mmap.c revision 4af3c9cc4fad54c3627e9afebf905aafde5690ed
1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code	<alan@redhat.com>
7 */
8
9#include <linux/slab.h>
10#include <linux/backing-dev.h>
11#include <linux/mm.h>
12#include <linux/shm.h>
13#include <linux/mman.h>
14#include <linux/pagemap.h>
15#include <linux/swap.h>
16#include <linux/syscalls.h>
17#include <linux/capability.h>
18#include <linux/init.h>
19#include <linux/file.h>
20#include <linux/fs.h>
21#include <linux/personality.h>
22#include <linux/security.h>
23#include <linux/hugetlb.h>
24#include <linux/profile.h>
25#include <linux/module.h>
26#include <linux/mount.h>
27#include <linux/mempolicy.h>
28#include <linux/rmap.h>
29
30#include <asm/uaccess.h>
31#include <asm/cacheflush.h>
32#include <asm/tlb.h>
33#include <asm/mmu_context.h>
34
35#ifndef arch_mmap_check
36#define arch_mmap_check(addr, len, flags)	(0)
37#endif
38
39static void unmap_region(struct mm_struct *mm,
40		struct vm_area_struct *vma, struct vm_area_struct *prev,
41		unsigned long start, unsigned long end);
42
43/*
44 * WARNING: the debugging will use recursive algorithms so never enable this
45 * unless you know what you are doing.
46 */
47#undef DEBUG_MM_RB
48
49/* description of effects of mapping type and prot in current implementation.
50 * this is due to the limited x86 page protection hardware.  The expected
51 * behavior is in parens:
52 *
53 * map_type	prot
54 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
55 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
56 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
57 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
58 *
59 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
60 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
61 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
62 *
63 */
64pgprot_t protection_map[16] = {
65	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
66	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
67};
68
69pgprot_t vm_get_page_prot(unsigned long vm_flags)
70{
71	return protection_map[vm_flags &
72				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
73}
74EXPORT_SYMBOL(vm_get_page_prot);
75
76int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
77int sysctl_overcommit_ratio = 50;	/* default is 50% */
78int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
79atomic_t vm_committed_space = ATOMIC_INIT(0);
80
81/*
82 * Check that a process has enough memory to allocate a new virtual
83 * mapping. 0 means there is enough memory for the allocation to
84 * succeed and -ENOMEM implies there is not.
85 *
86 * We currently support three overcommit policies, which are set via the
87 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
88 *
89 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
90 * Additional code 2002 Jul 20 by Robert Love.
91 *
92 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
93 *
94 * Note this is a helper function intended to be used by LSMs which
95 * wish to use this logic.
96 */
97int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
98{
99	unsigned long free, allowed;
100
101	vm_acct_memory(pages);
102
103	/*
104	 * Sometimes we want to use more memory than we have
105	 */
106	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
107		return 0;
108
109	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
110		unsigned long n;
111
112		free = global_page_state(NR_FILE_PAGES);
113		free += nr_swap_pages;
114
115		/*
116		 * Any slabs which are created with the
117		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
118		 * which are reclaimable, under pressure.  The dentry
119		 * cache and most inode caches should fall into this
120		 */
121		free += global_page_state(NR_SLAB_RECLAIMABLE);
122
123		/*
124		 * Leave the last 3% for root
125		 */
126		if (!cap_sys_admin)
127			free -= free / 32;
128
129		if (free > pages)
130			return 0;
131
132		/*
133		 * nr_free_pages() is very expensive on large systems,
134		 * only call if we're about to fail.
135		 */
136		n = nr_free_pages();
137
138		/*
139		 * Leave reserved pages. The pages are not for anonymous pages.
140		 */
141		if (n <= totalreserve_pages)
142			goto error;
143		else
144			n -= totalreserve_pages;
145
146		/*
147		 * Leave the last 3% for root
148		 */
149		if (!cap_sys_admin)
150			n -= n / 32;
151		free += n;
152
153		if (free > pages)
154			return 0;
155
156		goto error;
157	}
158
159	allowed = (totalram_pages - hugetlb_total_pages())
160	       	* sysctl_overcommit_ratio / 100;
161	/*
162	 * Leave the last 3% for root
163	 */
164	if (!cap_sys_admin)
165		allowed -= allowed / 32;
166	allowed += total_swap_pages;
167
168	/* Don't let a single process grow too big:
169	   leave 3% of the size of this process for other processes */
170	allowed -= mm->total_vm / 32;
171
172	/*
173	 * cast `allowed' as a signed long because vm_committed_space
174	 * sometimes has a negative value
175	 */
176	if (atomic_read(&vm_committed_space) < (long)allowed)
177		return 0;
178error:
179	vm_unacct_memory(pages);
180
181	return -ENOMEM;
182}
183
184EXPORT_SYMBOL(__vm_enough_memory);
185
186/*
187 * Requires inode->i_mapping->i_mmap_lock
188 */
189static void __remove_shared_vm_struct(struct vm_area_struct *vma,
190		struct file *file, struct address_space *mapping)
191{
192	if (vma->vm_flags & VM_DENYWRITE)
193		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
194	if (vma->vm_flags & VM_SHARED)
195		mapping->i_mmap_writable--;
196
197	flush_dcache_mmap_lock(mapping);
198	if (unlikely(vma->vm_flags & VM_NONLINEAR))
199		list_del_init(&vma->shared.vm_set.list);
200	else
201		vma_prio_tree_remove(vma, &mapping->i_mmap);
202	flush_dcache_mmap_unlock(mapping);
203}
204
205/*
206 * Unlink a file-based vm structure from its prio_tree, to hide
207 * vma from rmap and vmtruncate before freeing its page tables.
208 */
209void unlink_file_vma(struct vm_area_struct *vma)
210{
211	struct file *file = vma->vm_file;
212
213	if (file) {
214		struct address_space *mapping = file->f_mapping;
215		spin_lock(&mapping->i_mmap_lock);
216		__remove_shared_vm_struct(vma, file, mapping);
217		spin_unlock(&mapping->i_mmap_lock);
218	}
219}
220
221/*
222 * Close a vm structure and free it, returning the next.
223 */
224static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
225{
226	struct vm_area_struct *next = vma->vm_next;
227
228	might_sleep();
229	if (vma->vm_ops && vma->vm_ops->close)
230		vma->vm_ops->close(vma);
231	if (vma->vm_file)
232		fput(vma->vm_file);
233	mpol_free(vma_policy(vma));
234	kmem_cache_free(vm_area_cachep, vma);
235	return next;
236}
237
238asmlinkage unsigned long sys_brk(unsigned long brk)
239{
240	unsigned long rlim, retval;
241	unsigned long newbrk, oldbrk;
242	struct mm_struct *mm = current->mm;
243
244	down_write(&mm->mmap_sem);
245
246	if (brk < mm->end_code)
247		goto out;
248
249	/*
250	 * Check against rlimit here. If this check is done later after the test
251	 * of oldbrk with newbrk then it can escape the test and let the data
252	 * segment grow beyond its set limit the in case where the limit is
253	 * not page aligned -Ram Gupta
254	 */
255	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
256	if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
257		goto out;
258
259	newbrk = PAGE_ALIGN(brk);
260	oldbrk = PAGE_ALIGN(mm->brk);
261	if (oldbrk == newbrk)
262		goto set_brk;
263
264	/* Always allow shrinking brk. */
265	if (brk <= mm->brk) {
266		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
267			goto set_brk;
268		goto out;
269	}
270
271	/* Check against existing mmap mappings. */
272	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
273		goto out;
274
275	/* Ok, looks good - let it rip. */
276	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
277		goto out;
278set_brk:
279	mm->brk = brk;
280out:
281	retval = mm->brk;
282	up_write(&mm->mmap_sem);
283	return retval;
284}
285
286#ifdef DEBUG_MM_RB
287static int browse_rb(struct rb_root *root)
288{
289	int i = 0, j;
290	struct rb_node *nd, *pn = NULL;
291	unsigned long prev = 0, pend = 0;
292
293	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
294		struct vm_area_struct *vma;
295		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
296		if (vma->vm_start < prev)
297			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
298		if (vma->vm_start < pend)
299			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
300		if (vma->vm_start > vma->vm_end)
301			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
302		i++;
303		pn = nd;
304		prev = vma->vm_start;
305		pend = vma->vm_end;
306	}
307	j = 0;
308	for (nd = pn; nd; nd = rb_prev(nd)) {
309		j++;
310	}
311	if (i != j)
312		printk("backwards %d, forwards %d\n", j, i), i = 0;
313	return i;
314}
315
316void validate_mm(struct mm_struct *mm)
317{
318	int bug = 0;
319	int i = 0;
320	struct vm_area_struct *tmp = mm->mmap;
321	while (tmp) {
322		tmp = tmp->vm_next;
323		i++;
324	}
325	if (i != mm->map_count)
326		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
327	i = browse_rb(&mm->mm_rb);
328	if (i != mm->map_count)
329		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
330	BUG_ON(bug);
331}
332#else
333#define validate_mm(mm) do { } while (0)
334#endif
335
336static struct vm_area_struct *
337find_vma_prepare(struct mm_struct *mm, unsigned long addr,
338		struct vm_area_struct **pprev, struct rb_node ***rb_link,
339		struct rb_node ** rb_parent)
340{
341	struct vm_area_struct * vma;
342	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
343
344	__rb_link = &mm->mm_rb.rb_node;
345	rb_prev = __rb_parent = NULL;
346	vma = NULL;
347
348	while (*__rb_link) {
349		struct vm_area_struct *vma_tmp;
350
351		__rb_parent = *__rb_link;
352		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
353
354		if (vma_tmp->vm_end > addr) {
355			vma = vma_tmp;
356			if (vma_tmp->vm_start <= addr)
357				return vma;
358			__rb_link = &__rb_parent->rb_left;
359		} else {
360			rb_prev = __rb_parent;
361			__rb_link = &__rb_parent->rb_right;
362		}
363	}
364
365	*pprev = NULL;
366	if (rb_prev)
367		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
368	*rb_link = __rb_link;
369	*rb_parent = __rb_parent;
370	return vma;
371}
372
373static inline void
374__vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
375		struct vm_area_struct *prev, struct rb_node *rb_parent)
376{
377	if (prev) {
378		vma->vm_next = prev->vm_next;
379		prev->vm_next = vma;
380	} else {
381		mm->mmap = vma;
382		if (rb_parent)
383			vma->vm_next = rb_entry(rb_parent,
384					struct vm_area_struct, vm_rb);
385		else
386			vma->vm_next = NULL;
387	}
388}
389
390void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
391		struct rb_node **rb_link, struct rb_node *rb_parent)
392{
393	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
394	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
395}
396
397static inline void __vma_link_file(struct vm_area_struct *vma)
398{
399	struct file * file;
400
401	file = vma->vm_file;
402	if (file) {
403		struct address_space *mapping = file->f_mapping;
404
405		if (vma->vm_flags & VM_DENYWRITE)
406			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
407		if (vma->vm_flags & VM_SHARED)
408			mapping->i_mmap_writable++;
409
410		flush_dcache_mmap_lock(mapping);
411		if (unlikely(vma->vm_flags & VM_NONLINEAR))
412			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
413		else
414			vma_prio_tree_insert(vma, &mapping->i_mmap);
415		flush_dcache_mmap_unlock(mapping);
416	}
417}
418
419static void
420__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
421	struct vm_area_struct *prev, struct rb_node **rb_link,
422	struct rb_node *rb_parent)
423{
424	__vma_link_list(mm, vma, prev, rb_parent);
425	__vma_link_rb(mm, vma, rb_link, rb_parent);
426	__anon_vma_link(vma);
427}
428
429static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
430			struct vm_area_struct *prev, struct rb_node **rb_link,
431			struct rb_node *rb_parent)
432{
433	struct address_space *mapping = NULL;
434
435	if (vma->vm_file)
436		mapping = vma->vm_file->f_mapping;
437
438	if (mapping) {
439		spin_lock(&mapping->i_mmap_lock);
440		vma->vm_truncate_count = mapping->truncate_count;
441	}
442	anon_vma_lock(vma);
443
444	__vma_link(mm, vma, prev, rb_link, rb_parent);
445	__vma_link_file(vma);
446
447	anon_vma_unlock(vma);
448	if (mapping)
449		spin_unlock(&mapping->i_mmap_lock);
450
451	mm->map_count++;
452	validate_mm(mm);
453}
454
455/*
456 * Helper for vma_adjust in the split_vma insert case:
457 * insert vm structure into list and rbtree and anon_vma,
458 * but it has already been inserted into prio_tree earlier.
459 */
460static void
461__insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
462{
463	struct vm_area_struct * __vma, * prev;
464	struct rb_node ** rb_link, * rb_parent;
465
466	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
467	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
468	__vma_link(mm, vma, prev, rb_link, rb_parent);
469	mm->map_count++;
470}
471
472static inline void
473__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
474		struct vm_area_struct *prev)
475{
476	prev->vm_next = vma->vm_next;
477	rb_erase(&vma->vm_rb, &mm->mm_rb);
478	if (mm->mmap_cache == vma)
479		mm->mmap_cache = prev;
480}
481
482/*
483 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
484 * is already present in an i_mmap tree without adjusting the tree.
485 * The following helper function should be used when such adjustments
486 * are necessary.  The "insert" vma (if any) is to be inserted
487 * before we drop the necessary locks.
488 */
489void vma_adjust(struct vm_area_struct *vma, unsigned long start,
490	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
491{
492	struct mm_struct *mm = vma->vm_mm;
493	struct vm_area_struct *next = vma->vm_next;
494	struct vm_area_struct *importer = NULL;
495	struct address_space *mapping = NULL;
496	struct prio_tree_root *root = NULL;
497	struct file *file = vma->vm_file;
498	struct anon_vma *anon_vma = NULL;
499	long adjust_next = 0;
500	int remove_next = 0;
501
502	if (next && !insert) {
503		if (end >= next->vm_end) {
504			/*
505			 * vma expands, overlapping all the next, and
506			 * perhaps the one after too (mprotect case 6).
507			 */
508again:			remove_next = 1 + (end > next->vm_end);
509			end = next->vm_end;
510			anon_vma = next->anon_vma;
511			importer = vma;
512		} else if (end > next->vm_start) {
513			/*
514			 * vma expands, overlapping part of the next:
515			 * mprotect case 5 shifting the boundary up.
516			 */
517			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
518			anon_vma = next->anon_vma;
519			importer = vma;
520		} else if (end < vma->vm_end) {
521			/*
522			 * vma shrinks, and !insert tells it's not
523			 * split_vma inserting another: so it must be
524			 * mprotect case 4 shifting the boundary down.
525			 */
526			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
527			anon_vma = next->anon_vma;
528			importer = next;
529		}
530	}
531
532	if (file) {
533		mapping = file->f_mapping;
534		if (!(vma->vm_flags & VM_NONLINEAR))
535			root = &mapping->i_mmap;
536		spin_lock(&mapping->i_mmap_lock);
537		if (importer &&
538		    vma->vm_truncate_count != next->vm_truncate_count) {
539			/*
540			 * unmap_mapping_range might be in progress:
541			 * ensure that the expanding vma is rescanned.
542			 */
543			importer->vm_truncate_count = 0;
544		}
545		if (insert) {
546			insert->vm_truncate_count = vma->vm_truncate_count;
547			/*
548			 * Put into prio_tree now, so instantiated pages
549			 * are visible to arm/parisc __flush_dcache_page
550			 * throughout; but we cannot insert into address
551			 * space until vma start or end is updated.
552			 */
553			__vma_link_file(insert);
554		}
555	}
556
557	/*
558	 * When changing only vma->vm_end, we don't really need
559	 * anon_vma lock: but is that case worth optimizing out?
560	 */
561	if (vma->anon_vma)
562		anon_vma = vma->anon_vma;
563	if (anon_vma) {
564		spin_lock(&anon_vma->lock);
565		/*
566		 * Easily overlooked: when mprotect shifts the boundary,
567		 * make sure the expanding vma has anon_vma set if the
568		 * shrinking vma had, to cover any anon pages imported.
569		 */
570		if (importer && !importer->anon_vma) {
571			importer->anon_vma = anon_vma;
572			__anon_vma_link(importer);
573		}
574	}
575
576	if (root) {
577		flush_dcache_mmap_lock(mapping);
578		vma_prio_tree_remove(vma, root);
579		if (adjust_next)
580			vma_prio_tree_remove(next, root);
581	}
582
583	vma->vm_start = start;
584	vma->vm_end = end;
585	vma->vm_pgoff = pgoff;
586	if (adjust_next) {
587		next->vm_start += adjust_next << PAGE_SHIFT;
588		next->vm_pgoff += adjust_next;
589	}
590
591	if (root) {
592		if (adjust_next)
593			vma_prio_tree_insert(next, root);
594		vma_prio_tree_insert(vma, root);
595		flush_dcache_mmap_unlock(mapping);
596	}
597
598	if (remove_next) {
599		/*
600		 * vma_merge has merged next into vma, and needs
601		 * us to remove next before dropping the locks.
602		 */
603		__vma_unlink(mm, next, vma);
604		if (file)
605			__remove_shared_vm_struct(next, file, mapping);
606		if (next->anon_vma)
607			__anon_vma_merge(vma, next);
608	} else if (insert) {
609		/*
610		 * split_vma has split insert from vma, and needs
611		 * us to insert it before dropping the locks
612		 * (it may either follow vma or precede it).
613		 */
614		__insert_vm_struct(mm, insert);
615	}
616
617	if (anon_vma)
618		spin_unlock(&anon_vma->lock);
619	if (mapping)
620		spin_unlock(&mapping->i_mmap_lock);
621
622	if (remove_next) {
623		if (file)
624			fput(file);
625		mm->map_count--;
626		mpol_free(vma_policy(next));
627		kmem_cache_free(vm_area_cachep, next);
628		/*
629		 * In mprotect's case 6 (see comments on vma_merge),
630		 * we must remove another next too. It would clutter
631		 * up the code too much to do both in one go.
632		 */
633		if (remove_next == 2) {
634			next = vma->vm_next;
635			goto again;
636		}
637	}
638
639	validate_mm(mm);
640}
641
642/*
643 * If the vma has a ->close operation then the driver probably needs to release
644 * per-vma resources, so we don't attempt to merge those.
645 */
646#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
647
648static inline int is_mergeable_vma(struct vm_area_struct *vma,
649			struct file *file, unsigned long vm_flags)
650{
651	if (vma->vm_flags != vm_flags)
652		return 0;
653	if (vma->vm_file != file)
654		return 0;
655	if (vma->vm_ops && vma->vm_ops->close)
656		return 0;
657	return 1;
658}
659
660static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
661					struct anon_vma *anon_vma2)
662{
663	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
664}
665
666/*
667 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
668 * in front of (at a lower virtual address and file offset than) the vma.
669 *
670 * We cannot merge two vmas if they have differently assigned (non-NULL)
671 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
672 *
673 * We don't check here for the merged mmap wrapping around the end of pagecache
674 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
675 * wrap, nor mmaps which cover the final page at index -1UL.
676 */
677static int
678can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
679	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
680{
681	if (is_mergeable_vma(vma, file, vm_flags) &&
682	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
683		if (vma->vm_pgoff == vm_pgoff)
684			return 1;
685	}
686	return 0;
687}
688
689/*
690 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
691 * beyond (at a higher virtual address and file offset than) the vma.
692 *
693 * We cannot merge two vmas if they have differently assigned (non-NULL)
694 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
695 */
696static int
697can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
698	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
699{
700	if (is_mergeable_vma(vma, file, vm_flags) &&
701	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
702		pgoff_t vm_pglen;
703		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
704		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
705			return 1;
706	}
707	return 0;
708}
709
710/*
711 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
712 * whether that can be merged with its predecessor or its successor.
713 * Or both (it neatly fills a hole).
714 *
715 * In most cases - when called for mmap, brk or mremap - [addr,end) is
716 * certain not to be mapped by the time vma_merge is called; but when
717 * called for mprotect, it is certain to be already mapped (either at
718 * an offset within prev, or at the start of next), and the flags of
719 * this area are about to be changed to vm_flags - and the no-change
720 * case has already been eliminated.
721 *
722 * The following mprotect cases have to be considered, where AAAA is
723 * the area passed down from mprotect_fixup, never extending beyond one
724 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
725 *
726 *     AAAA             AAAA                AAAA          AAAA
727 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
728 *    cannot merge    might become    might become    might become
729 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
730 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
731 *    mremap move:                                    PPPPNNNNNNNN 8
732 *        AAAA
733 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
734 *    might become    case 1 below    case 2 below    case 3 below
735 *
736 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
737 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
738 */
739struct vm_area_struct *vma_merge(struct mm_struct *mm,
740			struct vm_area_struct *prev, unsigned long addr,
741			unsigned long end, unsigned long vm_flags,
742		     	struct anon_vma *anon_vma, struct file *file,
743			pgoff_t pgoff, struct mempolicy *policy)
744{
745	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
746	struct vm_area_struct *area, *next;
747
748	/*
749	 * We later require that vma->vm_flags == vm_flags,
750	 * so this tests vma->vm_flags & VM_SPECIAL, too.
751	 */
752	if (vm_flags & VM_SPECIAL)
753		return NULL;
754
755	if (prev)
756		next = prev->vm_next;
757	else
758		next = mm->mmap;
759	area = next;
760	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
761		next = next->vm_next;
762
763	/*
764	 * Can it merge with the predecessor?
765	 */
766	if (prev && prev->vm_end == addr &&
767  			mpol_equal(vma_policy(prev), policy) &&
768			can_vma_merge_after(prev, vm_flags,
769						anon_vma, file, pgoff)) {
770		/*
771		 * OK, it can.  Can we now merge in the successor as well?
772		 */
773		if (next && end == next->vm_start &&
774				mpol_equal(policy, vma_policy(next)) &&
775				can_vma_merge_before(next, vm_flags,
776					anon_vma, file, pgoff+pglen) &&
777				is_mergeable_anon_vma(prev->anon_vma,
778						      next->anon_vma)) {
779							/* cases 1, 6 */
780			vma_adjust(prev, prev->vm_start,
781				next->vm_end, prev->vm_pgoff, NULL);
782		} else					/* cases 2, 5, 7 */
783			vma_adjust(prev, prev->vm_start,
784				end, prev->vm_pgoff, NULL);
785		return prev;
786	}
787
788	/*
789	 * Can this new request be merged in front of next?
790	 */
791	if (next && end == next->vm_start &&
792 			mpol_equal(policy, vma_policy(next)) &&
793			can_vma_merge_before(next, vm_flags,
794					anon_vma, file, pgoff+pglen)) {
795		if (prev && addr < prev->vm_end)	/* case 4 */
796			vma_adjust(prev, prev->vm_start,
797				addr, prev->vm_pgoff, NULL);
798		else					/* cases 3, 8 */
799			vma_adjust(area, addr, next->vm_end,
800				next->vm_pgoff - pglen, NULL);
801		return area;
802	}
803
804	return NULL;
805}
806
807/*
808 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
809 * neighbouring vmas for a suitable anon_vma, before it goes off
810 * to allocate a new anon_vma.  It checks because a repetitive
811 * sequence of mprotects and faults may otherwise lead to distinct
812 * anon_vmas being allocated, preventing vma merge in subsequent
813 * mprotect.
814 */
815struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
816{
817	struct vm_area_struct *near;
818	unsigned long vm_flags;
819
820	near = vma->vm_next;
821	if (!near)
822		goto try_prev;
823
824	/*
825	 * Since only mprotect tries to remerge vmas, match flags
826	 * which might be mprotected into each other later on.
827	 * Neither mlock nor madvise tries to remerge at present,
828	 * so leave their flags as obstructing a merge.
829	 */
830	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
831	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
832
833	if (near->anon_vma && vma->vm_end == near->vm_start &&
834 			mpol_equal(vma_policy(vma), vma_policy(near)) &&
835			can_vma_merge_before(near, vm_flags,
836				NULL, vma->vm_file, vma->vm_pgoff +
837				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
838		return near->anon_vma;
839try_prev:
840	/*
841	 * It is potentially slow to have to call find_vma_prev here.
842	 * But it's only on the first write fault on the vma, not
843	 * every time, and we could devise a way to avoid it later
844	 * (e.g. stash info in next's anon_vma_node when assigning
845	 * an anon_vma, or when trying vma_merge).  Another time.
846	 */
847	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
848	if (!near)
849		goto none;
850
851	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
852	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
853
854	if (near->anon_vma && near->vm_end == vma->vm_start &&
855  			mpol_equal(vma_policy(near), vma_policy(vma)) &&
856			can_vma_merge_after(near, vm_flags,
857				NULL, vma->vm_file, vma->vm_pgoff))
858		return near->anon_vma;
859none:
860	/*
861	 * There's no absolute need to look only at touching neighbours:
862	 * we could search further afield for "compatible" anon_vmas.
863	 * But it would probably just be a waste of time searching,
864	 * or lead to too many vmas hanging off the same anon_vma.
865	 * We're trying to allow mprotect remerging later on,
866	 * not trying to minimize memory used for anon_vmas.
867	 */
868	return NULL;
869}
870
871#ifdef CONFIG_PROC_FS
872void vm_stat_account(struct mm_struct *mm, unsigned long flags,
873						struct file *file, long pages)
874{
875	const unsigned long stack_flags
876		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
877
878	if (file) {
879		mm->shared_vm += pages;
880		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
881			mm->exec_vm += pages;
882	} else if (flags & stack_flags)
883		mm->stack_vm += pages;
884	if (flags & (VM_RESERVED|VM_IO))
885		mm->reserved_vm += pages;
886}
887#endif /* CONFIG_PROC_FS */
888
889/*
890 * The caller must hold down_write(current->mm->mmap_sem).
891 */
892
893unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
894			unsigned long len, unsigned long prot,
895			unsigned long flags, unsigned long pgoff)
896{
897	struct mm_struct * mm = current->mm;
898	struct inode *inode;
899	unsigned int vm_flags;
900	int error;
901	int accountable = 1;
902	unsigned long reqprot = prot;
903
904	/*
905	 * Does the application expect PROT_READ to imply PROT_EXEC?
906	 *
907	 * (the exception is when the underlying filesystem is noexec
908	 *  mounted, in which case we dont add PROT_EXEC.)
909	 */
910	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
911		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
912			prot |= PROT_EXEC;
913
914	if (!len)
915		return -EINVAL;
916
917	error = arch_mmap_check(addr, len, flags);
918	if (error)
919		return error;
920
921	/* Careful about overflows.. */
922	len = PAGE_ALIGN(len);
923	if (!len || len > TASK_SIZE)
924		return -ENOMEM;
925
926	/* offset overflow? */
927	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
928               return -EOVERFLOW;
929
930	/* Too many mappings? */
931	if (mm->map_count > sysctl_max_map_count)
932		return -ENOMEM;
933
934	/* Obtain the address to map to. we verify (or select) it and ensure
935	 * that it represents a valid section of the address space.
936	 */
937	addr = get_unmapped_area(file, addr, len, pgoff, flags);
938	if (addr & ~PAGE_MASK)
939		return addr;
940
941	/* Do simple checking here so the lower-level routines won't have
942	 * to. we assume access permissions have been handled by the open
943	 * of the memory object, so we don't do any here.
944	 */
945	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
946			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
947
948	if (flags & MAP_LOCKED) {
949		if (!can_do_mlock())
950			return -EPERM;
951		vm_flags |= VM_LOCKED;
952	}
953	/* mlock MCL_FUTURE? */
954	if (vm_flags & VM_LOCKED) {
955		unsigned long locked, lock_limit;
956		locked = len >> PAGE_SHIFT;
957		locked += mm->locked_vm;
958		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
959		lock_limit >>= PAGE_SHIFT;
960		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
961			return -EAGAIN;
962	}
963
964	inode = file ? file->f_path.dentry->d_inode : NULL;
965
966	if (file) {
967		switch (flags & MAP_TYPE) {
968		case MAP_SHARED:
969			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
970				return -EACCES;
971
972			/*
973			 * Make sure we don't allow writing to an append-only
974			 * file..
975			 */
976			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
977				return -EACCES;
978
979			/*
980			 * Make sure there are no mandatory locks on the file.
981			 */
982			if (locks_verify_locked(inode))
983				return -EAGAIN;
984
985			vm_flags |= VM_SHARED | VM_MAYSHARE;
986			if (!(file->f_mode & FMODE_WRITE))
987				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
988
989			/* fall through */
990		case MAP_PRIVATE:
991			if (!(file->f_mode & FMODE_READ))
992				return -EACCES;
993			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
994				if (vm_flags & VM_EXEC)
995					return -EPERM;
996				vm_flags &= ~VM_MAYEXEC;
997			}
998			if (is_file_hugepages(file))
999				accountable = 0;
1000
1001			if (!file->f_op || !file->f_op->mmap)
1002				return -ENODEV;
1003			break;
1004
1005		default:
1006			return -EINVAL;
1007		}
1008	} else {
1009		switch (flags & MAP_TYPE) {
1010		case MAP_SHARED:
1011			vm_flags |= VM_SHARED | VM_MAYSHARE;
1012			break;
1013		case MAP_PRIVATE:
1014			/*
1015			 * Set pgoff according to addr for anon_vma.
1016			 */
1017			pgoff = addr >> PAGE_SHIFT;
1018			break;
1019		default:
1020			return -EINVAL;
1021		}
1022	}
1023
1024	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1025	if (error)
1026		return error;
1027
1028	return mmap_region(file, addr, len, flags, vm_flags, pgoff,
1029			   accountable);
1030}
1031EXPORT_SYMBOL(do_mmap_pgoff);
1032
1033/*
1034 * Some shared mappigns will want the pages marked read-only
1035 * to track write events. If so, we'll downgrade vm_page_prot
1036 * to the private version (using protection_map[] without the
1037 * VM_SHARED bit).
1038 */
1039int vma_wants_writenotify(struct vm_area_struct *vma)
1040{
1041	unsigned int vm_flags = vma->vm_flags;
1042
1043	/* If it was private or non-writable, the write bit is already clear */
1044	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1045		return 0;
1046
1047	/* The backer wishes to know when pages are first written to? */
1048	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1049		return 1;
1050
1051	/* The open routine did something to the protections already? */
1052	if (pgprot_val(vma->vm_page_prot) !=
1053	    pgprot_val(protection_map[vm_flags &
1054		    (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
1055		return 0;
1056
1057	/* Specialty mapping? */
1058	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1059		return 0;
1060
1061	/* Can the mapping track the dirty pages? */
1062	return vma->vm_file && vma->vm_file->f_mapping &&
1063		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1064}
1065
1066
1067unsigned long mmap_region(struct file *file, unsigned long addr,
1068			  unsigned long len, unsigned long flags,
1069			  unsigned int vm_flags, unsigned long pgoff,
1070			  int accountable)
1071{
1072	struct mm_struct *mm = current->mm;
1073	struct vm_area_struct *vma, *prev;
1074	int correct_wcount = 0;
1075	int error;
1076	struct rb_node **rb_link, *rb_parent;
1077	unsigned long charged = 0;
1078	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1079
1080	/* Clear old maps */
1081	error = -ENOMEM;
1082munmap_back:
1083	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1084	if (vma && vma->vm_start < addr + len) {
1085		if (do_munmap(mm, addr, len))
1086			return -ENOMEM;
1087		goto munmap_back;
1088	}
1089
1090	/* Check against address space limit. */
1091	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1092		return -ENOMEM;
1093
1094	if (accountable && (!(flags & MAP_NORESERVE) ||
1095			    sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1096		if (vm_flags & VM_SHARED) {
1097			/* Check memory availability in shmem_file_setup? */
1098			vm_flags |= VM_ACCOUNT;
1099		} else if (vm_flags & VM_WRITE) {
1100			/*
1101			 * Private writable mapping: check memory availability
1102			 */
1103			charged = len >> PAGE_SHIFT;
1104			if (security_vm_enough_memory(charged))
1105				return -ENOMEM;
1106			vm_flags |= VM_ACCOUNT;
1107		}
1108	}
1109
1110	/*
1111	 * Can we just expand an old private anonymous mapping?
1112	 * The VM_SHARED test is necessary because shmem_zero_setup
1113	 * will create the file object for a shared anonymous map below.
1114	 */
1115	if (!file && !(vm_flags & VM_SHARED) &&
1116	    vma_merge(mm, prev, addr, addr + len, vm_flags,
1117					NULL, NULL, pgoff, NULL))
1118		goto out;
1119
1120	/*
1121	 * Determine the object being mapped and call the appropriate
1122	 * specific mapper. the address has already been validated, but
1123	 * not unmapped, but the maps are removed from the list.
1124	 */
1125	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1126	if (!vma) {
1127		error = -ENOMEM;
1128		goto unacct_error;
1129	}
1130
1131	vma->vm_mm = mm;
1132	vma->vm_start = addr;
1133	vma->vm_end = addr + len;
1134	vma->vm_flags = vm_flags;
1135	vma->vm_page_prot = protection_map[vm_flags &
1136				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
1137	vma->vm_pgoff = pgoff;
1138
1139	if (file) {
1140		error = -EINVAL;
1141		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1142			goto free_vma;
1143		if (vm_flags & VM_DENYWRITE) {
1144			error = deny_write_access(file);
1145			if (error)
1146				goto free_vma;
1147			correct_wcount = 1;
1148		}
1149		vma->vm_file = file;
1150		get_file(file);
1151		error = file->f_op->mmap(file, vma);
1152		if (error)
1153			goto unmap_and_free_vma;
1154	} else if (vm_flags & VM_SHARED) {
1155		error = shmem_zero_setup(vma);
1156		if (error)
1157			goto free_vma;
1158	}
1159
1160	/* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1161	 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1162	 * that memory reservation must be checked; but that reservation
1163	 * belongs to shared memory object, not to vma: so now clear it.
1164	 */
1165	if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1166		vma->vm_flags &= ~VM_ACCOUNT;
1167
1168	/* Can addr have changed??
1169	 *
1170	 * Answer: Yes, several device drivers can do it in their
1171	 *         f_op->mmap method. -DaveM
1172	 */
1173	addr = vma->vm_start;
1174	pgoff = vma->vm_pgoff;
1175	vm_flags = vma->vm_flags;
1176
1177	if (vma_wants_writenotify(vma))
1178		vma->vm_page_prot =
1179			protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC)];
1180
1181	if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1182			vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1183		file = vma->vm_file;
1184		vma_link(mm, vma, prev, rb_link, rb_parent);
1185		if (correct_wcount)
1186			atomic_inc(&inode->i_writecount);
1187	} else {
1188		if (file) {
1189			if (correct_wcount)
1190				atomic_inc(&inode->i_writecount);
1191			fput(file);
1192		}
1193		mpol_free(vma_policy(vma));
1194		kmem_cache_free(vm_area_cachep, vma);
1195	}
1196out:
1197	mm->total_vm += len >> PAGE_SHIFT;
1198	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1199	if (vm_flags & VM_LOCKED) {
1200		mm->locked_vm += len >> PAGE_SHIFT;
1201		make_pages_present(addr, addr + len);
1202	}
1203	if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1204		make_pages_present(addr, addr + len);
1205	return addr;
1206
1207unmap_and_free_vma:
1208	if (correct_wcount)
1209		atomic_inc(&inode->i_writecount);
1210	vma->vm_file = NULL;
1211	fput(file);
1212
1213	/* Undo any partial mapping done by a device driver. */
1214	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1215	charged = 0;
1216free_vma:
1217	kmem_cache_free(vm_area_cachep, vma);
1218unacct_error:
1219	if (charged)
1220		vm_unacct_memory(charged);
1221	return error;
1222}
1223
1224/* Get an address range which is currently unmapped.
1225 * For shmat() with addr=0.
1226 *
1227 * Ugly calling convention alert:
1228 * Return value with the low bits set means error value,
1229 * ie
1230 *	if (ret & ~PAGE_MASK)
1231 *		error = ret;
1232 *
1233 * This function "knows" that -ENOMEM has the bits set.
1234 */
1235#ifndef HAVE_ARCH_UNMAPPED_AREA
1236unsigned long
1237arch_get_unmapped_area(struct file *filp, unsigned long addr,
1238		unsigned long len, unsigned long pgoff, unsigned long flags)
1239{
1240	struct mm_struct *mm = current->mm;
1241	struct vm_area_struct *vma;
1242	unsigned long start_addr;
1243
1244	if (len > TASK_SIZE)
1245		return -ENOMEM;
1246
1247	if (flags & MAP_FIXED)
1248		return addr;
1249
1250	if (addr) {
1251		addr = PAGE_ALIGN(addr);
1252		vma = find_vma(mm, addr);
1253		if (TASK_SIZE - len >= addr &&
1254		    (!vma || addr + len <= vma->vm_start))
1255			return addr;
1256	}
1257	if (len > mm->cached_hole_size) {
1258	        start_addr = addr = mm->free_area_cache;
1259	} else {
1260	        start_addr = addr = TASK_UNMAPPED_BASE;
1261	        mm->cached_hole_size = 0;
1262	}
1263
1264full_search:
1265	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1266		/* At this point:  (!vma || addr < vma->vm_end). */
1267		if (TASK_SIZE - len < addr) {
1268			/*
1269			 * Start a new search - just in case we missed
1270			 * some holes.
1271			 */
1272			if (start_addr != TASK_UNMAPPED_BASE) {
1273				addr = TASK_UNMAPPED_BASE;
1274			        start_addr = addr;
1275				mm->cached_hole_size = 0;
1276				goto full_search;
1277			}
1278			return -ENOMEM;
1279		}
1280		if (!vma || addr + len <= vma->vm_start) {
1281			/*
1282			 * Remember the place where we stopped the search:
1283			 */
1284			mm->free_area_cache = addr + len;
1285			return addr;
1286		}
1287		if (addr + mm->cached_hole_size < vma->vm_start)
1288		        mm->cached_hole_size = vma->vm_start - addr;
1289		addr = vma->vm_end;
1290	}
1291}
1292#endif
1293
1294void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1295{
1296	/*
1297	 * Is this a new hole at the lowest possible address?
1298	 */
1299	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1300		mm->free_area_cache = addr;
1301		mm->cached_hole_size = ~0UL;
1302	}
1303}
1304
1305/*
1306 * This mmap-allocator allocates new areas top-down from below the
1307 * stack's low limit (the base):
1308 */
1309#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1310unsigned long
1311arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1312			  const unsigned long len, const unsigned long pgoff,
1313			  const unsigned long flags)
1314{
1315	struct vm_area_struct *vma;
1316	struct mm_struct *mm = current->mm;
1317	unsigned long addr = addr0;
1318
1319	/* requested length too big for entire address space */
1320	if (len > TASK_SIZE)
1321		return -ENOMEM;
1322
1323	if (flags & MAP_FIXED)
1324		return addr;
1325
1326	/* requesting a specific address */
1327	if (addr) {
1328		addr = PAGE_ALIGN(addr);
1329		vma = find_vma(mm, addr);
1330		if (TASK_SIZE - len >= addr &&
1331				(!vma || addr + len <= vma->vm_start))
1332			return addr;
1333	}
1334
1335	/* check if free_area_cache is useful for us */
1336	if (len <= mm->cached_hole_size) {
1337 	        mm->cached_hole_size = 0;
1338 		mm->free_area_cache = mm->mmap_base;
1339 	}
1340
1341	/* either no address requested or can't fit in requested address hole */
1342	addr = mm->free_area_cache;
1343
1344	/* make sure it can fit in the remaining address space */
1345	if (addr > len) {
1346		vma = find_vma(mm, addr-len);
1347		if (!vma || addr <= vma->vm_start)
1348			/* remember the address as a hint for next time */
1349			return (mm->free_area_cache = addr-len);
1350	}
1351
1352	if (mm->mmap_base < len)
1353		goto bottomup;
1354
1355	addr = mm->mmap_base-len;
1356
1357	do {
1358		/*
1359		 * Lookup failure means no vma is above this address,
1360		 * else if new region fits below vma->vm_start,
1361		 * return with success:
1362		 */
1363		vma = find_vma(mm, addr);
1364		if (!vma || addr+len <= vma->vm_start)
1365			/* remember the address as a hint for next time */
1366			return (mm->free_area_cache = addr);
1367
1368 		/* remember the largest hole we saw so far */
1369 		if (addr + mm->cached_hole_size < vma->vm_start)
1370 		        mm->cached_hole_size = vma->vm_start - addr;
1371
1372		/* try just below the current vma->vm_start */
1373		addr = vma->vm_start-len;
1374	} while (len < vma->vm_start);
1375
1376bottomup:
1377	/*
1378	 * A failed mmap() very likely causes application failure,
1379	 * so fall back to the bottom-up function here. This scenario
1380	 * can happen with large stack limits and large mmap()
1381	 * allocations.
1382	 */
1383	mm->cached_hole_size = ~0UL;
1384  	mm->free_area_cache = TASK_UNMAPPED_BASE;
1385	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1386	/*
1387	 * Restore the topdown base:
1388	 */
1389	mm->free_area_cache = mm->mmap_base;
1390	mm->cached_hole_size = ~0UL;
1391
1392	return addr;
1393}
1394#endif
1395
1396void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1397{
1398	/*
1399	 * Is this a new hole at the highest possible address?
1400	 */
1401	if (addr > mm->free_area_cache)
1402		mm->free_area_cache = addr;
1403
1404	/* dont allow allocations above current base */
1405	if (mm->free_area_cache > mm->mmap_base)
1406		mm->free_area_cache = mm->mmap_base;
1407}
1408
1409unsigned long
1410get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1411		unsigned long pgoff, unsigned long flags)
1412{
1413	unsigned long (*get_area)(struct file *, unsigned long,
1414				  unsigned long, unsigned long, unsigned long);
1415
1416	get_area = current->mm->get_unmapped_area;
1417	if (file && file->f_op && file->f_op->get_unmapped_area)
1418		get_area = file->f_op->get_unmapped_area;
1419	addr = get_area(file, addr, len, pgoff, flags);
1420	if (IS_ERR_VALUE(addr))
1421		return addr;
1422
1423	if (addr > TASK_SIZE - len)
1424		return -ENOMEM;
1425	if (addr & ~PAGE_MASK)
1426		return -EINVAL;
1427
1428	return addr;
1429}
1430
1431EXPORT_SYMBOL(get_unmapped_area);
1432
1433/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1434struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1435{
1436	struct vm_area_struct *vma = NULL;
1437
1438	if (mm) {
1439		/* Check the cache first. */
1440		/* (Cache hit rate is typically around 35%.) */
1441		vma = mm->mmap_cache;
1442		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1443			struct rb_node * rb_node;
1444
1445			rb_node = mm->mm_rb.rb_node;
1446			vma = NULL;
1447
1448			while (rb_node) {
1449				struct vm_area_struct * vma_tmp;
1450
1451				vma_tmp = rb_entry(rb_node,
1452						struct vm_area_struct, vm_rb);
1453
1454				if (vma_tmp->vm_end > addr) {
1455					vma = vma_tmp;
1456					if (vma_tmp->vm_start <= addr)
1457						break;
1458					rb_node = rb_node->rb_left;
1459				} else
1460					rb_node = rb_node->rb_right;
1461			}
1462			if (vma)
1463				mm->mmap_cache = vma;
1464		}
1465	}
1466	return vma;
1467}
1468
1469EXPORT_SYMBOL(find_vma);
1470
1471/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1472struct vm_area_struct *
1473find_vma_prev(struct mm_struct *mm, unsigned long addr,
1474			struct vm_area_struct **pprev)
1475{
1476	struct vm_area_struct *vma = NULL, *prev = NULL;
1477	struct rb_node * rb_node;
1478	if (!mm)
1479		goto out;
1480
1481	/* Guard against addr being lower than the first VMA */
1482	vma = mm->mmap;
1483
1484	/* Go through the RB tree quickly. */
1485	rb_node = mm->mm_rb.rb_node;
1486
1487	while (rb_node) {
1488		struct vm_area_struct *vma_tmp;
1489		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1490
1491		if (addr < vma_tmp->vm_end) {
1492			rb_node = rb_node->rb_left;
1493		} else {
1494			prev = vma_tmp;
1495			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1496				break;
1497			rb_node = rb_node->rb_right;
1498		}
1499	}
1500
1501out:
1502	*pprev = prev;
1503	return prev ? prev->vm_next : vma;
1504}
1505
1506/*
1507 * Verify that the stack growth is acceptable and
1508 * update accounting. This is shared with both the
1509 * grow-up and grow-down cases.
1510 */
1511static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1512{
1513	struct mm_struct *mm = vma->vm_mm;
1514	struct rlimit *rlim = current->signal->rlim;
1515	unsigned long new_start;
1516
1517	/* address space limit tests */
1518	if (!may_expand_vm(mm, grow))
1519		return -ENOMEM;
1520
1521	/* Stack limit test */
1522	if (size > rlim[RLIMIT_STACK].rlim_cur)
1523		return -ENOMEM;
1524
1525	/* mlock limit tests */
1526	if (vma->vm_flags & VM_LOCKED) {
1527		unsigned long locked;
1528		unsigned long limit;
1529		locked = mm->locked_vm + grow;
1530		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1531		if (locked > limit && !capable(CAP_IPC_LOCK))
1532			return -ENOMEM;
1533	}
1534
1535	/* Check to ensure the stack will not grow into a hugetlb-only region */
1536	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1537			vma->vm_end - size;
1538	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1539		return -EFAULT;
1540
1541	/*
1542	 * Overcommit..  This must be the final test, as it will
1543	 * update security statistics.
1544	 */
1545	if (security_vm_enough_memory(grow))
1546		return -ENOMEM;
1547
1548	/* Ok, everything looks good - let it rip */
1549	mm->total_vm += grow;
1550	if (vma->vm_flags & VM_LOCKED)
1551		mm->locked_vm += grow;
1552	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1553	return 0;
1554}
1555
1556#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1557/*
1558 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1559 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1560 */
1561#ifndef CONFIG_IA64
1562static inline
1563#endif
1564int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1565{
1566	int error;
1567
1568	if (!(vma->vm_flags & VM_GROWSUP))
1569		return -EFAULT;
1570
1571	/*
1572	 * We must make sure the anon_vma is allocated
1573	 * so that the anon_vma locking is not a noop.
1574	 */
1575	if (unlikely(anon_vma_prepare(vma)))
1576		return -ENOMEM;
1577	anon_vma_lock(vma);
1578
1579	/*
1580	 * vma->vm_start/vm_end cannot change under us because the caller
1581	 * is required to hold the mmap_sem in read mode.  We need the
1582	 * anon_vma lock to serialize against concurrent expand_stacks.
1583	 * Also guard against wrapping around to address 0.
1584	 */
1585	if (address < PAGE_ALIGN(address+4))
1586		address = PAGE_ALIGN(address+4);
1587	else {
1588		anon_vma_unlock(vma);
1589		return -ENOMEM;
1590	}
1591	error = 0;
1592
1593	/* Somebody else might have raced and expanded it already */
1594	if (address > vma->vm_end) {
1595		unsigned long size, grow;
1596
1597		size = address - vma->vm_start;
1598		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1599
1600		error = acct_stack_growth(vma, size, grow);
1601		if (!error)
1602			vma->vm_end = address;
1603	}
1604	anon_vma_unlock(vma);
1605	return error;
1606}
1607#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1608
1609/*
1610 * vma is the first one with address < vma->vm_start.  Have to extend vma.
1611 */
1612static inline int expand_downwards(struct vm_area_struct *vma,
1613				   unsigned long address)
1614{
1615	int error;
1616
1617	/*
1618	 * We must make sure the anon_vma is allocated
1619	 * so that the anon_vma locking is not a noop.
1620	 */
1621	if (unlikely(anon_vma_prepare(vma)))
1622		return -ENOMEM;
1623	anon_vma_lock(vma);
1624
1625	/*
1626	 * vma->vm_start/vm_end cannot change under us because the caller
1627	 * is required to hold the mmap_sem in read mode.  We need the
1628	 * anon_vma lock to serialize against concurrent expand_stacks.
1629	 */
1630	address &= PAGE_MASK;
1631	error = 0;
1632
1633	/* Somebody else might have raced and expanded it already */
1634	if (address < vma->vm_start) {
1635		unsigned long size, grow;
1636
1637		size = vma->vm_end - address;
1638		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1639
1640		error = acct_stack_growth(vma, size, grow);
1641		if (!error) {
1642			vma->vm_start = address;
1643			vma->vm_pgoff -= grow;
1644		}
1645	}
1646	anon_vma_unlock(vma);
1647	return error;
1648}
1649
1650int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1651{
1652	return expand_downwards(vma, address);
1653}
1654
1655#ifdef CONFIG_STACK_GROWSUP
1656int expand_stack(struct vm_area_struct *vma, unsigned long address)
1657{
1658	return expand_upwards(vma, address);
1659}
1660
1661struct vm_area_struct *
1662find_extend_vma(struct mm_struct *mm, unsigned long addr)
1663{
1664	struct vm_area_struct *vma, *prev;
1665
1666	addr &= PAGE_MASK;
1667	vma = find_vma_prev(mm, addr, &prev);
1668	if (vma && (vma->vm_start <= addr))
1669		return vma;
1670	if (!prev || expand_stack(prev, addr))
1671		return NULL;
1672	if (prev->vm_flags & VM_LOCKED)
1673		make_pages_present(addr, prev->vm_end);
1674	return prev;
1675}
1676#else
1677int expand_stack(struct vm_area_struct *vma, unsigned long address)
1678{
1679	return expand_downwards(vma, address);
1680}
1681
1682struct vm_area_struct *
1683find_extend_vma(struct mm_struct * mm, unsigned long addr)
1684{
1685	struct vm_area_struct * vma;
1686	unsigned long start;
1687
1688	addr &= PAGE_MASK;
1689	vma = find_vma(mm,addr);
1690	if (!vma)
1691		return NULL;
1692	if (vma->vm_start <= addr)
1693		return vma;
1694	if (!(vma->vm_flags & VM_GROWSDOWN))
1695		return NULL;
1696	start = vma->vm_start;
1697	if (expand_stack(vma, addr))
1698		return NULL;
1699	if (vma->vm_flags & VM_LOCKED)
1700		make_pages_present(addr, start);
1701	return vma;
1702}
1703#endif
1704
1705/*
1706 * Ok - we have the memory areas we should free on the vma list,
1707 * so release them, and do the vma updates.
1708 *
1709 * Called with the mm semaphore held.
1710 */
1711static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1712{
1713	/* Update high watermark before we lower total_vm */
1714	update_hiwater_vm(mm);
1715	do {
1716		long nrpages = vma_pages(vma);
1717
1718		mm->total_vm -= nrpages;
1719		if (vma->vm_flags & VM_LOCKED)
1720			mm->locked_vm -= nrpages;
1721		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1722		vma = remove_vma(vma);
1723	} while (vma);
1724	validate_mm(mm);
1725}
1726
1727/*
1728 * Get rid of page table information in the indicated region.
1729 *
1730 * Called with the mm semaphore held.
1731 */
1732static void unmap_region(struct mm_struct *mm,
1733		struct vm_area_struct *vma, struct vm_area_struct *prev,
1734		unsigned long start, unsigned long end)
1735{
1736	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1737	struct mmu_gather *tlb;
1738	unsigned long nr_accounted = 0;
1739
1740	lru_add_drain();
1741	tlb = tlb_gather_mmu(mm, 0);
1742	update_hiwater_rss(mm);
1743	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1744	vm_unacct_memory(nr_accounted);
1745	free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1746				 next? next->vm_start: 0);
1747	tlb_finish_mmu(tlb, start, end);
1748}
1749
1750/*
1751 * Create a list of vma's touched by the unmap, removing them from the mm's
1752 * vma list as we go..
1753 */
1754static void
1755detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1756	struct vm_area_struct *prev, unsigned long end)
1757{
1758	struct vm_area_struct **insertion_point;
1759	struct vm_area_struct *tail_vma = NULL;
1760	unsigned long addr;
1761
1762	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1763	do {
1764		rb_erase(&vma->vm_rb, &mm->mm_rb);
1765		mm->map_count--;
1766		tail_vma = vma;
1767		vma = vma->vm_next;
1768	} while (vma && vma->vm_start < end);
1769	*insertion_point = vma;
1770	tail_vma->vm_next = NULL;
1771	if (mm->unmap_area == arch_unmap_area)
1772		addr = prev ? prev->vm_end : mm->mmap_base;
1773	else
1774		addr = vma ?  vma->vm_start : mm->mmap_base;
1775	mm->unmap_area(mm, addr);
1776	mm->mmap_cache = NULL;		/* Kill the cache. */
1777}
1778
1779/*
1780 * Split a vma into two pieces at address 'addr', a new vma is allocated
1781 * either for the first part or the tail.
1782 */
1783int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1784	      unsigned long addr, int new_below)
1785{
1786	struct mempolicy *pol;
1787	struct vm_area_struct *new;
1788
1789	if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1790		return -EINVAL;
1791
1792	if (mm->map_count >= sysctl_max_map_count)
1793		return -ENOMEM;
1794
1795	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1796	if (!new)
1797		return -ENOMEM;
1798
1799	/* most fields are the same, copy all, and then fixup */
1800	*new = *vma;
1801
1802	if (new_below)
1803		new->vm_end = addr;
1804	else {
1805		new->vm_start = addr;
1806		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1807	}
1808
1809	pol = mpol_copy(vma_policy(vma));
1810	if (IS_ERR(pol)) {
1811		kmem_cache_free(vm_area_cachep, new);
1812		return PTR_ERR(pol);
1813	}
1814	vma_set_policy(new, pol);
1815
1816	if (new->vm_file)
1817		get_file(new->vm_file);
1818
1819	if (new->vm_ops && new->vm_ops->open)
1820		new->vm_ops->open(new);
1821
1822	if (new_below)
1823		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1824			((addr - new->vm_start) >> PAGE_SHIFT), new);
1825	else
1826		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1827
1828	return 0;
1829}
1830
1831/* Munmap is split into 2 main parts -- this part which finds
1832 * what needs doing, and the areas themselves, which do the
1833 * work.  This now handles partial unmappings.
1834 * Jeremy Fitzhardinge <jeremy@goop.org>
1835 */
1836int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1837{
1838	unsigned long end;
1839	struct vm_area_struct *vma, *prev, *last;
1840
1841	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1842		return -EINVAL;
1843
1844	if ((len = PAGE_ALIGN(len)) == 0)
1845		return -EINVAL;
1846
1847	/* Find the first overlapping VMA */
1848	vma = find_vma_prev(mm, start, &prev);
1849	if (!vma)
1850		return 0;
1851	/* we have  start < vma->vm_end  */
1852
1853	/* if it doesn't overlap, we have nothing.. */
1854	end = start + len;
1855	if (vma->vm_start >= end)
1856		return 0;
1857
1858	/*
1859	 * If we need to split any vma, do it now to save pain later.
1860	 *
1861	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1862	 * unmapped vm_area_struct will remain in use: so lower split_vma
1863	 * places tmp vma above, and higher split_vma places tmp vma below.
1864	 */
1865	if (start > vma->vm_start) {
1866		int error = split_vma(mm, vma, start, 0);
1867		if (error)
1868			return error;
1869		prev = vma;
1870	}
1871
1872	/* Does it split the last one? */
1873	last = find_vma(mm, end);
1874	if (last && end > last->vm_start) {
1875		int error = split_vma(mm, last, end, 1);
1876		if (error)
1877			return error;
1878	}
1879	vma = prev? prev->vm_next: mm->mmap;
1880
1881	/*
1882	 * Remove the vma's, and unmap the actual pages
1883	 */
1884	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1885	unmap_region(mm, vma, prev, start, end);
1886
1887	/* Fix up all other VM information */
1888	remove_vma_list(mm, vma);
1889
1890	return 0;
1891}
1892
1893EXPORT_SYMBOL(do_munmap);
1894
1895asmlinkage long sys_munmap(unsigned long addr, size_t len)
1896{
1897	int ret;
1898	struct mm_struct *mm = current->mm;
1899
1900	profile_munmap(addr);
1901
1902	down_write(&mm->mmap_sem);
1903	ret = do_munmap(mm, addr, len);
1904	up_write(&mm->mmap_sem);
1905	return ret;
1906}
1907
1908static inline void verify_mm_writelocked(struct mm_struct *mm)
1909{
1910#ifdef CONFIG_DEBUG_VM
1911	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1912		WARN_ON(1);
1913		up_read(&mm->mmap_sem);
1914	}
1915#endif
1916}
1917
1918/*
1919 *  this is really a simplified "do_mmap".  it only handles
1920 *  anonymous maps.  eventually we may be able to do some
1921 *  brk-specific accounting here.
1922 */
1923unsigned long do_brk(unsigned long addr, unsigned long len)
1924{
1925	struct mm_struct * mm = current->mm;
1926	struct vm_area_struct * vma, * prev;
1927	unsigned long flags;
1928	struct rb_node ** rb_link, * rb_parent;
1929	pgoff_t pgoff = addr >> PAGE_SHIFT;
1930	int error;
1931
1932	len = PAGE_ALIGN(len);
1933	if (!len)
1934		return addr;
1935
1936	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1937		return -EINVAL;
1938
1939	if (is_hugepage_only_range(mm, addr, len))
1940		return -EINVAL;
1941
1942	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1943
1944	error = arch_mmap_check(addr, len, flags);
1945	if (error)
1946		return error;
1947
1948	/*
1949	 * mlock MCL_FUTURE?
1950	 */
1951	if (mm->def_flags & VM_LOCKED) {
1952		unsigned long locked, lock_limit;
1953		locked = len >> PAGE_SHIFT;
1954		locked += mm->locked_vm;
1955		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1956		lock_limit >>= PAGE_SHIFT;
1957		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1958			return -EAGAIN;
1959	}
1960
1961	/*
1962	 * mm->mmap_sem is required to protect against another thread
1963	 * changing the mappings in case we sleep.
1964	 */
1965	verify_mm_writelocked(mm);
1966
1967	/*
1968	 * Clear old maps.  this also does some error checking for us
1969	 */
1970 munmap_back:
1971	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1972	if (vma && vma->vm_start < addr + len) {
1973		if (do_munmap(mm, addr, len))
1974			return -ENOMEM;
1975		goto munmap_back;
1976	}
1977
1978	/* Check against address space limits *after* clearing old maps... */
1979	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1980		return -ENOMEM;
1981
1982	if (mm->map_count > sysctl_max_map_count)
1983		return -ENOMEM;
1984
1985	if (security_vm_enough_memory(len >> PAGE_SHIFT))
1986		return -ENOMEM;
1987
1988	/* Can we just expand an old private anonymous mapping? */
1989	if (vma_merge(mm, prev, addr, addr + len, flags,
1990					NULL, NULL, pgoff, NULL))
1991		goto out;
1992
1993	/*
1994	 * create a vma struct for an anonymous mapping
1995	 */
1996	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1997	if (!vma) {
1998		vm_unacct_memory(len >> PAGE_SHIFT);
1999		return -ENOMEM;
2000	}
2001
2002	vma->vm_mm = mm;
2003	vma->vm_start = addr;
2004	vma->vm_end = addr + len;
2005	vma->vm_pgoff = pgoff;
2006	vma->vm_flags = flags;
2007	vma->vm_page_prot = protection_map[flags &
2008				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
2009	vma_link(mm, vma, prev, rb_link, rb_parent);
2010out:
2011	mm->total_vm += len >> PAGE_SHIFT;
2012	if (flags & VM_LOCKED) {
2013		mm->locked_vm += len >> PAGE_SHIFT;
2014		make_pages_present(addr, addr + len);
2015	}
2016	return addr;
2017}
2018
2019EXPORT_SYMBOL(do_brk);
2020
2021/* Release all mmaps. */
2022void exit_mmap(struct mm_struct *mm)
2023{
2024	struct mmu_gather *tlb;
2025	struct vm_area_struct *vma = mm->mmap;
2026	unsigned long nr_accounted = 0;
2027	unsigned long end;
2028
2029	/* mm's last user has gone, and its about to be pulled down */
2030	arch_exit_mmap(mm);
2031
2032	lru_add_drain();
2033	flush_cache_mm(mm);
2034	tlb = tlb_gather_mmu(mm, 1);
2035	/* Don't update_hiwater_rss(mm) here, do_exit already did */
2036	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2037	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2038	vm_unacct_memory(nr_accounted);
2039	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2040	tlb_finish_mmu(tlb, 0, end);
2041
2042	/*
2043	 * Walk the list again, actually closing and freeing it,
2044	 * with preemption enabled, without holding any MM locks.
2045	 */
2046	while (vma)
2047		vma = remove_vma(vma);
2048
2049	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2050}
2051
2052/* Insert vm structure into process list sorted by address
2053 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2054 * then i_mmap_lock is taken here.
2055 */
2056int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2057{
2058	struct vm_area_struct * __vma, * prev;
2059	struct rb_node ** rb_link, * rb_parent;
2060
2061	/*
2062	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2063	 * until its first write fault, when page's anon_vma and index
2064	 * are set.  But now set the vm_pgoff it will almost certainly
2065	 * end up with (unless mremap moves it elsewhere before that
2066	 * first wfault), so /proc/pid/maps tells a consistent story.
2067	 *
2068	 * By setting it to reflect the virtual start address of the
2069	 * vma, merges and splits can happen in a seamless way, just
2070	 * using the existing file pgoff checks and manipulations.
2071	 * Similarly in do_mmap_pgoff and in do_brk.
2072	 */
2073	if (!vma->vm_file) {
2074		BUG_ON(vma->anon_vma);
2075		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2076	}
2077	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2078	if (__vma && __vma->vm_start < vma->vm_end)
2079		return -ENOMEM;
2080	if ((vma->vm_flags & VM_ACCOUNT) &&
2081	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2082		return -ENOMEM;
2083	vma_link(mm, vma, prev, rb_link, rb_parent);
2084	return 0;
2085}
2086
2087/*
2088 * Copy the vma structure to a new location in the same mm,
2089 * prior to moving page table entries, to effect an mremap move.
2090 */
2091struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2092	unsigned long addr, unsigned long len, pgoff_t pgoff)
2093{
2094	struct vm_area_struct *vma = *vmap;
2095	unsigned long vma_start = vma->vm_start;
2096	struct mm_struct *mm = vma->vm_mm;
2097	struct vm_area_struct *new_vma, *prev;
2098	struct rb_node **rb_link, *rb_parent;
2099	struct mempolicy *pol;
2100
2101	/*
2102	 * If anonymous vma has not yet been faulted, update new pgoff
2103	 * to match new location, to increase its chance of merging.
2104	 */
2105	if (!vma->vm_file && !vma->anon_vma)
2106		pgoff = addr >> PAGE_SHIFT;
2107
2108	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2109	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2110			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2111	if (new_vma) {
2112		/*
2113		 * Source vma may have been merged into new_vma
2114		 */
2115		if (vma_start >= new_vma->vm_start &&
2116		    vma_start < new_vma->vm_end)
2117			*vmap = new_vma;
2118	} else {
2119		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2120		if (new_vma) {
2121			*new_vma = *vma;
2122			pol = mpol_copy(vma_policy(vma));
2123			if (IS_ERR(pol)) {
2124				kmem_cache_free(vm_area_cachep, new_vma);
2125				return NULL;
2126			}
2127			vma_set_policy(new_vma, pol);
2128			new_vma->vm_start = addr;
2129			new_vma->vm_end = addr + len;
2130			new_vma->vm_pgoff = pgoff;
2131			if (new_vma->vm_file)
2132				get_file(new_vma->vm_file);
2133			if (new_vma->vm_ops && new_vma->vm_ops->open)
2134				new_vma->vm_ops->open(new_vma);
2135			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2136		}
2137	}
2138	return new_vma;
2139}
2140
2141/*
2142 * Return true if the calling process may expand its vm space by the passed
2143 * number of pages
2144 */
2145int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2146{
2147	unsigned long cur = mm->total_vm;	/* pages */
2148	unsigned long lim;
2149
2150	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2151
2152	if (cur + npages > lim)
2153		return 0;
2154	return 1;
2155}
2156
2157
2158static struct page *special_mapping_nopage(struct vm_area_struct *vma,
2159					   unsigned long address, int *type)
2160{
2161	struct page **pages;
2162
2163	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2164
2165	address -= vma->vm_start;
2166	for (pages = vma->vm_private_data; address > 0 && *pages; ++pages)
2167		address -= PAGE_SIZE;
2168
2169	if (*pages) {
2170		struct page *page = *pages;
2171		get_page(page);
2172		return page;
2173	}
2174
2175	return NOPAGE_SIGBUS;
2176}
2177
2178/*
2179 * Having a close hook prevents vma merging regardless of flags.
2180 */
2181static void special_mapping_close(struct vm_area_struct *vma)
2182{
2183}
2184
2185static struct vm_operations_struct special_mapping_vmops = {
2186	.close = special_mapping_close,
2187	.nopage	= special_mapping_nopage,
2188};
2189
2190/*
2191 * Called with mm->mmap_sem held for writing.
2192 * Insert a new vma covering the given region, with the given flags.
2193 * Its pages are supplied by the given array of struct page *.
2194 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2195 * The region past the last page supplied will always produce SIGBUS.
2196 * The array pointer and the pages it points to are assumed to stay alive
2197 * for as long as this mapping might exist.
2198 */
2199int install_special_mapping(struct mm_struct *mm,
2200			    unsigned long addr, unsigned long len,
2201			    unsigned long vm_flags, struct page **pages)
2202{
2203	struct vm_area_struct *vma;
2204
2205	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2206	if (unlikely(vma == NULL))
2207		return -ENOMEM;
2208
2209	vma->vm_mm = mm;
2210	vma->vm_start = addr;
2211	vma->vm_end = addr + len;
2212
2213	vma->vm_flags = vm_flags | mm->def_flags;
2214	vma->vm_page_prot = protection_map[vma->vm_flags & 7];
2215
2216	vma->vm_ops = &special_mapping_vmops;
2217	vma->vm_private_data = pages;
2218
2219	if (unlikely(insert_vm_struct(mm, vma))) {
2220		kmem_cache_free(vm_area_cachep, vma);
2221		return -ENOMEM;
2222	}
2223
2224	mm->total_vm += len >> PAGE_SHIFT;
2225
2226	return 0;
2227}
2228