = pages;
2213
2214	if (unlikely(insert_vm_struct(mm, vma))) {
2215		kmem_cache_free(vm_area_cachep, vma);
2216		return -ENOMEM;
2217	}
2218
2219	mm->total_vm += len >> PAGE_SHIFT;
2220
2221	return 0;
2222}
2223