mmap.c revision 8314c4f24a0a5c9b1f7544e9fa83a1d5367ddaa7
1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7 */
8
9#include <linux/slab.h>
10#include <linux/backing-dev.h>
11#include <linux/mm.h>
12#include <linux/shm.h>
13#include <linux/mman.h>
14#include <linux/pagemap.h>
15#include <linux/swap.h>
16#include <linux/syscalls.h>
17#include <linux/capability.h>
18#include <linux/init.h>
19#include <linux/file.h>
20#include <linux/fs.h>
21#include <linux/personality.h>
22#include <linux/security.h>
23#include <linux/ima.h>
24#include <linux/hugetlb.h>
25#include <linux/profile.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/mempolicy.h>
29#include <linux/rmap.h>
30#include <linux/ksm.h>
31#include <linux/mmu_notifier.h>
32#include <linux/perf_event.h>
33
34#include <asm/uaccess.h>
35#include <asm/cacheflush.h>
36#include <asm/tlb.h>
37#include <asm/mmu_context.h>
38
39#include "internal.h"
40
41#ifndef arch_mmap_check
42#define arch_mmap_check(addr, len, flags)	(0)
43#endif
44
45#ifndef arch_rebalance_pgtables
46#define arch_rebalance_pgtables(addr, len)		(addr)
47#endif
48
49static void unmap_region(struct mm_struct *mm,
50		struct vm_area_struct *vma, struct vm_area_struct *prev,
51		unsigned long start, unsigned long end);
52
53/*
54 * WARNING: the debugging will use recursive algorithms so never enable this
55 * unless you know what you are doing.
56 */
57#undef DEBUG_MM_RB
58
59/* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware.  The expected
61 * behavior is in parens:
62 *
63 * map_type	prot
64 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
65 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
66 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
67 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
68 *
69 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
70 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
71 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
72 *
73 */
74pgprot_t protection_map[16] = {
75	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77};
78
79pgprot_t vm_get_page_prot(unsigned long vm_flags)
80{
81	return __pgprot(pgprot_val(protection_map[vm_flags &
82				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83			pgprot_val(arch_vm_get_page_prot(vm_flags)));
84}
85EXPORT_SYMBOL(vm_get_page_prot);
86
87int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88int sysctl_overcommit_ratio = 50;	/* default is 50% */
89int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90struct percpu_counter vm_committed_as;
91
92/*
93 * Check that a process has enough memory to allocate a new virtual
94 * mapping. 0 means there is enough memory for the allocation to
95 * succeed and -ENOMEM implies there is not.
96 *
97 * We currently support three overcommit policies, which are set via the
98 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
99 *
100 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
101 * Additional code 2002 Jul 20 by Robert Love.
102 *
103 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
104 *
105 * Note this is a helper function intended to be used by LSMs which
106 * wish to use this logic.
107 */
108int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
109{
110	unsigned long free, allowed;
111
112	vm_acct_memory(pages);
113
114	/*
115	 * Sometimes we want to use more memory than we have
116	 */
117	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
118		return 0;
119
120	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
121		unsigned long n;
122
123		free = global_page_state(NR_FILE_PAGES);
124		free += nr_swap_pages;
125
126		/*
127		 * Any slabs which are created with the
128		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
129		 * which are reclaimable, under pressure.  The dentry
130		 * cache and most inode caches should fall into this
131		 */
132		free += global_page_state(NR_SLAB_RECLAIMABLE);
133
134		/*
135		 * Leave the last 3% for root
136		 */
137		if (!cap_sys_admin)
138			free -= free / 32;
139
140		if (free > pages)
141			return 0;
142
143		/*
144		 * nr_free_pages() is very expensive on large systems,
145		 * only call if we're about to fail.
146		 */
147		n = nr_free_pages();
148
149		/*
150		 * Leave reserved pages. The pages are not for anonymous pages.
151		 */
152		if (n <= totalreserve_pages)
153			goto error;
154		else
155			n -= totalreserve_pages;
156
157		/*
158		 * Leave the last 3% for root
159		 */
160		if (!cap_sys_admin)
161			n -= n / 32;
162		free += n;
163
164		if (free > pages)
165			return 0;
166
167		goto error;
168	}
169
170	allowed = (totalram_pages - hugetlb_total_pages())
171	       	* sysctl_overcommit_ratio / 100;
172	/*
173	 * Leave the last 3% for root
174	 */
175	if (!cap_sys_admin)
176		allowed -= allowed / 32;
177	allowed += total_swap_pages;
178
179	/* Don't let a single process grow too big:
180	   leave 3% of the size of this process for other processes */
181	if (mm)
182		allowed -= mm->total_vm / 32;
183
184	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
185		return 0;
186error:
187	vm_unacct_memory(pages);
188
189	return -ENOMEM;
190}
191
192/*
193 * Requires inode->i_mapping->i_mmap_lock
194 */
195static void __remove_shared_vm_struct(struct vm_area_struct *vma,
196		struct file *file, struct address_space *mapping)
197{
198	if (vma->vm_flags & VM_DENYWRITE)
199		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
200	if (vma->vm_flags & VM_SHARED)
201		mapping->i_mmap_writable--;
202
203	flush_dcache_mmap_lock(mapping);
204	if (unlikely(vma->vm_flags & VM_NONLINEAR))
205		list_del_init(&vma->shared.vm_set.list);
206	else
207		vma_prio_tree_remove(vma, &mapping->i_mmap);
208	flush_dcache_mmap_unlock(mapping);
209}
210
211/*
212 * Unlink a file-based vm structure from its prio_tree, to hide
213 * vma from rmap and vmtruncate before freeing its page tables.
214 */
215void unlink_file_vma(struct vm_area_struct *vma)
216{
217	struct file *file = vma->vm_file;
218
219	if (file) {
220		struct address_space *mapping = file->f_mapping;
221		spin_lock(&mapping->i_mmap_lock);
222		__remove_shared_vm_struct(vma, file, mapping);
223		spin_unlock(&mapping->i_mmap_lock);
224	}
225}
226
227/*
228 * Close a vm structure and free it, returning the next.
229 */
230static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
231{
232	struct vm_area_struct *next = vma->vm_next;
233
234	might_sleep();
235	if (vma->vm_ops && vma->vm_ops->close)
236		vma->vm_ops->close(vma);
237	if (vma->vm_file) {
238		fput(vma->vm_file);
239		if (vma->vm_flags & VM_EXECUTABLE)
240			removed_exe_file_vma(vma->vm_mm);
241	}
242	mpol_put(vma_policy(vma));
243	kmem_cache_free(vm_area_cachep, vma);
244	return next;
245}
246
247SYSCALL_DEFINE1(brk, unsigned long, brk)
248{
249	unsigned long rlim, retval;
250	unsigned long newbrk, oldbrk;
251	struct mm_struct *mm = current->mm;
252	unsigned long min_brk;
253
254	down_write(&mm->mmap_sem);
255
256#ifdef CONFIG_COMPAT_BRK
257	min_brk = mm->end_code;
258#else
259	min_brk = mm->start_brk;
260#endif
261	if (brk < min_brk)
262		goto out;
263
264	/*
265	 * Check against rlimit here. If this check is done later after the test
266	 * of oldbrk with newbrk then it can escape the test and let the data
267	 * segment grow beyond its set limit the in case where the limit is
268	 * not page aligned -Ram Gupta
269	 */
270	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
271	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
272			(mm->end_data - mm->start_data) > rlim)
273		goto out;
274
275	newbrk = PAGE_ALIGN(brk);
276	oldbrk = PAGE_ALIGN(mm->brk);
277	if (oldbrk == newbrk)
278		goto set_brk;
279
280	/* Always allow shrinking brk. */
281	if (brk <= mm->brk) {
282		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
283			goto set_brk;
284		goto out;
285	}
286
287	/* Check against existing mmap mappings. */
288	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
289		goto out;
290
291	/* Ok, looks good - let it rip. */
292	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
293		goto out;
294set_brk:
295	mm->brk = brk;
296out:
297	retval = mm->brk;
298	up_write(&mm->mmap_sem);
299	return retval;
300}
301
302#ifdef DEBUG_MM_RB
303static int browse_rb(struct rb_root *root)
304{
305	int i = 0, j;
306	struct rb_node *nd, *pn = NULL;
307	unsigned long prev = 0, pend = 0;
308
309	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
310		struct vm_area_struct *vma;
311		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
312		if (vma->vm_start < prev)
313			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
314		if (vma->vm_start < pend)
315			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
316		if (vma->vm_start > vma->vm_end)
317			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
318		i++;
319		pn = nd;
320		prev = vma->vm_start;
321		pend = vma->vm_end;
322	}
323	j = 0;
324	for (nd = pn; nd; nd = rb_prev(nd)) {
325		j++;
326	}
327	if (i != j)
328		printk("backwards %d, forwards %d\n", j, i), i = 0;
329	return i;
330}
331
332void validate_mm(struct mm_struct *mm)
333{
334	int bug = 0;
335	int i = 0;
336	struct vm_area_struct *tmp = mm->mmap;
337	while (tmp) {
338		tmp = tmp->vm_next;
339		i++;
340	}
341	if (i != mm->map_count)
342		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
343	i = browse_rb(&mm->mm_rb);
344	if (i != mm->map_count)
345		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
346	BUG_ON(bug);
347}
348#else
349#define validate_mm(mm) do { } while (0)
350#endif
351
352static struct vm_area_struct *
353find_vma_prepare(struct mm_struct *mm, unsigned long addr,
354		struct vm_area_struct **pprev, struct rb_node ***rb_link,
355		struct rb_node ** rb_parent)
356{
357	struct vm_area_struct * vma;
358	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
359
360	__rb_link = &mm->mm_rb.rb_node;
361	rb_prev = __rb_parent = NULL;
362	vma = NULL;
363
364	while (*__rb_link) {
365		struct vm_area_struct *vma_tmp;
366
367		__rb_parent = *__rb_link;
368		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
369
370		if (vma_tmp->vm_end > addr) {
371			vma = vma_tmp;
372			if (vma_tmp->vm_start <= addr)
373				break;
374			__rb_link = &__rb_parent->rb_left;
375		} else {
376			rb_prev = __rb_parent;
377			__rb_link = &__rb_parent->rb_right;
378		}
379	}
380
381	*pprev = NULL;
382	if (rb_prev)
383		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
384	*rb_link = __rb_link;
385	*rb_parent = __rb_parent;
386	return vma;
387}
388
389static inline void
390__vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
391		struct vm_area_struct *prev, struct rb_node *rb_parent)
392{
393	if (prev) {
394		vma->vm_next = prev->vm_next;
395		prev->vm_next = vma;
396	} else {
397		mm->mmap = vma;
398		if (rb_parent)
399			vma->vm_next = rb_entry(rb_parent,
400					struct vm_area_struct, vm_rb);
401		else
402			vma->vm_next = NULL;
403	}
404}
405
406void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
407		struct rb_node **rb_link, struct rb_node *rb_parent)
408{
409	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
410	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
411}
412
413static void __vma_link_file(struct vm_area_struct *vma)
414{
415	struct file *file;
416
417	file = vma->vm_file;
418	if (file) {
419		struct address_space *mapping = file->f_mapping;
420
421		if (vma->vm_flags & VM_DENYWRITE)
422			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
423		if (vma->vm_flags & VM_SHARED)
424			mapping->i_mmap_writable++;
425
426		flush_dcache_mmap_lock(mapping);
427		if (unlikely(vma->vm_flags & VM_NONLINEAR))
428			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
429		else
430			vma_prio_tree_insert(vma, &mapping->i_mmap);
431		flush_dcache_mmap_unlock(mapping);
432	}
433}
434
435static void
436__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
437	struct vm_area_struct *prev, struct rb_node **rb_link,
438	struct rb_node *rb_parent)
439{
440	__vma_link_list(mm, vma, prev, rb_parent);
441	__vma_link_rb(mm, vma, rb_link, rb_parent);
442	__anon_vma_link(vma);
443}
444
445static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
446			struct vm_area_struct *prev, struct rb_node **rb_link,
447			struct rb_node *rb_parent)
448{
449	struct address_space *mapping = NULL;
450
451	if (vma->vm_file)
452		mapping = vma->vm_file->f_mapping;
453
454	if (mapping) {
455		spin_lock(&mapping->i_mmap_lock);
456		vma->vm_truncate_count = mapping->truncate_count;
457	}
458	anon_vma_lock(vma);
459
460	__vma_link(mm, vma, prev, rb_link, rb_parent);
461	__vma_link_file(vma);
462
463	anon_vma_unlock(vma);
464	if (mapping)
465		spin_unlock(&mapping->i_mmap_lock);
466
467	mm->map_count++;
468	validate_mm(mm);
469}
470
471/*
472 * Helper for vma_adjust in the split_vma insert case:
473 * insert vm structure into list and rbtree and anon_vma,
474 * but it has already been inserted into prio_tree earlier.
475 */
476static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
477{
478	struct vm_area_struct *__vma, *prev;
479	struct rb_node **rb_link, *rb_parent;
480
481	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
482	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
483	__vma_link(mm, vma, prev, rb_link, rb_parent);
484	mm->map_count++;
485}
486
487static inline void
488__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
489		struct vm_area_struct *prev)
490{
491	prev->vm_next = vma->vm_next;
492	rb_erase(&vma->vm_rb, &mm->mm_rb);
493	if (mm->mmap_cache == vma)
494		mm->mmap_cache = prev;
495}
496
497/*
498 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
499 * is already present in an i_mmap tree without adjusting the tree.
500 * The following helper function should be used when such adjustments
501 * are necessary.  The "insert" vma (if any) is to be inserted
502 * before we drop the necessary locks.
503 */
504void vma_adjust(struct vm_area_struct *vma, unsigned long start,
505	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
506{
507	struct mm_struct *mm = vma->vm_mm;
508	struct vm_area_struct *next = vma->vm_next;
509	struct vm_area_struct *importer = NULL;
510	struct address_space *mapping = NULL;
511	struct prio_tree_root *root = NULL;
512	struct file *file = vma->vm_file;
513	struct anon_vma *anon_vma = NULL;
514	long adjust_next = 0;
515	int remove_next = 0;
516
517	if (next && !insert) {
518		if (end >= next->vm_end) {
519			/*
520			 * vma expands, overlapping all the next, and
521			 * perhaps the one after too (mprotect case 6).
522			 */
523again:			remove_next = 1 + (end > next->vm_end);
524			end = next->vm_end;
525			anon_vma = next->anon_vma;
526			importer = vma;
527		} else if (end > next->vm_start) {
528			/*
529			 * vma expands, overlapping part of the next:
530			 * mprotect case 5 shifting the boundary up.
531			 */
532			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
533			anon_vma = next->anon_vma;
534			importer = vma;
535		} else if (end < vma->vm_end) {
536			/*
537			 * vma shrinks, and !insert tells it's not
538			 * split_vma inserting another: so it must be
539			 * mprotect case 4 shifting the boundary down.
540			 */
541			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
542			anon_vma = next->anon_vma;
543			importer = next;
544		}
545	}
546
547	if (file) {
548		mapping = file->f_mapping;
549		if (!(vma->vm_flags & VM_NONLINEAR))
550			root = &mapping->i_mmap;
551		spin_lock(&mapping->i_mmap_lock);
552		if (importer &&
553		    vma->vm_truncate_count != next->vm_truncate_count) {
554			/*
555			 * unmap_mapping_range might be in progress:
556			 * ensure that the expanding vma is rescanned.
557			 */
558			importer->vm_truncate_count = 0;
559		}
560		if (insert) {
561			insert->vm_truncate_count = vma->vm_truncate_count;
562			/*
563			 * Put into prio_tree now, so instantiated pages
564			 * are visible to arm/parisc __flush_dcache_page
565			 * throughout; but we cannot insert into address
566			 * space until vma start or end is updated.
567			 */
568			__vma_link_file(insert);
569		}
570	}
571
572	/*
573	 * When changing only vma->vm_end, we don't really need
574	 * anon_vma lock: but is that case worth optimizing out?
575	 */
576	if (vma->anon_vma)
577		anon_vma = vma->anon_vma;
578	if (anon_vma) {
579		spin_lock(&anon_vma->lock);
580		/*
581		 * Easily overlooked: when mprotect shifts the boundary,
582		 * make sure the expanding vma has anon_vma set if the
583		 * shrinking vma had, to cover any anon pages imported.
584		 */
585		if (importer && !importer->anon_vma) {
586			importer->anon_vma = anon_vma;
587			__anon_vma_link(importer);
588		}
589	}
590
591	if (root) {
592		flush_dcache_mmap_lock(mapping);
593		vma_prio_tree_remove(vma, root);
594		if (adjust_next)
595			vma_prio_tree_remove(next, root);
596	}
597
598	vma->vm_start = start;
599	vma->vm_end = end;
600	vma->vm_pgoff = pgoff;
601	if (adjust_next) {
602		next->vm_start += adjust_next << PAGE_SHIFT;
603		next->vm_pgoff += adjust_next;
604	}
605
606	if (root) {
607		if (adjust_next)
608			vma_prio_tree_insert(next, root);
609		vma_prio_tree_insert(vma, root);
610		flush_dcache_mmap_unlock(mapping);
611	}
612
613	if (remove_next) {
614		/*
615		 * vma_merge has merged next into vma, and needs
616		 * us to remove next before dropping the locks.
617		 */
618		__vma_unlink(mm, next, vma);
619		if (file)
620			__remove_shared_vm_struct(next, file, mapping);
621		if (next->anon_vma)
622			__anon_vma_merge(vma, next);
623	} else if (insert) {
624		/*
625		 * split_vma has split insert from vma, and needs
626		 * us to insert it before dropping the locks
627		 * (it may either follow vma or precede it).
628		 */
629		__insert_vm_struct(mm, insert);
630	}
631
632	if (anon_vma)
633		spin_unlock(&anon_vma->lock);
634	if (mapping)
635		spin_unlock(&mapping->i_mmap_lock);
636
637	if (remove_next) {
638		if (file) {
639			fput(file);
640			if (next->vm_flags & VM_EXECUTABLE)
641				removed_exe_file_vma(mm);
642		}
643		mm->map_count--;
644		mpol_put(vma_policy(next));
645		kmem_cache_free(vm_area_cachep, next);
646		/*
647		 * In mprotect's case 6 (see comments on vma_merge),
648		 * we must remove another next too. It would clutter
649		 * up the code too much to do both in one go.
650		 */
651		if (remove_next == 2) {
652			next = vma->vm_next;
653			goto again;
654		}
655	}
656
657	validate_mm(mm);
658}
659
660/*
661 * If the vma has a ->close operation then the driver probably needs to release
662 * per-vma resources, so we don't attempt to merge those.
663 */
664static inline int is_mergeable_vma(struct vm_area_struct *vma,
665			struct file *file, unsigned long vm_flags)
666{
667	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
668	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
669		return 0;
670	if (vma->vm_file != file)
671		return 0;
672	if (vma->vm_ops && vma->vm_ops->close)
673		return 0;
674	return 1;
675}
676
677static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
678					struct anon_vma *anon_vma2)
679{
680	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
681}
682
683/*
684 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
685 * in front of (at a lower virtual address and file offset than) the vma.
686 *
687 * We cannot merge two vmas if they have differently assigned (non-NULL)
688 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
689 *
690 * We don't check here for the merged mmap wrapping around the end of pagecache
691 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
692 * wrap, nor mmaps which cover the final page at index -1UL.
693 */
694static int
695can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
696	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
697{
698	if (is_mergeable_vma(vma, file, vm_flags) &&
699	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
700		if (vma->vm_pgoff == vm_pgoff)
701			return 1;
702	}
703	return 0;
704}
705
706/*
707 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
708 * beyond (at a higher virtual address and file offset than) the vma.
709 *
710 * We cannot merge two vmas if they have differently assigned (non-NULL)
711 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
712 */
713static int
714can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
715	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
716{
717	if (is_mergeable_vma(vma, file, vm_flags) &&
718	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
719		pgoff_t vm_pglen;
720		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
721		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
722			return 1;
723	}
724	return 0;
725}
726
727/*
728 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
729 * whether that can be merged with its predecessor or its successor.
730 * Or both (it neatly fills a hole).
731 *
732 * In most cases - when called for mmap, brk or mremap - [addr,end) is
733 * certain not to be mapped by the time vma_merge is called; but when
734 * called for mprotect, it is certain to be already mapped (either at
735 * an offset within prev, or at the start of next), and the flags of
736 * this area are about to be changed to vm_flags - and the no-change
737 * case has already been eliminated.
738 *
739 * The following mprotect cases have to be considered, where AAAA is
740 * the area passed down from mprotect_fixup, never extending beyond one
741 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
742 *
743 *     AAAA             AAAA                AAAA          AAAA
744 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
745 *    cannot merge    might become    might become    might become
746 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
747 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
748 *    mremap move:                                    PPPPNNNNNNNN 8
749 *        AAAA
750 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
751 *    might become    case 1 below    case 2 below    case 3 below
752 *
753 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
754 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
755 */
756struct vm_area_struct *vma_merge(struct mm_struct *mm,
757			struct vm_area_struct *prev, unsigned long addr,
758			unsigned long end, unsigned long vm_flags,
759		     	struct anon_vma *anon_vma, struct file *file,
760			pgoff_t pgoff, struct mempolicy *policy)
761{
762	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
763	struct vm_area_struct *area, *next;
764
765	/*
766	 * We later require that vma->vm_flags == vm_flags,
767	 * so this tests vma->vm_flags & VM_SPECIAL, too.
768	 */
769	if (vm_flags & VM_SPECIAL)
770		return NULL;
771
772	if (prev)
773		next = prev->vm_next;
774	else
775		next = mm->mmap;
776	area = next;
777	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
778		next = next->vm_next;
779
780	/*
781	 * Can it merge with the predecessor?
782	 */
783	if (prev && prev->vm_end == addr &&
784  			mpol_equal(vma_policy(prev), policy) &&
785			can_vma_merge_after(prev, vm_flags,
786						anon_vma, file, pgoff)) {
787		/*
788		 * OK, it can.  Can we now merge in the successor as well?
789		 */
790		if (next && end == next->vm_start &&
791				mpol_equal(policy, vma_policy(next)) &&
792				can_vma_merge_before(next, vm_flags,
793					anon_vma, file, pgoff+pglen) &&
794				is_mergeable_anon_vma(prev->anon_vma,
795						      next->anon_vma)) {
796							/* cases 1, 6 */
797			vma_adjust(prev, prev->vm_start,
798				next->vm_end, prev->vm_pgoff, NULL);
799		} else					/* cases 2, 5, 7 */
800			vma_adjust(prev, prev->vm_start,
801				end, prev->vm_pgoff, NULL);
802		return prev;
803	}
804
805	/*
806	 * Can this new request be merged in front of next?
807	 */
808	if (next && end == next->vm_start &&
809 			mpol_equal(policy, vma_policy(next)) &&
810			can_vma_merge_before(next, vm_flags,
811					anon_vma, file, pgoff+pglen)) {
812		if (prev && addr < prev->vm_end)	/* case 4 */
813			vma_adjust(prev, prev->vm_start,
814				addr, prev->vm_pgoff, NULL);
815		else					/* cases 3, 8 */
816			vma_adjust(area, addr, next->vm_end,
817				next->vm_pgoff - pglen, NULL);
818		return area;
819	}
820
821	return NULL;
822}
823
824/*
825 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
826 * neighbouring vmas for a suitable anon_vma, before it goes off
827 * to allocate a new anon_vma.  It checks because a repetitive
828 * sequence of mprotects and faults may otherwise lead to distinct
829 * anon_vmas being allocated, preventing vma merge in subsequent
830 * mprotect.
831 */
832struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
833{
834	struct vm_area_struct *near;
835	unsigned long vm_flags;
836
837	near = vma->vm_next;
838	if (!near)
839		goto try_prev;
840
841	/*
842	 * Since only mprotect tries to remerge vmas, match flags
843	 * which might be mprotected into each other later on.
844	 * Neither mlock nor madvise tries to remerge at present,
845	 * so leave their flags as obstructing a merge.
846	 */
847	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
848	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
849
850	if (near->anon_vma && vma->vm_end == near->vm_start &&
851 			mpol_equal(vma_policy(vma), vma_policy(near)) &&
852			can_vma_merge_before(near, vm_flags,
853				NULL, vma->vm_file, vma->vm_pgoff +
854				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
855		return near->anon_vma;
856try_prev:
857	/*
858	 * It is potentially slow to have to call find_vma_prev here.
859	 * But it's only on the first write fault on the vma, not
860	 * every time, and we could devise a way to avoid it later
861	 * (e.g. stash info in next's anon_vma_node when assigning
862	 * an anon_vma, or when trying vma_merge).  Another time.
863	 */
864	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
865	if (!near)
866		goto none;
867
868	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
869	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
870
871	if (near->anon_vma && near->vm_end == vma->vm_start &&
872  			mpol_equal(vma_policy(near), vma_policy(vma)) &&
873			can_vma_merge_after(near, vm_flags,
874				NULL, vma->vm_file, vma->vm_pgoff))
875		return near->anon_vma;
876none:
877	/*
878	 * There's no absolute need to look only at touching neighbours:
879	 * we could search further afield for "compatible" anon_vmas.
880	 * But it would probably just be a waste of time searching,
881	 * or lead to too many vmas hanging off the same anon_vma.
882	 * We're trying to allow mprotect remerging later on,
883	 * not trying to minimize memory used for anon_vmas.
884	 */
885	return NULL;
886}
887
888#ifdef CONFIG_PROC_FS
889void vm_stat_account(struct mm_struct *mm, unsigned long flags,
890						struct file *file, long pages)
891{
892	const unsigned long stack_flags
893		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
894
895	if (file) {
896		mm->shared_vm += pages;
897		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
898			mm->exec_vm += pages;
899	} else if (flags & stack_flags)
900		mm->stack_vm += pages;
901	if (flags & (VM_RESERVED|VM_IO))
902		mm->reserved_vm += pages;
903}
904#endif /* CONFIG_PROC_FS */
905
906/*
907 * The caller must hold down_write(&current->mm->mmap_sem).
908 */
909
910unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
911			unsigned long len, unsigned long prot,
912			unsigned long flags, unsigned long pgoff)
913{
914	struct mm_struct * mm = current->mm;
915	struct inode *inode;
916	unsigned int vm_flags;
917	int error;
918	unsigned long reqprot = prot;
919
920	/*
921	 * Does the application expect PROT_READ to imply PROT_EXEC?
922	 *
923	 * (the exception is when the underlying filesystem is noexec
924	 *  mounted, in which case we dont add PROT_EXEC.)
925	 */
926	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
927		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
928			prot |= PROT_EXEC;
929
930	if (!len)
931		return -EINVAL;
932
933	if (!(flags & MAP_FIXED))
934		addr = round_hint_to_min(addr);
935
936	error = arch_mmap_check(addr, len, flags);
937	if (error)
938		return error;
939
940	/* Careful about overflows.. */
941	len = PAGE_ALIGN(len);
942	if (!len || len > TASK_SIZE)
943		return -ENOMEM;
944
945	/* offset overflow? */
946	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
947               return -EOVERFLOW;
948
949	/* Too many mappings? */
950	if (mm->map_count > sysctl_max_map_count)
951		return -ENOMEM;
952
953	/* Obtain the address to map to. we verify (or select) it and ensure
954	 * that it represents a valid section of the address space.
955	 */
956	addr = get_unmapped_area(file, addr, len, pgoff, flags);
957	if (addr & ~PAGE_MASK)
958		return addr;
959
960	/* Do simple checking here so the lower-level routines won't have
961	 * to. we assume access permissions have been handled by the open
962	 * of the memory object, so we don't do any here.
963	 */
964	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
965			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
966
967	if (flags & MAP_LOCKED) {
968		if (!can_do_mlock())
969			return -EPERM;
970		vm_flags |= VM_LOCKED;
971	}
972
973	/* mlock MCL_FUTURE? */
974	if (vm_flags & VM_LOCKED) {
975		unsigned long locked, lock_limit;
976		locked = len >> PAGE_SHIFT;
977		locked += mm->locked_vm;
978		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
979		lock_limit >>= PAGE_SHIFT;
980		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
981			return -EAGAIN;
982	}
983
984	inode = file ? file->f_path.dentry->d_inode : NULL;
985
986	if (file) {
987		switch (flags & MAP_TYPE) {
988		case MAP_SHARED:
989			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
990				return -EACCES;
991
992			/*
993			 * Make sure we don't allow writing to an append-only
994			 * file..
995			 */
996			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
997				return -EACCES;
998
999			/*
1000			 * Make sure there are no mandatory locks on the file.
1001			 */
1002			if (locks_verify_locked(inode))
1003				return -EAGAIN;
1004
1005			vm_flags |= VM_SHARED | VM_MAYSHARE;
1006			if (!(file->f_mode & FMODE_WRITE))
1007				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1008
1009			/* fall through */
1010		case MAP_PRIVATE:
1011			if (!(file->f_mode & FMODE_READ))
1012				return -EACCES;
1013			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1014				if (vm_flags & VM_EXEC)
1015					return -EPERM;
1016				vm_flags &= ~VM_MAYEXEC;
1017			}
1018
1019			if (!file->f_op || !file->f_op->mmap)
1020				return -ENODEV;
1021			break;
1022
1023		default:
1024			return -EINVAL;
1025		}
1026	} else {
1027		switch (flags & MAP_TYPE) {
1028		case MAP_SHARED:
1029			/*
1030			 * Ignore pgoff.
1031			 */
1032			pgoff = 0;
1033			vm_flags |= VM_SHARED | VM_MAYSHARE;
1034			break;
1035		case MAP_PRIVATE:
1036			/*
1037			 * Set pgoff according to addr for anon_vma.
1038			 */
1039			pgoff = addr >> PAGE_SHIFT;
1040			break;
1041		default:
1042			return -EINVAL;
1043		}
1044	}
1045
1046	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1047	if (error)
1048		return error;
1049	error = ima_file_mmap(file, prot);
1050	if (error)
1051		return error;
1052
1053	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1054}
1055EXPORT_SYMBOL(do_mmap_pgoff);
1056
1057/*
1058 * Some shared mappigns will want the pages marked read-only
1059 * to track write events. If so, we'll downgrade vm_page_prot
1060 * to the private version (using protection_map[] without the
1061 * VM_SHARED bit).
1062 */
1063int vma_wants_writenotify(struct vm_area_struct *vma)
1064{
1065	unsigned int vm_flags = vma->vm_flags;
1066
1067	/* If it was private or non-writable, the write bit is already clear */
1068	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1069		return 0;
1070
1071	/* The backer wishes to know when pages are first written to? */
1072	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1073		return 1;
1074
1075	/* The open routine did something to the protections already? */
1076	if (pgprot_val(vma->vm_page_prot) !=
1077	    pgprot_val(vm_get_page_prot(vm_flags)))
1078		return 0;
1079
1080	/* Specialty mapping? */
1081	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1082		return 0;
1083
1084	/* Can the mapping track the dirty pages? */
1085	return vma->vm_file && vma->vm_file->f_mapping &&
1086		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1087}
1088
1089/*
1090 * We account for memory if it's a private writeable mapping,
1091 * not hugepages and VM_NORESERVE wasn't set.
1092 */
1093static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1094{
1095	/*
1096	 * hugetlb has its own accounting separate from the core VM
1097	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1098	 */
1099	if (file && is_file_hugepages(file))
1100		return 0;
1101
1102	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1103}
1104
1105unsigned long mmap_region(struct file *file, unsigned long addr,
1106			  unsigned long len, unsigned long flags,
1107			  unsigned int vm_flags, unsigned long pgoff)
1108{
1109	struct mm_struct *mm = current->mm;
1110	struct vm_area_struct *vma, *prev;
1111	int correct_wcount = 0;
1112	int error;
1113	struct rb_node **rb_link, *rb_parent;
1114	unsigned long charged = 0;
1115	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1116
1117	/* Clear old maps */
1118	error = -ENOMEM;
1119munmap_back:
1120	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1121	if (vma && vma->vm_start < addr + len) {
1122		if (do_munmap(mm, addr, len))
1123			return -ENOMEM;
1124		goto munmap_back;
1125	}
1126
1127	/* Check against address space limit. */
1128	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1129		return -ENOMEM;
1130
1131	/*
1132	 * Set 'VM_NORESERVE' if we should not account for the
1133	 * memory use of this mapping.
1134	 */
1135	if ((flags & MAP_NORESERVE)) {
1136		/* We honor MAP_NORESERVE if allowed to overcommit */
1137		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1138			vm_flags |= VM_NORESERVE;
1139
1140		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1141		if (file && is_file_hugepages(file))
1142			vm_flags |= VM_NORESERVE;
1143	}
1144
1145	/*
1146	 * Private writable mapping: check memory availability
1147	 */
1148	if (accountable_mapping(file, vm_flags)) {
1149		charged = len >> PAGE_SHIFT;
1150		if (security_vm_enough_memory(charged))
1151			return -ENOMEM;
1152		vm_flags |= VM_ACCOUNT;
1153	}
1154
1155	/*
1156	 * Can we just expand an old mapping?
1157	 */
1158	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1159	if (vma)
1160		goto out;
1161
1162	/*
1163	 * Determine the object being mapped and call the appropriate
1164	 * specific mapper. the address has already been validated, but
1165	 * not unmapped, but the maps are removed from the list.
1166	 */
1167	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1168	if (!vma) {
1169		error = -ENOMEM;
1170		goto unacct_error;
1171	}
1172
1173	vma->vm_mm = mm;
1174	vma->vm_start = addr;
1175	vma->vm_end = addr + len;
1176	vma->vm_flags = vm_flags;
1177	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1178	vma->vm_pgoff = pgoff;
1179
1180	if (file) {
1181		error = -EINVAL;
1182		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1183			goto free_vma;
1184		if (vm_flags & VM_DENYWRITE) {
1185			error = deny_write_access(file);
1186			if (error)
1187				goto free_vma;
1188			correct_wcount = 1;
1189		}
1190		vma->vm_file = file;
1191		get_file(file);
1192		error = file->f_op->mmap(file, vma);
1193		if (error)
1194			goto unmap_and_free_vma;
1195		if (vm_flags & VM_EXECUTABLE)
1196			added_exe_file_vma(mm);
1197	} else if (vm_flags & VM_SHARED) {
1198		error = shmem_zero_setup(vma);
1199		if (error)
1200			goto free_vma;
1201	}
1202
1203	/* Can addr have changed??
1204	 *
1205	 * Answer: Yes, several device drivers can do it in their
1206	 *         f_op->mmap method. -DaveM
1207	 */
1208	addr = vma->vm_start;
1209	pgoff = vma->vm_pgoff;
1210	vm_flags = vma->vm_flags;
1211
1212	if (vma_wants_writenotify(vma))
1213		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1214
1215	vma_link(mm, vma, prev, rb_link, rb_parent);
1216	file = vma->vm_file;
1217
1218	/* Once vma denies write, undo our temporary denial count */
1219	if (correct_wcount)
1220		atomic_inc(&inode->i_writecount);
1221out:
1222	perf_event_mmap(vma);
1223
1224	mm->total_vm += len >> PAGE_SHIFT;
1225	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1226	if (vm_flags & VM_LOCKED) {
1227		/*
1228		 * makes pages present; downgrades, drops, reacquires mmap_sem
1229		 */
1230		long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1231		if (nr_pages < 0)
1232			return nr_pages;	/* vma gone! */
1233		mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1234	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1235		make_pages_present(addr, addr + len);
1236	return addr;
1237
1238unmap_and_free_vma:
1239	if (correct_wcount)
1240		atomic_inc(&inode->i_writecount);
1241	vma->vm_file = NULL;
1242	fput(file);
1243
1244	/* Undo any partial mapping done by a device driver. */
1245	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1246	charged = 0;
1247free_vma:
1248	kmem_cache_free(vm_area_cachep, vma);
1249unacct_error:
1250	if (charged)
1251		vm_unacct_memory(charged);
1252	return error;
1253}
1254
1255/* Get an address range which is currently unmapped.
1256 * For shmat() with addr=0.
1257 *
1258 * Ugly calling convention alert:
1259 * Return value with the low bits set means error value,
1260 * ie
1261 *	if (ret & ~PAGE_MASK)
1262 *		error = ret;
1263 *
1264 * This function "knows" that -ENOMEM has the bits set.
1265 */
1266#ifndef HAVE_ARCH_UNMAPPED_AREA
1267unsigned long
1268arch_get_unmapped_area(struct file *filp, unsigned long addr,
1269		unsigned long len, unsigned long pgoff, unsigned long flags)
1270{
1271	struct mm_struct *mm = current->mm;
1272	struct vm_area_struct *vma;
1273	unsigned long start_addr;
1274
1275	if (len > TASK_SIZE)
1276		return -ENOMEM;
1277
1278	if (flags & MAP_FIXED)
1279		return addr;
1280
1281	if (addr) {
1282		addr = PAGE_ALIGN(addr);
1283		vma = find_vma(mm, addr);
1284		if (TASK_SIZE - len >= addr &&
1285		    (!vma || addr + len <= vma->vm_start))
1286			return addr;
1287	}
1288	if (len > mm->cached_hole_size) {
1289	        start_addr = addr = mm->free_area_cache;
1290	} else {
1291	        start_addr = addr = TASK_UNMAPPED_BASE;
1292	        mm->cached_hole_size = 0;
1293	}
1294
1295full_search:
1296	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1297		/* At this point:  (!vma || addr < vma->vm_end). */
1298		if (TASK_SIZE - len < addr) {
1299			/*
1300			 * Start a new search - just in case we missed
1301			 * some holes.
1302			 */
1303			if (start_addr != TASK_UNMAPPED_BASE) {
1304				addr = TASK_UNMAPPED_BASE;
1305			        start_addr = addr;
1306				mm->cached_hole_size = 0;
1307				goto full_search;
1308			}
1309			return -ENOMEM;
1310		}
1311		if (!vma || addr + len <= vma->vm_start) {
1312			/*
1313			 * Remember the place where we stopped the search:
1314			 */
1315			mm->free_area_cache = addr + len;
1316			return addr;
1317		}
1318		if (addr + mm->cached_hole_size < vma->vm_start)
1319		        mm->cached_hole_size = vma->vm_start - addr;
1320		addr = vma->vm_end;
1321	}
1322}
1323#endif
1324
1325void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1326{
1327	/*
1328	 * Is this a new hole at the lowest possible address?
1329	 */
1330	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1331		mm->free_area_cache = addr;
1332		mm->cached_hole_size = ~0UL;
1333	}
1334}
1335
1336/*
1337 * This mmap-allocator allocates new areas top-down from below the
1338 * stack's low limit (the base):
1339 */
1340#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1341unsigned long
1342arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1343			  const unsigned long len, const unsigned long pgoff,
1344			  const unsigned long flags)
1345{
1346	struct vm_area_struct *vma;
1347	struct mm_struct *mm = current->mm;
1348	unsigned long addr = addr0;
1349
1350	/* requested length too big for entire address space */
1351	if (len > TASK_SIZE)
1352		return -ENOMEM;
1353
1354	if (flags & MAP_FIXED)
1355		return addr;
1356
1357	/* requesting a specific address */
1358	if (addr) {
1359		addr = PAGE_ALIGN(addr);
1360		vma = find_vma(mm, addr);
1361		if (TASK_SIZE - len >= addr &&
1362				(!vma || addr + len <= vma->vm_start))
1363			return addr;
1364	}
1365
1366	/* check if free_area_cache is useful for us */
1367	if (len <= mm->cached_hole_size) {
1368 	        mm->cached_hole_size = 0;
1369 		mm->free_area_cache = mm->mmap_base;
1370 	}
1371
1372	/* either no address requested or can't fit in requested address hole */
1373	addr = mm->free_area_cache;
1374
1375	/* make sure it can fit in the remaining address space */
1376	if (addr > len) {
1377		vma = find_vma(mm, addr-len);
1378		if (!vma || addr <= vma->vm_start)
1379			/* remember the address as a hint for next time */
1380			return (mm->free_area_cache = addr-len);
1381	}
1382
1383	if (mm->mmap_base < len)
1384		goto bottomup;
1385
1386	addr = mm->mmap_base-len;
1387
1388	do {
1389		/*
1390		 * Lookup failure means no vma is above this address,
1391		 * else if new region fits below vma->vm_start,
1392		 * return with success:
1393		 */
1394		vma = find_vma(mm, addr);
1395		if (!vma || addr+len <= vma->vm_start)
1396			/* remember the address as a hint for next time */
1397			return (mm->free_area_cache = addr);
1398
1399 		/* remember the largest hole we saw so far */
1400 		if (addr + mm->cached_hole_size < vma->vm_start)
1401 		        mm->cached_hole_size = vma->vm_start - addr;
1402
1403		/* try just below the current vma->vm_start */
1404		addr = vma->vm_start-len;
1405	} while (len < vma->vm_start);
1406
1407bottomup:
1408	/*
1409	 * A failed mmap() very likely causes application failure,
1410	 * so fall back to the bottom-up function here. This scenario
1411	 * can happen with large stack limits and large mmap()
1412	 * allocations.
1413	 */
1414	mm->cached_hole_size = ~0UL;
1415  	mm->free_area_cache = TASK_UNMAPPED_BASE;
1416	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1417	/*
1418	 * Restore the topdown base:
1419	 */
1420	mm->free_area_cache = mm->mmap_base;
1421	mm->cached_hole_size = ~0UL;
1422
1423	return addr;
1424}
1425#endif
1426
1427void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1428{
1429	/*
1430	 * Is this a new hole at the highest possible address?
1431	 */
1432	if (addr > mm->free_area_cache)
1433		mm->free_area_cache = addr;
1434
1435	/* dont allow allocations above current base */
1436	if (mm->free_area_cache > mm->mmap_base)
1437		mm->free_area_cache = mm->mmap_base;
1438}
1439
1440unsigned long
1441get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1442		unsigned long pgoff, unsigned long flags)
1443{
1444	unsigned long (*get_area)(struct file *, unsigned long,
1445				  unsigned long, unsigned long, unsigned long);
1446
1447	get_area = current->mm->get_unmapped_area;
1448	if (file && file->f_op && file->f_op->get_unmapped_area)
1449		get_area = file->f_op->get_unmapped_area;
1450	addr = get_area(file, addr, len, pgoff, flags);
1451	if (IS_ERR_VALUE(addr))
1452		return addr;
1453
1454	if (addr > TASK_SIZE - len)
1455		return -ENOMEM;
1456	if (addr & ~PAGE_MASK)
1457		return -EINVAL;
1458
1459	return arch_rebalance_pgtables(addr, len);
1460}
1461
1462EXPORT_SYMBOL(get_unmapped_area);
1463
1464/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1465struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1466{
1467	struct vm_area_struct *vma = NULL;
1468
1469	if (mm) {
1470		/* Check the cache first. */
1471		/* (Cache hit rate is typically around 35%.) */
1472		vma = mm->mmap_cache;
1473		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1474			struct rb_node * rb_node;
1475
1476			rb_node = mm->mm_rb.rb_node;
1477			vma = NULL;
1478
1479			while (rb_node) {
1480				struct vm_area_struct * vma_tmp;
1481
1482				vma_tmp = rb_entry(rb_node,
1483						struct vm_area_struct, vm_rb);
1484
1485				if (vma_tmp->vm_end > addr) {
1486					vma = vma_tmp;
1487					if (vma_tmp->vm_start <= addr)
1488						break;
1489					rb_node = rb_node->rb_left;
1490				} else
1491					rb_node = rb_node->rb_right;
1492			}
1493			if (vma)
1494				mm->mmap_cache = vma;
1495		}
1496	}
1497	return vma;
1498}
1499
1500EXPORT_SYMBOL(find_vma);
1501
1502/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1503struct vm_area_struct *
1504find_vma_prev(struct mm_struct *mm, unsigned long addr,
1505			struct vm_area_struct **pprev)
1506{
1507	struct vm_area_struct *vma = NULL, *prev = NULL;
1508	struct rb_node *rb_node;
1509	if (!mm)
1510		goto out;
1511
1512	/* Guard against addr being lower than the first VMA */
1513	vma = mm->mmap;
1514
1515	/* Go through the RB tree quickly. */
1516	rb_node = mm->mm_rb.rb_node;
1517
1518	while (rb_node) {
1519		struct vm_area_struct *vma_tmp;
1520		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1521
1522		if (addr < vma_tmp->vm_end) {
1523			rb_node = rb_node->rb_left;
1524		} else {
1525			prev = vma_tmp;
1526			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1527				break;
1528			rb_node = rb_node->rb_right;
1529		}
1530	}
1531
1532out:
1533	*pprev = prev;
1534	return prev ? prev->vm_next : vma;
1535}
1536
1537/*
1538 * Verify that the stack growth is acceptable and
1539 * update accounting. This is shared with both the
1540 * grow-up and grow-down cases.
1541 */
1542static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1543{
1544	struct mm_struct *mm = vma->vm_mm;
1545	struct rlimit *rlim = current->signal->rlim;
1546	unsigned long new_start;
1547
1548	/* address space limit tests */
1549	if (!may_expand_vm(mm, grow))
1550		return -ENOMEM;
1551
1552	/* Stack limit test */
1553	if (size > rlim[RLIMIT_STACK].rlim_cur)
1554		return -ENOMEM;
1555
1556	/* mlock limit tests */
1557	if (vma->vm_flags & VM_LOCKED) {
1558		unsigned long locked;
1559		unsigned long limit;
1560		locked = mm->locked_vm + grow;
1561		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1562		if (locked > limit && !capable(CAP_IPC_LOCK))
1563			return -ENOMEM;
1564	}
1565
1566	/* Check to ensure the stack will not grow into a hugetlb-only region */
1567	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1568			vma->vm_end - size;
1569	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1570		return -EFAULT;
1571
1572	/*
1573	 * Overcommit..  This must be the final test, as it will
1574	 * update security statistics.
1575	 */
1576	if (security_vm_enough_memory_mm(mm, grow))
1577		return -ENOMEM;
1578
1579	/* Ok, everything looks good - let it rip */
1580	mm->total_vm += grow;
1581	if (vma->vm_flags & VM_LOCKED)
1582		mm->locked_vm += grow;
1583	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1584	return 0;
1585}
1586
1587#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1588/*
1589 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1590 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1591 */
1592#ifndef CONFIG_IA64
1593static
1594#endif
1595int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1596{
1597	int error;
1598
1599	if (!(vma->vm_flags & VM_GROWSUP))
1600		return -EFAULT;
1601
1602	/*
1603	 * We must make sure the anon_vma is allocated
1604	 * so that the anon_vma locking is not a noop.
1605	 */
1606	if (unlikely(anon_vma_prepare(vma)))
1607		return -ENOMEM;
1608	anon_vma_lock(vma);
1609
1610	/*
1611	 * vma->vm_start/vm_end cannot change under us because the caller
1612	 * is required to hold the mmap_sem in read mode.  We need the
1613	 * anon_vma lock to serialize against concurrent expand_stacks.
1614	 * Also guard against wrapping around to address 0.
1615	 */
1616	if (address < PAGE_ALIGN(address+4))
1617		address = PAGE_ALIGN(address+4);
1618	else {
1619		anon_vma_unlock(vma);
1620		return -ENOMEM;
1621	}
1622	error = 0;
1623
1624	/* Somebody else might have raced and expanded it already */
1625	if (address > vma->vm_end) {
1626		unsigned long size, grow;
1627
1628		size = address - vma->vm_start;
1629		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1630
1631		error = acct_stack_growth(vma, size, grow);
1632		if (!error)
1633			vma->vm_end = address;
1634	}
1635	anon_vma_unlock(vma);
1636	return error;
1637}
1638#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1639
1640/*
1641 * vma is the first one with address < vma->vm_start.  Have to extend vma.
1642 */
1643static int expand_downwards(struct vm_area_struct *vma,
1644				   unsigned long address)
1645{
1646	int error;
1647
1648	/*
1649	 * We must make sure the anon_vma is allocated
1650	 * so that the anon_vma locking is not a noop.
1651	 */
1652	if (unlikely(anon_vma_prepare(vma)))
1653		return -ENOMEM;
1654
1655	address &= PAGE_MASK;
1656	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1657	if (error)
1658		return error;
1659
1660	anon_vma_lock(vma);
1661
1662	/*
1663	 * vma->vm_start/vm_end cannot change under us because the caller
1664	 * is required to hold the mmap_sem in read mode.  We need the
1665	 * anon_vma lock to serialize against concurrent expand_stacks.
1666	 */
1667
1668	/* Somebody else might have raced and expanded it already */
1669	if (address < vma->vm_start) {
1670		unsigned long size, grow;
1671
1672		size = vma->vm_end - address;
1673		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1674
1675		error = acct_stack_growth(vma, size, grow);
1676		if (!error) {
1677			vma->vm_start = address;
1678			vma->vm_pgoff -= grow;
1679		}
1680	}
1681	anon_vma_unlock(vma);
1682	return error;
1683}
1684
1685int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1686{
1687	return expand_downwards(vma, address);
1688}
1689
1690#ifdef CONFIG_STACK_GROWSUP
1691int expand_stack(struct vm_area_struct *vma, unsigned long address)
1692{
1693	return expand_upwards(vma, address);
1694}
1695
1696struct vm_area_struct *
1697find_extend_vma(struct mm_struct *mm, unsigned long addr)
1698{
1699	struct vm_area_struct *vma, *prev;
1700
1701	addr &= PAGE_MASK;
1702	vma = find_vma_prev(mm, addr, &prev);
1703	if (vma && (vma->vm_start <= addr))
1704		return vma;
1705	if (!prev || expand_stack(prev, addr))
1706		return NULL;
1707	if (prev->vm_flags & VM_LOCKED) {
1708		if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1709			return NULL;	/* vma gone! */
1710	}
1711	return prev;
1712}
1713#else
1714int expand_stack(struct vm_area_struct *vma, unsigned long address)
1715{
1716	return expand_downwards(vma, address);
1717}
1718
1719struct vm_area_struct *
1720find_extend_vma(struct mm_struct * mm, unsigned long addr)
1721{
1722	struct vm_area_struct * vma;
1723	unsigned long start;
1724
1725	addr &= PAGE_MASK;
1726	vma = find_vma(mm,addr);
1727	if (!vma)
1728		return NULL;
1729	if (vma->vm_start <= addr)
1730		return vma;
1731	if (!(vma->vm_flags & VM_GROWSDOWN))
1732		return NULL;
1733	start = vma->vm_start;
1734	if (expand_stack(vma, addr))
1735		return NULL;
1736	if (vma->vm_flags & VM_LOCKED) {
1737		if (mlock_vma_pages_range(vma, addr, start) < 0)
1738			return NULL;	/* vma gone! */
1739	}
1740	return vma;
1741}
1742#endif
1743
1744/*
1745 * Ok - we have the memory areas we should free on the vma list,
1746 * so release them, and do the vma updates.
1747 *
1748 * Called with the mm semaphore held.
1749 */
1750static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1751{
1752	/* Update high watermark before we lower total_vm */
1753	update_hiwater_vm(mm);
1754	do {
1755		long nrpages = vma_pages(vma);
1756
1757		mm->total_vm -= nrpages;
1758		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1759		vma = remove_vma(vma);
1760	} while (vma);
1761	validate_mm(mm);
1762}
1763
1764/*
1765 * Get rid of page table information in the indicated region.
1766 *
1767 * Called with the mm semaphore held.
1768 */
1769static void unmap_region(struct mm_struct *mm,
1770		struct vm_area_struct *vma, struct vm_area_struct *prev,
1771		unsigned long start, unsigned long end)
1772{
1773	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1774	struct mmu_gather *tlb;
1775	unsigned long nr_accounted = 0;
1776
1777	lru_add_drain();
1778	tlb = tlb_gather_mmu(mm, 0);
1779	update_hiwater_rss(mm);
1780	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1781	vm_unacct_memory(nr_accounted);
1782	free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1783				 next? next->vm_start: 0);
1784	tlb_finish_mmu(tlb, start, end);
1785}
1786
1787/*
1788 * Create a list of vma's touched by the unmap, removing them from the mm's
1789 * vma list as we go..
1790 */
1791static void
1792detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1793	struct vm_area_struct *prev, unsigned long end)
1794{
1795	struct vm_area_struct **insertion_point;
1796	struct vm_area_struct *tail_vma = NULL;
1797	unsigned long addr;
1798
1799	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1800	do {
1801		rb_erase(&vma->vm_rb, &mm->mm_rb);
1802		mm->map_count--;
1803		tail_vma = vma;
1804		vma = vma->vm_next;
1805	} while (vma && vma->vm_start < end);
1806	*insertion_point = vma;
1807	tail_vma->vm_next = NULL;
1808	if (mm->unmap_area == arch_unmap_area)
1809		addr = prev ? prev->vm_end : mm->mmap_base;
1810	else
1811		addr = vma ?  vma->vm_start : mm->mmap_base;
1812	mm->unmap_area(mm, addr);
1813	mm->mmap_cache = NULL;		/* Kill the cache. */
1814}
1815
1816/*
1817 * Split a vma into two pieces at address 'addr', a new vma is allocated
1818 * either for the first part or the tail.
1819 */
1820int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1821	      unsigned long addr, int new_below)
1822{
1823	struct mempolicy *pol;
1824	struct vm_area_struct *new;
1825
1826	if (is_vm_hugetlb_page(vma) && (addr &
1827					~(huge_page_mask(hstate_vma(vma)))))
1828		return -EINVAL;
1829
1830	if (mm->map_count >= sysctl_max_map_count)
1831		return -ENOMEM;
1832
1833	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1834	if (!new)
1835		return -ENOMEM;
1836
1837	/* most fields are the same, copy all, and then fixup */
1838	*new = *vma;
1839
1840	if (new_below)
1841		new->vm_end = addr;
1842	else {
1843		new->vm_start = addr;
1844		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1845	}
1846
1847	pol = mpol_dup(vma_policy(vma));
1848	if (IS_ERR(pol)) {
1849		kmem_cache_free(vm_area_cachep, new);
1850		return PTR_ERR(pol);
1851	}
1852	vma_set_policy(new, pol);
1853
1854	if (new->vm_file) {
1855		get_file(new->vm_file);
1856		if (vma->vm_flags & VM_EXECUTABLE)
1857			added_exe_file_vma(mm);
1858	}
1859
1860	if (new->vm_ops && new->vm_ops->open)
1861		new->vm_ops->open(new);
1862
1863	if (new_below)
1864		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1865			((addr - new->vm_start) >> PAGE_SHIFT), new);
1866	else
1867		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1868
1869	return 0;
1870}
1871
1872/* Munmap is split into 2 main parts -- this part which finds
1873 * what needs doing, and the areas themselves, which do the
1874 * work.  This now handles partial unmappings.
1875 * Jeremy Fitzhardinge <jeremy@goop.org>
1876 */
1877int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1878{
1879	unsigned long end;
1880	struct vm_area_struct *vma, *prev, *last;
1881
1882	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1883		return -EINVAL;
1884
1885	if ((len = PAGE_ALIGN(len)) == 0)
1886		return -EINVAL;
1887
1888	/* Find the first overlapping VMA */
1889	vma = find_vma_prev(mm, start, &prev);
1890	if (!vma)
1891		return 0;
1892	/* we have  start < vma->vm_end  */
1893
1894	/* if it doesn't overlap, we have nothing.. */
1895	end = start + len;
1896	if (vma->vm_start >= end)
1897		return 0;
1898
1899	/*
1900	 * If we need to split any vma, do it now to save pain later.
1901	 *
1902	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1903	 * unmapped vm_area_struct will remain in use: so lower split_vma
1904	 * places tmp vma above, and higher split_vma places tmp vma below.
1905	 */
1906	if (start > vma->vm_start) {
1907		int error = split_vma(mm, vma, start, 0);
1908		if (error)
1909			return error;
1910		prev = vma;
1911	}
1912
1913	/* Does it split the last one? */
1914	last = find_vma(mm, end);
1915	if (last && end > last->vm_start) {
1916		int error = split_vma(mm, last, end, 1);
1917		if (error)
1918			return error;
1919	}
1920	vma = prev? prev->vm_next: mm->mmap;
1921
1922	/*
1923	 * unlock any mlock()ed ranges before detaching vmas
1924	 */
1925	if (mm->locked_vm) {
1926		struct vm_area_struct *tmp = vma;
1927		while (tmp && tmp->vm_start < end) {
1928			if (tmp->vm_flags & VM_LOCKED) {
1929				mm->locked_vm -= vma_pages(tmp);
1930				munlock_vma_pages_all(tmp);
1931			}
1932			tmp = tmp->vm_next;
1933		}
1934	}
1935
1936	/*
1937	 * Remove the vma's, and unmap the actual pages
1938	 */
1939	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1940	unmap_region(mm, vma, prev, start, end);
1941
1942	/* Fix up all other VM information */
1943	remove_vma_list(mm, vma);
1944
1945	return 0;
1946}
1947
1948EXPORT_SYMBOL(do_munmap);
1949
1950SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1951{
1952	int ret;
1953	struct mm_struct *mm = current->mm;
1954
1955	profile_munmap(addr);
1956
1957	down_write(&mm->mmap_sem);
1958	ret = do_munmap(mm, addr, len);
1959	up_write(&mm->mmap_sem);
1960	return ret;
1961}
1962
1963static inline void verify_mm_writelocked(struct mm_struct *mm)
1964{
1965#ifdef CONFIG_DEBUG_VM
1966	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1967		WARN_ON(1);
1968		up_read(&mm->mmap_sem);
1969	}
1970#endif
1971}
1972
1973/*
1974 *  this is really a simplified "do_mmap".  it only handles
1975 *  anonymous maps.  eventually we may be able to do some
1976 *  brk-specific accounting here.
1977 */
1978unsigned long do_brk(unsigned long addr, unsigned long len)
1979{
1980	struct mm_struct * mm = current->mm;
1981	struct vm_area_struct * vma, * prev;
1982	unsigned long flags;
1983	struct rb_node ** rb_link, * rb_parent;
1984	pgoff_t pgoff = addr >> PAGE_SHIFT;
1985	int error;
1986
1987	len = PAGE_ALIGN(len);
1988	if (!len)
1989		return addr;
1990
1991	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1992		return -EINVAL;
1993
1994	if (is_hugepage_only_range(mm, addr, len))
1995		return -EINVAL;
1996
1997	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
1998	if (error)
1999		return error;
2000
2001	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2002
2003	error = arch_mmap_check(addr, len, flags);
2004	if (error)
2005		return error;
2006
2007	/*
2008	 * mlock MCL_FUTURE?
2009	 */
2010	if (mm->def_flags & VM_LOCKED) {
2011		unsigned long locked, lock_limit;
2012		locked = len >> PAGE_SHIFT;
2013		locked += mm->locked_vm;
2014		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2015		lock_limit >>= PAGE_SHIFT;
2016		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2017			return -EAGAIN;
2018	}
2019
2020	/*
2021	 * mm->mmap_sem is required to protect against another thread
2022	 * changing the mappings in case we sleep.
2023	 */
2024	verify_mm_writelocked(mm);
2025
2026	/*
2027	 * Clear old maps.  this also does some error checking for us
2028	 */
2029 munmap_back:
2030	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2031	if (vma && vma->vm_start < addr + len) {
2032		if (do_munmap(mm, addr, len))
2033			return -ENOMEM;
2034		goto munmap_back;
2035	}
2036
2037	/* Check against address space limits *after* clearing old maps... */
2038	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2039		return -ENOMEM;
2040
2041	if (mm->map_count > sysctl_max_map_count)
2042		return -ENOMEM;
2043
2044	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2045		return -ENOMEM;
2046
2047	/* Can we just expand an old private anonymous mapping? */
2048	vma = vma_merge(mm, prev, addr, addr + len, flags,
2049					NULL, NULL, pgoff, NULL);
2050	if (vma)
2051		goto out;
2052
2053	/*
2054	 * create a vma struct for an anonymous mapping
2055	 */
2056	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2057	if (!vma) {
2058		vm_unacct_memory(len >> PAGE_SHIFT);
2059		return -ENOMEM;
2060	}
2061
2062	vma->vm_mm = mm;
2063	vma->vm_start = addr;
2064	vma->vm_end = addr + len;
2065	vma->vm_pgoff = pgoff;
2066	vma->vm_flags = flags;
2067	vma->vm_page_prot = vm_get_page_prot(flags);
2068	vma_link(mm, vma, prev, rb_link, rb_parent);
2069out:
2070	mm->total_vm += len >> PAGE_SHIFT;
2071	if (flags & VM_LOCKED) {
2072		if (!mlock_vma_pages_range(vma, addr, addr + len))
2073			mm->locked_vm += (len >> PAGE_SHIFT);
2074	}
2075	return addr;
2076}
2077
2078EXPORT_SYMBOL(do_brk);
2079
2080/* Release all mmaps. */
2081void exit_mmap(struct mm_struct *mm)
2082{
2083	struct mmu_gather *tlb;
2084	struct vm_area_struct *vma;
2085	unsigned long nr_accounted = 0;
2086	unsigned long end;
2087
2088	/* mm's last user has gone, and its about to be pulled down */
2089	mmu_notifier_release(mm);
2090
2091	if (mm->locked_vm) {
2092		vma = mm->mmap;
2093		while (vma) {
2094			if (vma->vm_flags & VM_LOCKED)
2095				munlock_vma_pages_all(vma);
2096			vma = vma->vm_next;
2097		}
2098	}
2099
2100	arch_exit_mmap(mm);
2101
2102	vma = mm->mmap;
2103	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2104		return;
2105
2106	lru_add_drain();
2107	flush_cache_mm(mm);
2108	tlb = tlb_gather_mmu(mm, 1);
2109	/* update_hiwater_rss(mm) here? but nobody should be looking */
2110	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2111	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2112	vm_unacct_memory(nr_accounted);
2113
2114	free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2115	tlb_finish_mmu(tlb, 0, end);
2116
2117	/*
2118	 * Walk the list again, actually closing and freeing it,
2119	 * with preemption enabled, without holding any MM locks.
2120	 */
2121	while (vma)
2122		vma = remove_vma(vma);
2123
2124	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2125}
2126
2127/* Insert vm structure into process list sorted by address
2128 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2129 * then i_mmap_lock is taken here.
2130 */
2131int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2132{
2133	struct vm_area_struct * __vma, * prev;
2134	struct rb_node ** rb_link, * rb_parent;
2135
2136	/*
2137	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2138	 * until its first write fault, when page's anon_vma and index
2139	 * are set.  But now set the vm_pgoff it will almost certainly
2140	 * end up with (unless mremap moves it elsewhere before that
2141	 * first wfault), so /proc/pid/maps tells a consistent story.
2142	 *
2143	 * By setting it to reflect the virtual start address of the
2144	 * vma, merges and splits can happen in a seamless way, just
2145	 * using the existing file pgoff checks and manipulations.
2146	 * Similarly in do_mmap_pgoff and in do_brk.
2147	 */
2148	if (!vma->vm_file) {
2149		BUG_ON(vma->anon_vma);
2150		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2151	}
2152	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2153	if (__vma && __vma->vm_start < vma->vm_end)
2154		return -ENOMEM;
2155	if ((vma->vm_flags & VM_ACCOUNT) &&
2156	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2157		return -ENOMEM;
2158	vma_link(mm, vma, prev, rb_link, rb_parent);
2159	return 0;
2160}
2161
2162/*
2163 * Copy the vma structure to a new location in the same mm,
2164 * prior to moving page table entries, to effect an mremap move.
2165 */
2166struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2167	unsigned long addr, unsigned long len, pgoff_t pgoff)
2168{
2169	struct vm_area_struct *vma = *vmap;
2170	unsigned long vma_start = vma->vm_start;
2171	struct mm_struct *mm = vma->vm_mm;
2172	struct vm_area_struct *new_vma, *prev;
2173	struct rb_node **rb_link, *rb_parent;
2174	struct mempolicy *pol;
2175
2176	/*
2177	 * If anonymous vma has not yet been faulted, update new pgoff
2178	 * to match new location, to increase its chance of merging.
2179	 */
2180	if (!vma->vm_file && !vma->anon_vma)
2181		pgoff = addr >> PAGE_SHIFT;
2182
2183	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2184	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2185			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2186	if (new_vma) {
2187		/*
2188		 * Source vma may have been merged into new_vma
2189		 */
2190		if (vma_start >= new_vma->vm_start &&
2191		    vma_start < new_vma->vm_end)
2192			*vmap = new_vma;
2193	} else {
2194		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2195		if (new_vma) {
2196			*new_vma = *vma;
2197			pol = mpol_dup(vma_policy(vma));
2198			if (IS_ERR(pol)) {
2199				kmem_cache_free(vm_area_cachep, new_vma);
2200				return NULL;
2201			}
2202			vma_set_policy(new_vma, pol);
2203			new_vma->vm_start = addr;
2204			new_vma->vm_end = addr + len;
2205			new_vma->vm_pgoff = pgoff;
2206			if (new_vma->vm_file) {
2207				get_file(new_vma->vm_file);
2208				if (vma->vm_flags & VM_EXECUTABLE)
2209					added_exe_file_vma(mm);
2210			}
2211			if (new_vma->vm_ops && new_vma->vm_ops->open)
2212				new_vma->vm_ops->open(new_vma);
2213			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2214		}
2215	}
2216	return new_vma;
2217}
2218
2219/*
2220 * Return true if the calling process may expand its vm space by the passed
2221 * number of pages
2222 */
2223int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2224{
2225	unsigned long cur = mm->total_vm;	/* pages */
2226	unsigned long lim;
2227
2228	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2229
2230	if (cur + npages > lim)
2231		return 0;
2232	return 1;
2233}
2234
2235
2236static int special_mapping_fault(struct vm_area_struct *vma,
2237				struct vm_fault *vmf)
2238{
2239	pgoff_t pgoff;
2240	struct page **pages;
2241
2242	/*
2243	 * special mappings have no vm_file, and in that case, the mm
2244	 * uses vm_pgoff internally. So we have to subtract it from here.
2245	 * We are allowed to do this because we are the mm; do not copy
2246	 * this code into drivers!
2247	 */
2248	pgoff = vmf->pgoff - vma->vm_pgoff;
2249
2250	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2251		pgoff--;
2252
2253	if (*pages) {
2254		struct page *page = *pages;
2255		get_page(page);
2256		vmf->page = page;
2257		return 0;
2258	}
2259
2260	return VM_FAULT_SIGBUS;
2261}
2262
2263/*
2264 * Having a close hook prevents vma merging regardless of flags.
2265 */
2266static void special_mapping_close(struct vm_area_struct *vma)
2267{
2268}
2269
2270static struct vm_operations_struct special_mapping_vmops = {
2271	.close = special_mapping_close,
2272	.fault = special_mapping_fault,
2273};
2274
2275/*
2276 * Called with mm->mmap_sem held for writing.
2277 * Insert a new vma covering the given region, with the given flags.
2278 * Its pages are supplied by the given array of struct page *.
2279 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2280 * The region past the last page supplied will always produce SIGBUS.
2281 * The array pointer and the pages it points to are assumed to stay alive
2282 * for as long as this mapping might exist.
2283 */
2284int install_special_mapping(struct mm_struct *mm,
2285			    unsigned long addr, unsigned long len,
2286			    unsigned long vm_flags, struct page **pages)
2287{
2288	struct vm_area_struct *vma;
2289
2290	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2291	if (unlikely(vma == NULL))
2292		return -ENOMEM;
2293
2294	vma->vm_mm = mm;
2295	vma->vm_start = addr;
2296	vma->vm_end = addr + len;
2297
2298	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2299	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2300
2301	vma->vm_ops = &special_mapping_vmops;
2302	vma->vm_private_data = pages;
2303
2304	if (unlikely(insert_vm_struct(mm, vma))) {
2305		kmem_cache_free(vm_area_cachep, vma);
2306		return -ENOMEM;
2307	}
2308
2309	mm->total_vm += len >> PAGE_SHIFT;
2310
2311	perf_event_mmap(vma);
2312
2313	return 0;
2314}
2315
2316static DEFINE_MUTEX(mm_all_locks_mutex);
2317
2318static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2319{
2320	if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2321		/*
2322		 * The LSB of head.next can't change from under us
2323		 * because we hold the mm_all_locks_mutex.
2324		 */
2325		spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2326		/*
2327		 * We can safely modify head.next after taking the
2328		 * anon_vma->lock. If some other vma in this mm shares
2329		 * the same anon_vma we won't take it again.
2330		 *
2331		 * No need of atomic instructions here, head.next
2332		 * can't change from under us thanks to the
2333		 * anon_vma->lock.
2334		 */
2335		if (__test_and_set_bit(0, (unsigned long *)
2336				       &anon_vma->head.next))
2337			BUG();
2338	}
2339}
2340
2341static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2342{
2343	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2344		/*
2345		 * AS_MM_ALL_LOCKS can't change from under us because
2346		 * we hold the mm_all_locks_mutex.
2347		 *
2348		 * Operations on ->flags have to be atomic because
2349		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2350		 * mm_all_locks_mutex, there may be other cpus
2351		 * changing other bitflags in parallel to us.
2352		 */
2353		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2354			BUG();
2355		spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2356	}
2357}
2358
2359/*
2360 * This operation locks against the VM for all pte/vma/mm related
2361 * operations that could ever happen on a certain mm. This includes
2362 * vmtruncate, try_to_unmap, and all page faults.
2363 *
2364 * The caller must take the mmap_sem in write mode before calling
2365 * mm_take_all_locks(). The caller isn't allowed to release the
2366 * mmap_sem until mm_drop_all_locks() returns.
2367 *
2368 * mmap_sem in write mode is required in order to block all operations
2369 * that could modify pagetables and free pages without need of
2370 * altering the vma layout (for example populate_range() with
2371 * nonlinear vmas). It's also needed in write mode to avoid new
2372 * anon_vmas to be associated with existing vmas.
2373 *
2374 * A single task can't take more than one mm_take_all_locks() in a row
2375 * or it would deadlock.
2376 *
2377 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2378 * mapping->flags avoid to take the same lock twice, if more than one
2379 * vma in this mm is backed by the same anon_vma or address_space.
2380 *
2381 * We can take all the locks in random order because the VM code
2382 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2383 * takes more than one of them in a row. Secondly we're protected
2384 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2385 *
2386 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2387 * that may have to take thousand of locks.
2388 *
2389 * mm_take_all_locks() can fail if it's interrupted by signals.
2390 */
2391int mm_take_all_locks(struct mm_struct *mm)
2392{
2393	struct vm_area_struct *vma;
2394	int ret = -EINTR;
2395
2396	BUG_ON(down_read_trylock(&mm->mmap_sem));
2397
2398	mutex_lock(&mm_all_locks_mutex);
2399
2400	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2401		if (signal_pending(current))
2402			goto out_unlock;
2403		if (vma->vm_file && vma->vm_file->f_mapping)
2404			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2405	}
2406
2407	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2408		if (signal_pending(current))
2409			goto out_unlock;
2410		if (vma->anon_vma)
2411			vm_lock_anon_vma(mm, vma->anon_vma);
2412	}
2413
2414	ret = 0;
2415
2416out_unlock:
2417	if (ret)
2418		mm_drop_all_locks(mm);
2419
2420	return ret;
2421}
2422
2423static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2424{
2425	if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2426		/*
2427		 * The LSB of head.next can't change to 0 from under
2428		 * us because we hold the mm_all_locks_mutex.
2429		 *
2430		 * We must however clear the bitflag before unlocking
2431		 * the vma so the users using the anon_vma->head will
2432		 * never see our bitflag.
2433		 *
2434		 * No need of atomic instructions here, head.next
2435		 * can't change from under us until we release the
2436		 * anon_vma->lock.
2437		 */
2438		if (!__test_and_clear_bit(0, (unsigned long *)
2439					  &anon_vma->head.next))
2440			BUG();
2441		spin_unlock(&anon_vma->lock);
2442	}
2443}
2444
2445static void vm_unlock_mapping(struct address_space *mapping)
2446{
2447	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2448		/*
2449		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2450		 * because we hold the mm_all_locks_mutex.
2451		 */
2452		spin_unlock(&mapping->i_mmap_lock);
2453		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2454					&mapping->flags))
2455			BUG();
2456	}
2457}
2458
2459/*
2460 * The mmap_sem cannot be released by the caller until
2461 * mm_drop_all_locks() returns.
2462 */
2463void mm_drop_all_locks(struct mm_struct *mm)
2464{
2465	struct vm_area_struct *vma;
2466
2467	BUG_ON(down_read_trylock(&mm->mmap_sem));
2468	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2469
2470	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2471		if (vma->anon_vma)
2472			vm_unlock_anon_vma(vma->anon_vma);
2473		if (vma->vm_file && vma->vm_file->f_mapping)
2474			vm_unlock_mapping(vma->vm_file->f_mapping);
2475	}
2476
2477	mutex_unlock(&mm_all_locks_mutex);
2478}
2479
2480/*
2481 * initialise the VMA slab
2482 */
2483void __init mmap_init(void)
2484{
2485	int ret;
2486
2487	ret = percpu_counter_init(&vm_committed_as, 0);
2488	VM_BUG_ON(ret);
2489}
2490