mmap.c revision 9480c53e9b2aa13a06283ffb96bb8f1873ac4e9a
1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7 */
8
9#include <linux/slab.h>
10#include <linux/backing-dev.h>
11#include <linux/mm.h>
12#include <linux/shm.h>
13#include <linux/mman.h>
14#include <linux/pagemap.h>
15#include <linux/swap.h>
16#include <linux/syscalls.h>
17#include <linux/capability.h>
18#include <linux/init.h>
19#include <linux/file.h>
20#include <linux/fs.h>
21#include <linux/personality.h>
22#include <linux/security.h>
23#include <linux/hugetlb.h>
24#include <linux/profile.h>
25#include <linux/module.h>
26#include <linux/mount.h>
27#include <linux/mempolicy.h>
28#include <linux/rmap.h>
29#include <linux/mmu_notifier.h>
30
31#include <asm/uaccess.h>
32#include <asm/cacheflush.h>
33#include <asm/tlb.h>
34#include <asm/mmu_context.h>
35
36#include "internal.h"
37
38#ifndef arch_mmap_check
39#define arch_mmap_check(addr, len, flags)	(0)
40#endif
41
42#ifndef arch_rebalance_pgtables
43#define arch_rebalance_pgtables(addr, len)		(addr)
44#endif
45
46static void unmap_region(struct mm_struct *mm,
47		struct vm_area_struct *vma, struct vm_area_struct *prev,
48		unsigned long start, unsigned long end);
49
50/*
51 * WARNING: the debugging will use recursive algorithms so never enable this
52 * unless you know what you are doing.
53 */
54#undef DEBUG_MM_RB
55
56/* description of effects of mapping type and prot in current implementation.
57 * this is due to the limited x86 page protection hardware.  The expected
58 * behavior is in parens:
59 *
60 * map_type	prot
61 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
62 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
63 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
64 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
65 *
66 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
67 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
68 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
69 *
70 */
71pgprot_t protection_map[16] = {
72	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
73	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
74};
75
76pgprot_t vm_get_page_prot(unsigned long vm_flags)
77{
78	return __pgprot(pgprot_val(protection_map[vm_flags &
79				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
80			pgprot_val(arch_vm_get_page_prot(vm_flags)));
81}
82EXPORT_SYMBOL(vm_get_page_prot);
83
84int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
85int sysctl_overcommit_ratio = 50;	/* default is 50% */
86int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
87atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0);
88
89/*
90 * Check that a process has enough memory to allocate a new virtual
91 * mapping. 0 means there is enough memory for the allocation to
92 * succeed and -ENOMEM implies there is not.
93 *
94 * We currently support three overcommit policies, which are set via the
95 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
96 *
97 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
98 * Additional code 2002 Jul 20 by Robert Love.
99 *
100 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
101 *
102 * Note this is a helper function intended to be used by LSMs which
103 * wish to use this logic.
104 */
105int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
106{
107	unsigned long free, allowed;
108
109	vm_acct_memory(pages);
110
111	/*
112	 * Sometimes we want to use more memory than we have
113	 */
114	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
115		return 0;
116
117	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
118		unsigned long n;
119
120		free = global_page_state(NR_FILE_PAGES);
121		free += nr_swap_pages;
122
123		/*
124		 * Any slabs which are created with the
125		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
126		 * which are reclaimable, under pressure.  The dentry
127		 * cache and most inode caches should fall into this
128		 */
129		free += global_page_state(NR_SLAB_RECLAIMABLE);
130
131		/*
132		 * Leave the last 3% for root
133		 */
134		if (!cap_sys_admin)
135			free -= free / 32;
136
137		if (free > pages)
138			return 0;
139
140		/*
141		 * nr_free_pages() is very expensive on large systems,
142		 * only call if we're about to fail.
143		 */
144		n = nr_free_pages();
145
146		/*
147		 * Leave reserved pages. The pages are not for anonymous pages.
148		 */
149		if (n <= totalreserve_pages)
150			goto error;
151		else
152			n -= totalreserve_pages;
153
154		/*
155		 * Leave the last 3% for root
156		 */
157		if (!cap_sys_admin)
158			n -= n / 32;
159		free += n;
160
161		if (free > pages)
162			return 0;
163
164		goto error;
165	}
166
167	allowed = (totalram_pages - hugetlb_total_pages())
168	       	* sysctl_overcommit_ratio / 100;
169	/*
170	 * Leave the last 3% for root
171	 */
172	if (!cap_sys_admin)
173		allowed -= allowed / 32;
174	allowed += total_swap_pages;
175
176	/* Don't let a single process grow too big:
177	   leave 3% of the size of this process for other processes */
178	if (mm)
179		allowed -= mm->total_vm / 32;
180
181	/*
182	 * cast `allowed' as a signed long because vm_committed_space
183	 * sometimes has a negative value
184	 */
185	if (atomic_long_read(&vm_committed_space) < (long)allowed)
186		return 0;
187error:
188	vm_unacct_memory(pages);
189
190	return -ENOMEM;
191}
192
193/*
194 * Requires inode->i_mapping->i_mmap_lock
195 */
196static void __remove_shared_vm_struct(struct vm_area_struct *vma,
197		struct file *file, struct address_space *mapping)
198{
199	if (vma->vm_flags & VM_DENYWRITE)
200		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
201	if (vma->vm_flags & VM_SHARED)
202		mapping->i_mmap_writable--;
203
204	flush_dcache_mmap_lock(mapping);
205	if (unlikely(vma->vm_flags & VM_NONLINEAR))
206		list_del_init(&vma->shared.vm_set.list);
207	else
208		vma_prio_tree_remove(vma, &mapping->i_mmap);
209	flush_dcache_mmap_unlock(mapping);
210}
211
212/*
213 * Unlink a file-based vm structure from its prio_tree, to hide
214 * vma from rmap and vmtruncate before freeing its page tables.
215 */
216void unlink_file_vma(struct vm_area_struct *vma)
217{
218	struct file *file = vma->vm_file;
219
220	if (file) {
221		struct address_space *mapping = file->f_mapping;
222		spin_lock(&mapping->i_mmap_lock);
223		__remove_shared_vm_struct(vma, file, mapping);
224		spin_unlock(&mapping->i_mmap_lock);
225	}
226}
227
228/*
229 * Close a vm structure and free it, returning the next.
230 */
231static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
232{
233	struct vm_area_struct *next = vma->vm_next;
234
235	might_sleep();
236	if (vma->vm_ops && vma->vm_ops->close)
237		vma->vm_ops->close(vma);
238	if (vma->vm_file) {
239		fput(vma->vm_file);
240		if (vma->vm_flags & VM_EXECUTABLE)
241			removed_exe_file_vma(vma->vm_mm);
242	}
243	mpol_put(vma_policy(vma));
244	kmem_cache_free(vm_area_cachep, vma);
245	return next;
246}
247
248SYSCALL_DEFINE1(brk, unsigned long, brk)
249{
250	unsigned long rlim, retval;
251	unsigned long newbrk, oldbrk;
252	struct mm_struct *mm = current->mm;
253	unsigned long min_brk;
254
255	down_write(&mm->mmap_sem);
256
257#ifdef CONFIG_COMPAT_BRK
258	min_brk = mm->end_code;
259#else
260	min_brk = mm->start_brk;
261#endif
262	if (brk < min_brk)
263		goto out;
264
265	/*
266	 * Check against rlimit here. If this check is done later after the test
267	 * of oldbrk with newbrk then it can escape the test and let the data
268	 * segment grow beyond its set limit the in case where the limit is
269	 * not page aligned -Ram Gupta
270	 */
271	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
272	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
273			(mm->end_data - mm->start_data) > rlim)
274		goto out;
275
276	newbrk = PAGE_ALIGN(brk);
277	oldbrk = PAGE_ALIGN(mm->brk);
278	if (oldbrk == newbrk)
279		goto set_brk;
280
281	/* Always allow shrinking brk. */
282	if (brk <= mm->brk) {
283		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
284			goto set_brk;
285		goto out;
286	}
287
288	/* Check against existing mmap mappings. */
289	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
290		goto out;
291
292	/* Ok, looks good - let it rip. */
293	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
294		goto out;
295set_brk:
296	mm->brk = brk;
297out:
298	retval = mm->brk;
299	up_write(&mm->mmap_sem);
300	return retval;
301}
302
303#ifdef DEBUG_MM_RB
304static int browse_rb(struct rb_root *root)
305{
306	int i = 0, j;
307	struct rb_node *nd, *pn = NULL;
308	unsigned long prev = 0, pend = 0;
309
310	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
311		struct vm_area_struct *vma;
312		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
313		if (vma->vm_start < prev)
314			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
315		if (vma->vm_start < pend)
316			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
317		if (vma->vm_start > vma->vm_end)
318			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
319		i++;
320		pn = nd;
321		prev = vma->vm_start;
322		pend = vma->vm_end;
323	}
324	j = 0;
325	for (nd = pn; nd; nd = rb_prev(nd)) {
326		j++;
327	}
328	if (i != j)
329		printk("backwards %d, forwards %d\n", j, i), i = 0;
330	return i;
331}
332
333void validate_mm(struct mm_struct *mm)
334{
335	int bug = 0;
336	int i = 0;
337	struct vm_area_struct *tmp = mm->mmap;
338	while (tmp) {
339		tmp = tmp->vm_next;
340		i++;
341	}
342	if (i != mm->map_count)
343		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
344	i = browse_rb(&mm->mm_rb);
345	if (i != mm->map_count)
346		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
347	BUG_ON(bug);
348}
349#else
350#define validate_mm(mm) do { } while (0)
351#endif
352
353static struct vm_area_struct *
354find_vma_prepare(struct mm_struct *mm, unsigned long addr,
355		struct vm_area_struct **pprev, struct rb_node ***rb_link,
356		struct rb_node ** rb_parent)
357{
358	struct vm_area_struct * vma;
359	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
360
361	__rb_link = &mm->mm_rb.rb_node;
362	rb_prev = __rb_parent = NULL;
363	vma = NULL;
364
365	while (*__rb_link) {
366		struct vm_area_struct *vma_tmp;
367
368		__rb_parent = *__rb_link;
369		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
370
371		if (vma_tmp->vm_end > addr) {
372			vma = vma_tmp;
373			if (vma_tmp->vm_start <= addr)
374				break;
375			__rb_link = &__rb_parent->rb_left;
376		} else {
377			rb_prev = __rb_parent;
378			__rb_link = &__rb_parent->rb_right;
379		}
380	}
381
382	*pprev = NULL;
383	if (rb_prev)
384		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
385	*rb_link = __rb_link;
386	*rb_parent = __rb_parent;
387	return vma;
388}
389
390static inline void
391__vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
392		struct vm_area_struct *prev, struct rb_node *rb_parent)
393{
394	if (prev) {
395		vma->vm_next = prev->vm_next;
396		prev->vm_next = vma;
397	} else {
398		mm->mmap = vma;
399		if (rb_parent)
400			vma->vm_next = rb_entry(rb_parent,
401					struct vm_area_struct, vm_rb);
402		else
403			vma->vm_next = NULL;
404	}
405}
406
407void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
408		struct rb_node **rb_link, struct rb_node *rb_parent)
409{
410	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
411	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
412}
413
414static void __vma_link_file(struct vm_area_struct *vma)
415{
416	struct file *file;
417
418	file = vma->vm_file;
419	if (file) {
420		struct address_space *mapping = file->f_mapping;
421
422		if (vma->vm_flags & VM_DENYWRITE)
423			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
424		if (vma->vm_flags & VM_SHARED)
425			mapping->i_mmap_writable++;
426
427		flush_dcache_mmap_lock(mapping);
428		if (unlikely(vma->vm_flags & VM_NONLINEAR))
429			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
430		else
431			vma_prio_tree_insert(vma, &mapping->i_mmap);
432		flush_dcache_mmap_unlock(mapping);
433	}
434}
435
436static void
437__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
438	struct vm_area_struct *prev, struct rb_node **rb_link,
439	struct rb_node *rb_parent)
440{
441	__vma_link_list(mm, vma, prev, rb_parent);
442	__vma_link_rb(mm, vma, rb_link, rb_parent);
443	__anon_vma_link(vma);
444}
445
446static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
447			struct vm_area_struct *prev, struct rb_node **rb_link,
448			struct rb_node *rb_parent)
449{
450	struct address_space *mapping = NULL;
451
452	if (vma->vm_file)
453		mapping = vma->vm_file->f_mapping;
454
455	if (mapping) {
456		spin_lock(&mapping->i_mmap_lock);
457		vma->vm_truncate_count = mapping->truncate_count;
458	}
459	anon_vma_lock(vma);
460
461	__vma_link(mm, vma, prev, rb_link, rb_parent);
462	__vma_link_file(vma);
463
464	anon_vma_unlock(vma);
465	if (mapping)
466		spin_unlock(&mapping->i_mmap_lock);
467
468	mm->map_count++;
469	validate_mm(mm);
470}
471
472/*
473 * Helper for vma_adjust in the split_vma insert case:
474 * insert vm structure into list and rbtree and anon_vma,
475 * but it has already been inserted into prio_tree earlier.
476 */
477static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
478{
479	struct vm_area_struct *__vma, *prev;
480	struct rb_node **rb_link, *rb_parent;
481
482	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
483	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
484	__vma_link(mm, vma, prev, rb_link, rb_parent);
485	mm->map_count++;
486}
487
488static inline void
489__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
490		struct vm_area_struct *prev)
491{
492	prev->vm_next = vma->vm_next;
493	rb_erase(&vma->vm_rb, &mm->mm_rb);
494	if (mm->mmap_cache == vma)
495		mm->mmap_cache = prev;
496}
497
498/*
499 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
500 * is already present in an i_mmap tree without adjusting the tree.
501 * The following helper function should be used when such adjustments
502 * are necessary.  The "insert" vma (if any) is to be inserted
503 * before we drop the necessary locks.
504 */
505void vma_adjust(struct vm_area_struct *vma, unsigned long start,
506	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
507{
508	struct mm_struct *mm = vma->vm_mm;
509	struct vm_area_struct *next = vma->vm_next;
510	struct vm_area_struct *importer = NULL;
511	struct address_space *mapping = NULL;
512	struct prio_tree_root *root = NULL;
513	struct file *file = vma->vm_file;
514	struct anon_vma *anon_vma = NULL;
515	long adjust_next = 0;
516	int remove_next = 0;
517
518	if (next && !insert) {
519		if (end >= next->vm_end) {
520			/*
521			 * vma expands, overlapping all the next, and
522			 * perhaps the one after too (mprotect case 6).
523			 */
524again:			remove_next = 1 + (end > next->vm_end);
525			end = next->vm_end;
526			anon_vma = next->anon_vma;
527			importer = vma;
528		} else if (end > next->vm_start) {
529			/*
530			 * vma expands, overlapping part of the next:
531			 * mprotect case 5 shifting the boundary up.
532			 */
533			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
534			anon_vma = next->anon_vma;
535			importer = vma;
536		} else if (end < vma->vm_end) {
537			/*
538			 * vma shrinks, and !insert tells it's not
539			 * split_vma inserting another: so it must be
540			 * mprotect case 4 shifting the boundary down.
541			 */
542			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
543			anon_vma = next->anon_vma;
544			importer = next;
545		}
546	}
547
548	if (file) {
549		mapping = file->f_mapping;
550		if (!(vma->vm_flags & VM_NONLINEAR))
551			root = &mapping->i_mmap;
552		spin_lock(&mapping->i_mmap_lock);
553		if (importer &&
554		    vma->vm_truncate_count != next->vm_truncate_count) {
555			/*
556			 * unmap_mapping_range might be in progress:
557			 * ensure that the expanding vma is rescanned.
558			 */
559			importer->vm_truncate_count = 0;
560		}
561		if (insert) {
562			insert->vm_truncate_count = vma->vm_truncate_count;
563			/*
564			 * Put into prio_tree now, so instantiated pages
565			 * are visible to arm/parisc __flush_dcache_page
566			 * throughout; but we cannot insert into address
567			 * space until vma start or end is updated.
568			 */
569			__vma_link_file(insert);
570		}
571	}
572
573	/*
574	 * When changing only vma->vm_end, we don't really need
575	 * anon_vma lock: but is that case worth optimizing out?
576	 */
577	if (vma->anon_vma)
578		anon_vma = vma->anon_vma;
579	if (anon_vma) {
580		spin_lock(&anon_vma->lock);
581		/*
582		 * Easily overlooked: when mprotect shifts the boundary,
583		 * make sure the expanding vma has anon_vma set if the
584		 * shrinking vma had, to cover any anon pages imported.
585		 */
586		if (importer && !importer->anon_vma) {
587			importer->anon_vma = anon_vma;
588			__anon_vma_link(importer);
589		}
590	}
591
592	if (root) {
593		flush_dcache_mmap_lock(mapping);
594		vma_prio_tree_remove(vma, root);
595		if (adjust_next)
596			vma_prio_tree_remove(next, root);
597	}
598
599	vma->vm_start = start;
600	vma->vm_end = end;
601	vma->vm_pgoff = pgoff;
602	if (adjust_next) {
603		next->vm_start += adjust_next << PAGE_SHIFT;
604		next->vm_pgoff += adjust_next;
605	}
606
607	if (root) {
608		if (adjust_next)
609			vma_prio_tree_insert(next, root);
610		vma_prio_tree_insert(vma, root);
611		flush_dcache_mmap_unlock(mapping);
612	}
613
614	if (remove_next) {
615		/*
616		 * vma_merge has merged next into vma, and needs
617		 * us to remove next before dropping the locks.
618		 */
619		__vma_unlink(mm, next, vma);
620		if (file)
621			__remove_shared_vm_struct(next, file, mapping);
622		if (next->anon_vma)
623			__anon_vma_merge(vma, next);
624	} else if (insert) {
625		/*
626		 * split_vma has split insert from vma, and needs
627		 * us to insert it before dropping the locks
628		 * (it may either follow vma or precede it).
629		 */
630		__insert_vm_struct(mm, insert);
631	}
632
633	if (anon_vma)
634		spin_unlock(&anon_vma->lock);
635	if (mapping)
636		spin_unlock(&mapping->i_mmap_lock);
637
638	if (remove_next) {
639		if (file) {
640			fput(file);
641			if (next->vm_flags & VM_EXECUTABLE)
642				removed_exe_file_vma(mm);
643		}
644		mm->map_count--;
645		mpol_put(vma_policy(next));
646		kmem_cache_free(vm_area_cachep, next);
647		/*
648		 * In mprotect's case 6 (see comments on vma_merge),
649		 * we must remove another next too. It would clutter
650		 * up the code too much to do both in one go.
651		 */
652		if (remove_next == 2) {
653			next = vma->vm_next;
654			goto again;
655		}
656	}
657
658	validate_mm(mm);
659}
660
661/* Flags that can be inherited from an existing mapping when merging */
662#define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR)
663
664/*
665 * If the vma has a ->close operation then the driver probably needs to release
666 * per-vma resources, so we don't attempt to merge those.
667 */
668static inline int is_mergeable_vma(struct vm_area_struct *vma,
669			struct file *file, unsigned long vm_flags)
670{
671	if ((vma->vm_flags ^ vm_flags) & ~VM_MERGEABLE_FLAGS)
672		return 0;
673	if (vma->vm_file != file)
674		return 0;
675	if (vma->vm_ops && vma->vm_ops->close)
676		return 0;
677	return 1;
678}
679
680static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
681					struct anon_vma *anon_vma2)
682{
683	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
684}
685
686/*
687 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
688 * in front of (at a lower virtual address and file offset than) the vma.
689 *
690 * We cannot merge two vmas if they have differently assigned (non-NULL)
691 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
692 *
693 * We don't check here for the merged mmap wrapping around the end of pagecache
694 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
695 * wrap, nor mmaps which cover the final page at index -1UL.
696 */
697static int
698can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
699	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
700{
701	if (is_mergeable_vma(vma, file, vm_flags) &&
702	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
703		if (vma->vm_pgoff == vm_pgoff)
704			return 1;
705	}
706	return 0;
707}
708
709/*
710 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
711 * beyond (at a higher virtual address and file offset than) the vma.
712 *
713 * We cannot merge two vmas if they have differently assigned (non-NULL)
714 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
715 */
716static int
717can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
718	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
719{
720	if (is_mergeable_vma(vma, file, vm_flags) &&
721	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
722		pgoff_t vm_pglen;
723		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
724		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
725			return 1;
726	}
727	return 0;
728}
729
730/*
731 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
732 * whether that can be merged with its predecessor or its successor.
733 * Or both (it neatly fills a hole).
734 *
735 * In most cases - when called for mmap, brk or mremap - [addr,end) is
736 * certain not to be mapped by the time vma_merge is called; but when
737 * called for mprotect, it is certain to be already mapped (either at
738 * an offset within prev, or at the start of next), and the flags of
739 * this area are about to be changed to vm_flags - and the no-change
740 * case has already been eliminated.
741 *
742 * The following mprotect cases have to be considered, where AAAA is
743 * the area passed down from mprotect_fixup, never extending beyond one
744 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
745 *
746 *     AAAA             AAAA                AAAA          AAAA
747 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
748 *    cannot merge    might become    might become    might become
749 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
750 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
751 *    mremap move:                                    PPPPNNNNNNNN 8
752 *        AAAA
753 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
754 *    might become    case 1 below    case 2 below    case 3 below
755 *
756 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
757 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
758 */
759struct vm_area_struct *vma_merge(struct mm_struct *mm,
760			struct vm_area_struct *prev, unsigned long addr,
761			unsigned long end, unsigned long vm_flags,
762		     	struct anon_vma *anon_vma, struct file *file,
763			pgoff_t pgoff, struct mempolicy *policy)
764{
765	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
766	struct vm_area_struct *area, *next;
767
768	/*
769	 * We later require that vma->vm_flags == vm_flags,
770	 * so this tests vma->vm_flags & VM_SPECIAL, too.
771	 */
772	if (vm_flags & VM_SPECIAL)
773		return NULL;
774
775	if (prev)
776		next = prev->vm_next;
777	else
778		next = mm->mmap;
779	area = next;
780	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
781		next = next->vm_next;
782
783	/*
784	 * Can it merge with the predecessor?
785	 */
786	if (prev && prev->vm_end == addr &&
787  			mpol_equal(vma_policy(prev), policy) &&
788			can_vma_merge_after(prev, vm_flags,
789						anon_vma, file, pgoff)) {
790		/*
791		 * OK, it can.  Can we now merge in the successor as well?
792		 */
793		if (next && end == next->vm_start &&
794				mpol_equal(policy, vma_policy(next)) &&
795				can_vma_merge_before(next, vm_flags,
796					anon_vma, file, pgoff+pglen) &&
797				is_mergeable_anon_vma(prev->anon_vma,
798						      next->anon_vma)) {
799							/* cases 1, 6 */
800			vma_adjust(prev, prev->vm_start,
801				next->vm_end, prev->vm_pgoff, NULL);
802		} else					/* cases 2, 5, 7 */
803			vma_adjust(prev, prev->vm_start,
804				end, prev->vm_pgoff, NULL);
805		return prev;
806	}
807
808	/*
809	 * Can this new request be merged in front of next?
810	 */
811	if (next && end == next->vm_start &&
812 			mpol_equal(policy, vma_policy(next)) &&
813			can_vma_merge_before(next, vm_flags,
814					anon_vma, file, pgoff+pglen)) {
815		if (prev && addr < prev->vm_end)	/* case 4 */
816			vma_adjust(prev, prev->vm_start,
817				addr, prev->vm_pgoff, NULL);
818		else					/* cases 3, 8 */
819			vma_adjust(area, addr, next->vm_end,
820				next->vm_pgoff - pglen, NULL);
821		return area;
822	}
823
824	return NULL;
825}
826
827/*
828 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
829 * neighbouring vmas for a suitable anon_vma, before it goes off
830 * to allocate a new anon_vma.  It checks because a repetitive
831 * sequence of mprotects and faults may otherwise lead to distinct
832 * anon_vmas being allocated, preventing vma merge in subsequent
833 * mprotect.
834 */
835struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
836{
837	struct vm_area_struct *near;
838	unsigned long vm_flags;
839
840	near = vma->vm_next;
841	if (!near)
842		goto try_prev;
843
844	/*
845	 * Since only mprotect tries to remerge vmas, match flags
846	 * which might be mprotected into each other later on.
847	 * Neither mlock nor madvise tries to remerge at present,
848	 * so leave their flags as obstructing a merge.
849	 */
850	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
851	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
852
853	if (near->anon_vma && vma->vm_end == near->vm_start &&
854 			mpol_equal(vma_policy(vma), vma_policy(near)) &&
855			can_vma_merge_before(near, vm_flags,
856				NULL, vma->vm_file, vma->vm_pgoff +
857				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
858		return near->anon_vma;
859try_prev:
860	/*
861	 * It is potentially slow to have to call find_vma_prev here.
862	 * But it's only on the first write fault on the vma, not
863	 * every time, and we could devise a way to avoid it later
864	 * (e.g. stash info in next's anon_vma_node when assigning
865	 * an anon_vma, or when trying vma_merge).  Another time.
866	 */
867	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
868	if (!near)
869		goto none;
870
871	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
872	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
873
874	if (near->anon_vma && near->vm_end == vma->vm_start &&
875  			mpol_equal(vma_policy(near), vma_policy(vma)) &&
876			can_vma_merge_after(near, vm_flags,
877				NULL, vma->vm_file, vma->vm_pgoff))
878		return near->anon_vma;
879none:
880	/*
881	 * There's no absolute need to look only at touching neighbours:
882	 * we could search further afield for "compatible" anon_vmas.
883	 * But it would probably just be a waste of time searching,
884	 * or lead to too many vmas hanging off the same anon_vma.
885	 * We're trying to allow mprotect remerging later on,
886	 * not trying to minimize memory used for anon_vmas.
887	 */
888	return NULL;
889}
890
891#ifdef CONFIG_PROC_FS
892void vm_stat_account(struct mm_struct *mm, unsigned long flags,
893						struct file *file, long pages)
894{
895	const unsigned long stack_flags
896		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
897
898	if (file) {
899		mm->shared_vm += pages;
900		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
901			mm->exec_vm += pages;
902	} else if (flags & stack_flags)
903		mm->stack_vm += pages;
904	if (flags & (VM_RESERVED|VM_IO))
905		mm->reserved_vm += pages;
906}
907#endif /* CONFIG_PROC_FS */
908
909/*
910 * The caller must hold down_write(current->mm->mmap_sem).
911 */
912
913unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
914			unsigned long len, unsigned long prot,
915			unsigned long flags, unsigned long pgoff)
916{
917	struct mm_struct * mm = current->mm;
918	struct inode *inode;
919	unsigned int vm_flags;
920	int error;
921	unsigned long reqprot = prot;
922
923	/*
924	 * Does the application expect PROT_READ to imply PROT_EXEC?
925	 *
926	 * (the exception is when the underlying filesystem is noexec
927	 *  mounted, in which case we dont add PROT_EXEC.)
928	 */
929	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
930		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
931			prot |= PROT_EXEC;
932
933	if (!len)
934		return -EINVAL;
935
936	if (!(flags & MAP_FIXED))
937		addr = round_hint_to_min(addr);
938
939	error = arch_mmap_check(addr, len, flags);
940	if (error)
941		return error;
942
943	/* Careful about overflows.. */
944	len = PAGE_ALIGN(len);
945	if (!len || len > TASK_SIZE)
946		return -ENOMEM;
947
948	/* offset overflow? */
949	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
950               return -EOVERFLOW;
951
952	/* Too many mappings? */
953	if (mm->map_count > sysctl_max_map_count)
954		return -ENOMEM;
955
956	/* Obtain the address to map to. we verify (or select) it and ensure
957	 * that it represents a valid section of the address space.
958	 */
959	addr = get_unmapped_area(file, addr, len, pgoff, flags);
960	if (addr & ~PAGE_MASK)
961		return addr;
962
963	/* Do simple checking here so the lower-level routines won't have
964	 * to. we assume access permissions have been handled by the open
965	 * of the memory object, so we don't do any here.
966	 */
967	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
968			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
969
970	if (flags & MAP_LOCKED) {
971		if (!can_do_mlock())
972			return -EPERM;
973		vm_flags |= VM_LOCKED;
974	}
975
976	/* mlock MCL_FUTURE? */
977	if (vm_flags & VM_LOCKED) {
978		unsigned long locked, lock_limit;
979		locked = len >> PAGE_SHIFT;
980		locked += mm->locked_vm;
981		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
982		lock_limit >>= PAGE_SHIFT;
983		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
984			return -EAGAIN;
985	}
986
987	inode = file ? file->f_path.dentry->d_inode : NULL;
988
989	if (file) {
990		switch (flags & MAP_TYPE) {
991		case MAP_SHARED:
992			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
993				return -EACCES;
994
995			/*
996			 * Make sure we don't allow writing to an append-only
997			 * file..
998			 */
999			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1000				return -EACCES;
1001
1002			/*
1003			 * Make sure there are no mandatory locks on the file.
1004			 */
1005			if (locks_verify_locked(inode))
1006				return -EAGAIN;
1007
1008			vm_flags |= VM_SHARED | VM_MAYSHARE;
1009			if (!(file->f_mode & FMODE_WRITE))
1010				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1011
1012			/* fall through */
1013		case MAP_PRIVATE:
1014			if (!(file->f_mode & FMODE_READ))
1015				return -EACCES;
1016			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1017				if (vm_flags & VM_EXEC)
1018					return -EPERM;
1019				vm_flags &= ~VM_MAYEXEC;
1020			}
1021
1022			if (!file->f_op || !file->f_op->mmap)
1023				return -ENODEV;
1024			break;
1025
1026		default:
1027			return -EINVAL;
1028		}
1029	} else {
1030		switch (flags & MAP_TYPE) {
1031		case MAP_SHARED:
1032			/*
1033			 * Ignore pgoff.
1034			 */
1035			pgoff = 0;
1036			vm_flags |= VM_SHARED | VM_MAYSHARE;
1037			break;
1038		case MAP_PRIVATE:
1039			/*
1040			 * Set pgoff according to addr for anon_vma.
1041			 */
1042			pgoff = addr >> PAGE_SHIFT;
1043			break;
1044		default:
1045			return -EINVAL;
1046		}
1047	}
1048
1049	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1050	if (error)
1051		return error;
1052
1053	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1054}
1055EXPORT_SYMBOL(do_mmap_pgoff);
1056
1057/*
1058 * Some shared mappigns will want the pages marked read-only
1059 * to track write events. If so, we'll downgrade vm_page_prot
1060 * to the private version (using protection_map[] without the
1061 * VM_SHARED bit).
1062 */
1063int vma_wants_writenotify(struct vm_area_struct *vma)
1064{
1065	unsigned int vm_flags = vma->vm_flags;
1066
1067	/* If it was private or non-writable, the write bit is already clear */
1068	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1069		return 0;
1070
1071	/* The backer wishes to know when pages are first written to? */
1072	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1073		return 1;
1074
1075	/* The open routine did something to the protections already? */
1076	if (pgprot_val(vma->vm_page_prot) !=
1077	    pgprot_val(vm_get_page_prot(vm_flags)))
1078		return 0;
1079
1080	/* Specialty mapping? */
1081	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1082		return 0;
1083
1084	/* Can the mapping track the dirty pages? */
1085	return vma->vm_file && vma->vm_file->f_mapping &&
1086		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1087}
1088
1089/*
1090 * We account for memory if it's a private writeable mapping,
1091 * not hugepages and VM_NORESERVE wasn't set.
1092 */
1093static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1094{
1095	/*
1096	 * hugetlb has its own accounting separate from the core VM
1097	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1098	 */
1099	if (file && is_file_hugepages(file))
1100		return 0;
1101
1102	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1103}
1104
1105unsigned long mmap_region(struct file *file, unsigned long addr,
1106			  unsigned long len, unsigned long flags,
1107			  unsigned int vm_flags, unsigned long pgoff)
1108{
1109	struct mm_struct *mm = current->mm;
1110	struct vm_area_struct *vma, *prev;
1111	int correct_wcount = 0;
1112	int error;
1113	struct rb_node **rb_link, *rb_parent;
1114	unsigned long charged = 0;
1115	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1116
1117	/* Clear old maps */
1118	error = -ENOMEM;
1119munmap_back:
1120	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1121	if (vma && vma->vm_start < addr + len) {
1122		if (do_munmap(mm, addr, len))
1123			return -ENOMEM;
1124		goto munmap_back;
1125	}
1126
1127	/* Check against address space limit. */
1128	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1129		return -ENOMEM;
1130
1131	/*
1132	 * Set 'VM_NORESERVE' if we should not account for the
1133	 * memory use of this mapping.
1134	 */
1135	if ((flags & MAP_NORESERVE)) {
1136		/* We honor MAP_NORESERVE if allowed to overcommit */
1137		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1138			vm_flags |= VM_NORESERVE;
1139
1140		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1141		if (file && is_file_hugepages(file))
1142			vm_flags |= VM_NORESERVE;
1143	}
1144
1145	/*
1146	 * Private writable mapping: check memory availability
1147	 */
1148	if (accountable_mapping(file, vm_flags)) {
1149		charged = len >> PAGE_SHIFT;
1150		if (security_vm_enough_memory(charged))
1151			return -ENOMEM;
1152		vm_flags |= VM_ACCOUNT;
1153	}
1154
1155	/*
1156	 * Can we just expand an old mapping?
1157	 */
1158	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1159	if (vma)
1160		goto out;
1161
1162	/*
1163	 * Determine the object being mapped and call the appropriate
1164	 * specific mapper. the address has already been validated, but
1165	 * not unmapped, but the maps are removed from the list.
1166	 */
1167	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1168	if (!vma) {
1169		error = -ENOMEM;
1170		goto unacct_error;
1171	}
1172
1173	vma->vm_mm = mm;
1174	vma->vm_start = addr;
1175	vma->vm_end = addr + len;
1176	vma->vm_flags = vm_flags;
1177	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1178	vma->vm_pgoff = pgoff;
1179
1180	if (file) {
1181		error = -EINVAL;
1182		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1183			goto free_vma;
1184		if (vm_flags & VM_DENYWRITE) {
1185			error = deny_write_access(file);
1186			if (error)
1187				goto free_vma;
1188			correct_wcount = 1;
1189		}
1190		vma->vm_file = file;
1191		get_file(file);
1192		error = file->f_op->mmap(file, vma);
1193		if (error)
1194			goto unmap_and_free_vma;
1195		if (vm_flags & VM_EXECUTABLE)
1196			added_exe_file_vma(mm);
1197	} else if (vm_flags & VM_SHARED) {
1198		error = shmem_zero_setup(vma);
1199		if (error)
1200			goto free_vma;
1201	}
1202
1203	/* Can addr have changed??
1204	 *
1205	 * Answer: Yes, several device drivers can do it in their
1206	 *         f_op->mmap method. -DaveM
1207	 */
1208	addr = vma->vm_start;
1209	pgoff = vma->vm_pgoff;
1210	vm_flags = vma->vm_flags;
1211
1212	if (vma_wants_writenotify(vma))
1213		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1214
1215	vma_link(mm, vma, prev, rb_link, rb_parent);
1216	file = vma->vm_file;
1217
1218	/* Once vma denies write, undo our temporary denial count */
1219	if (correct_wcount)
1220		atomic_inc(&inode->i_writecount);
1221out:
1222	mm->total_vm += len >> PAGE_SHIFT;
1223	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1224	if (vm_flags & VM_LOCKED) {
1225		/*
1226		 * makes pages present; downgrades, drops, reacquires mmap_sem
1227		 */
1228		long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1229		if (nr_pages < 0)
1230			return nr_pages;	/* vma gone! */
1231		mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1232	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1233		make_pages_present(addr, addr + len);
1234	return addr;
1235
1236unmap_and_free_vma:
1237	if (correct_wcount)
1238		atomic_inc(&inode->i_writecount);
1239	vma->vm_file = NULL;
1240	fput(file);
1241
1242	/* Undo any partial mapping done by a device driver. */
1243	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1244	charged = 0;
1245free_vma:
1246	kmem_cache_free(vm_area_cachep, vma);
1247unacct_error:
1248	if (charged)
1249		vm_unacct_memory(charged);
1250	return error;
1251}
1252
1253/* Get an address range which is currently unmapped.
1254 * For shmat() with addr=0.
1255 *
1256 * Ugly calling convention alert:
1257 * Return value with the low bits set means error value,
1258 * ie
1259 *	if (ret & ~PAGE_MASK)
1260 *		error = ret;
1261 *
1262 * This function "knows" that -ENOMEM has the bits set.
1263 */
1264#ifndef HAVE_ARCH_UNMAPPED_AREA
1265unsigned long
1266arch_get_unmapped_area(struct file *filp, unsigned long addr,
1267		unsigned long len, unsigned long pgoff, unsigned long flags)
1268{
1269	struct mm_struct *mm = current->mm;
1270	struct vm_area_struct *vma;
1271	unsigned long start_addr;
1272
1273	if (len > TASK_SIZE)
1274		return -ENOMEM;
1275
1276	if (flags & MAP_FIXED)
1277		return addr;
1278
1279	if (addr) {
1280		addr = PAGE_ALIGN(addr);
1281		vma = find_vma(mm, addr);
1282		if (TASK_SIZE - len >= addr &&
1283		    (!vma || addr + len <= vma->vm_start))
1284			return addr;
1285	}
1286	if (len > mm->cached_hole_size) {
1287	        start_addr = addr = mm->free_area_cache;
1288	} else {
1289	        start_addr = addr = TASK_UNMAPPED_BASE;
1290	        mm->cached_hole_size = 0;
1291	}
1292
1293full_search:
1294	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1295		/* At this point:  (!vma || addr < vma->vm_end). */
1296		if (TASK_SIZE - len < addr) {
1297			/*
1298			 * Start a new search - just in case we missed
1299			 * some holes.
1300			 */
1301			if (start_addr != TASK_UNMAPPED_BASE) {
1302				addr = TASK_UNMAPPED_BASE;
1303			        start_addr = addr;
1304				mm->cached_hole_size = 0;
1305				goto full_search;
1306			}
1307			return -ENOMEM;
1308		}
1309		if (!vma || addr + len <= vma->vm_start) {
1310			/*
1311			 * Remember the place where we stopped the search:
1312			 */
1313			mm->free_area_cache = addr + len;
1314			return addr;
1315		}
1316		if (addr + mm->cached_hole_size < vma->vm_start)
1317		        mm->cached_hole_size = vma->vm_start - addr;
1318		addr = vma->vm_end;
1319	}
1320}
1321#endif
1322
1323void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1324{
1325	/*
1326	 * Is this a new hole at the lowest possible address?
1327	 */
1328	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1329		mm->free_area_cache = addr;
1330		mm->cached_hole_size = ~0UL;
1331	}
1332}
1333
1334/*
1335 * This mmap-allocator allocates new areas top-down from below the
1336 * stack's low limit (the base):
1337 */
1338#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1339unsigned long
1340arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1341			  const unsigned long len, const unsigned long pgoff,
1342			  const unsigned long flags)
1343{
1344	struct vm_area_struct *vma;
1345	struct mm_struct *mm = current->mm;
1346	unsigned long addr = addr0;
1347
1348	/* requested length too big for entire address space */
1349	if (len > TASK_SIZE)
1350		return -ENOMEM;
1351
1352	if (flags & MAP_FIXED)
1353		return addr;
1354
1355	/* requesting a specific address */
1356	if (addr) {
1357		addr = PAGE_ALIGN(addr);
1358		vma = find_vma(mm, addr);
1359		if (TASK_SIZE - len >= addr &&
1360				(!vma || addr + len <= vma->vm_start))
1361			return addr;
1362	}
1363
1364	/* check if free_area_cache is useful for us */
1365	if (len <= mm->cached_hole_size) {
1366 	        mm->cached_hole_size = 0;
1367 		mm->free_area_cache = mm->mmap_base;
1368 	}
1369
1370	/* either no address requested or can't fit in requested address hole */
1371	addr = mm->free_area_cache;
1372
1373	/* make sure it can fit in the remaining address space */
1374	if (addr > len) {
1375		vma = find_vma(mm, addr-len);
1376		if (!vma || addr <= vma->vm_start)
1377			/* remember the address as a hint for next time */
1378			return (mm->free_area_cache = addr-len);
1379	}
1380
1381	if (mm->mmap_base < len)
1382		goto bottomup;
1383
1384	addr = mm->mmap_base-len;
1385
1386	do {
1387		/*
1388		 * Lookup failure means no vma is above this address,
1389		 * else if new region fits below vma->vm_start,
1390		 * return with success:
1391		 */
1392		vma = find_vma(mm, addr);
1393		if (!vma || addr+len <= vma->vm_start)
1394			/* remember the address as a hint for next time */
1395			return (mm->free_area_cache = addr);
1396
1397 		/* remember the largest hole we saw so far */
1398 		if (addr + mm->cached_hole_size < vma->vm_start)
1399 		        mm->cached_hole_size = vma->vm_start - addr;
1400
1401		/* try just below the current vma->vm_start */
1402		addr = vma->vm_start-len;
1403	} while (len < vma->vm_start);
1404
1405bottomup:
1406	/*
1407	 * A failed mmap() very likely causes application failure,
1408	 * so fall back to the bottom-up function here. This scenario
1409	 * can happen with large stack limits and large mmap()
1410	 * allocations.
1411	 */
1412	mm->cached_hole_size = ~0UL;
1413  	mm->free_area_cache = TASK_UNMAPPED_BASE;
1414	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1415	/*
1416	 * Restore the topdown base:
1417	 */
1418	mm->free_area_cache = mm->mmap_base;
1419	mm->cached_hole_size = ~0UL;
1420
1421	return addr;
1422}
1423#endif
1424
1425void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1426{
1427	/*
1428	 * Is this a new hole at the highest possible address?
1429	 */
1430	if (addr > mm->free_area_cache)
1431		mm->free_area_cache = addr;
1432
1433	/* dont allow allocations above current base */
1434	if (mm->free_area_cache > mm->mmap_base)
1435		mm->free_area_cache = mm->mmap_base;
1436}
1437
1438unsigned long
1439get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1440		unsigned long pgoff, unsigned long flags)
1441{
1442	unsigned long (*get_area)(struct file *, unsigned long,
1443				  unsigned long, unsigned long, unsigned long);
1444
1445	get_area = current->mm->get_unmapped_area;
1446	if (file && file->f_op && file->f_op->get_unmapped_area)
1447		get_area = file->f_op->get_unmapped_area;
1448	addr = get_area(file, addr, len, pgoff, flags);
1449	if (IS_ERR_VALUE(addr))
1450		return addr;
1451
1452	if (addr > TASK_SIZE - len)
1453		return -ENOMEM;
1454	if (addr & ~PAGE_MASK)
1455		return -EINVAL;
1456
1457	return arch_rebalance_pgtables(addr, len);
1458}
1459
1460EXPORT_SYMBOL(get_unmapped_area);
1461
1462/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1463struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1464{
1465	struct vm_area_struct *vma = NULL;
1466
1467	if (mm) {
1468		/* Check the cache first. */
1469		/* (Cache hit rate is typically around 35%.) */
1470		vma = mm->mmap_cache;
1471		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1472			struct rb_node * rb_node;
1473
1474			rb_node = mm->mm_rb.rb_node;
1475			vma = NULL;
1476
1477			while (rb_node) {
1478				struct vm_area_struct * vma_tmp;
1479
1480				vma_tmp = rb_entry(rb_node,
1481						struct vm_area_struct, vm_rb);
1482
1483				if (vma_tmp->vm_end > addr) {
1484					vma = vma_tmp;
1485					if (vma_tmp->vm_start <= addr)
1486						break;
1487					rb_node = rb_node->rb_left;
1488				} else
1489					rb_node = rb_node->rb_right;
1490			}
1491			if (vma)
1492				mm->mmap_cache = vma;
1493		}
1494	}
1495	return vma;
1496}
1497
1498EXPORT_SYMBOL(find_vma);
1499
1500/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1501struct vm_area_struct *
1502find_vma_prev(struct mm_struct *mm, unsigned long addr,
1503			struct vm_area_struct **pprev)
1504{
1505	struct vm_area_struct *vma = NULL, *prev = NULL;
1506	struct rb_node *rb_node;
1507	if (!mm)
1508		goto out;
1509
1510	/* Guard against addr being lower than the first VMA */
1511	vma = mm->mmap;
1512
1513	/* Go through the RB tree quickly. */
1514	rb_node = mm->mm_rb.rb_node;
1515
1516	while (rb_node) {
1517		struct vm_area_struct *vma_tmp;
1518		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1519
1520		if (addr < vma_tmp->vm_end) {
1521			rb_node = rb_node->rb_left;
1522		} else {
1523			prev = vma_tmp;
1524			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1525				break;
1526			rb_node = rb_node->rb_right;
1527		}
1528	}
1529
1530out:
1531	*pprev = prev;
1532	return prev ? prev->vm_next : vma;
1533}
1534
1535/*
1536 * Verify that the stack growth is acceptable and
1537 * update accounting. This is shared with both the
1538 * grow-up and grow-down cases.
1539 */
1540static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1541{
1542	struct mm_struct *mm = vma->vm_mm;
1543	struct rlimit *rlim = current->signal->rlim;
1544	unsigned long new_start;
1545
1546	/* address space limit tests */
1547	if (!may_expand_vm(mm, grow))
1548		return -ENOMEM;
1549
1550	/* Stack limit test */
1551	if (size > rlim[RLIMIT_STACK].rlim_cur)
1552		return -ENOMEM;
1553
1554	/* mlock limit tests */
1555	if (vma->vm_flags & VM_LOCKED) {
1556		unsigned long locked;
1557		unsigned long limit;
1558		locked = mm->locked_vm + grow;
1559		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1560		if (locked > limit && !capable(CAP_IPC_LOCK))
1561			return -ENOMEM;
1562	}
1563
1564	/* Check to ensure the stack will not grow into a hugetlb-only region */
1565	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1566			vma->vm_end - size;
1567	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1568		return -EFAULT;
1569
1570	/*
1571	 * Overcommit..  This must be the final test, as it will
1572	 * update security statistics.
1573	 */
1574	if (security_vm_enough_memory(grow))
1575		return -ENOMEM;
1576
1577	/* Ok, everything looks good - let it rip */
1578	mm->total_vm += grow;
1579	if (vma->vm_flags & VM_LOCKED)
1580		mm->locked_vm += grow;
1581	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1582	return 0;
1583}
1584
1585#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1586/*
1587 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1588 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1589 */
1590#ifndef CONFIG_IA64
1591static
1592#endif
1593int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1594{
1595	int error;
1596
1597	if (!(vma->vm_flags & VM_GROWSUP))
1598		return -EFAULT;
1599
1600	/*
1601	 * We must make sure the anon_vma is allocated
1602	 * so that the anon_vma locking is not a noop.
1603	 */
1604	if (unlikely(anon_vma_prepare(vma)))
1605		return -ENOMEM;
1606	anon_vma_lock(vma);
1607
1608	/*
1609	 * vma->vm_start/vm_end cannot change under us because the caller
1610	 * is required to hold the mmap_sem in read mode.  We need the
1611	 * anon_vma lock to serialize against concurrent expand_stacks.
1612	 * Also guard against wrapping around to address 0.
1613	 */
1614	if (address < PAGE_ALIGN(address+4))
1615		address = PAGE_ALIGN(address+4);
1616	else {
1617		anon_vma_unlock(vma);
1618		return -ENOMEM;
1619	}
1620	error = 0;
1621
1622	/* Somebody else might have raced and expanded it already */
1623	if (address > vma->vm_end) {
1624		unsigned long size, grow;
1625
1626		size = address - vma->vm_start;
1627		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1628
1629		error = acct_stack_growth(vma, size, grow);
1630		if (!error)
1631			vma->vm_end = address;
1632	}
1633	anon_vma_unlock(vma);
1634	return error;
1635}
1636#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1637
1638/*
1639 * vma is the first one with address < vma->vm_start.  Have to extend vma.
1640 */
1641static int expand_downwards(struct vm_area_struct *vma,
1642				   unsigned long address)
1643{
1644	int error;
1645
1646	/*
1647	 * We must make sure the anon_vma is allocated
1648	 * so that the anon_vma locking is not a noop.
1649	 */
1650	if (unlikely(anon_vma_prepare(vma)))
1651		return -ENOMEM;
1652
1653	address &= PAGE_MASK;
1654	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1655	if (error)
1656		return error;
1657
1658	anon_vma_lock(vma);
1659
1660	/*
1661	 * vma->vm_start/vm_end cannot change under us because the caller
1662	 * is required to hold the mmap_sem in read mode.  We need the
1663	 * anon_vma lock to serialize against concurrent expand_stacks.
1664	 */
1665
1666	/* Somebody else might have raced and expanded it already */
1667	if (address < vma->vm_start) {
1668		unsigned long size, grow;
1669
1670		size = vma->vm_end - address;
1671		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1672
1673		error = acct_stack_growth(vma, size, grow);
1674		if (!error) {
1675			vma->vm_start = address;
1676			vma->vm_pgoff -= grow;
1677		}
1678	}
1679	anon_vma_unlock(vma);
1680	return error;
1681}
1682
1683int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1684{
1685	return expand_downwards(vma, address);
1686}
1687
1688#ifdef CONFIG_STACK_GROWSUP
1689int expand_stack(struct vm_area_struct *vma, unsigned long address)
1690{
1691	return expand_upwards(vma, address);
1692}
1693
1694struct vm_area_struct *
1695find_extend_vma(struct mm_struct *mm, unsigned long addr)
1696{
1697	struct vm_area_struct *vma, *prev;
1698
1699	addr &= PAGE_MASK;
1700	vma = find_vma_prev(mm, addr, &prev);
1701	if (vma && (vma->vm_start <= addr))
1702		return vma;
1703	if (!prev || expand_stack(prev, addr))
1704		return NULL;
1705	if (prev->vm_flags & VM_LOCKED) {
1706		if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1707			return NULL;	/* vma gone! */
1708	}
1709	return prev;
1710}
1711#else
1712int expand_stack(struct vm_area_struct *vma, unsigned long address)
1713{
1714	return expand_downwards(vma, address);
1715}
1716
1717struct vm_area_struct *
1718find_extend_vma(struct mm_struct * mm, unsigned long addr)
1719{
1720	struct vm_area_struct * vma;
1721	unsigned long start;
1722
1723	addr &= PAGE_MASK;
1724	vma = find_vma(mm,addr);
1725	if (!vma)
1726		return NULL;
1727	if (vma->vm_start <= addr)
1728		return vma;
1729	if (!(vma->vm_flags & VM_GROWSDOWN))
1730		return NULL;
1731	start = vma->vm_start;
1732	if (expand_stack(vma, addr))
1733		return NULL;
1734	if (vma->vm_flags & VM_LOCKED) {
1735		if (mlock_vma_pages_range(vma, addr, start) < 0)
1736			return NULL;	/* vma gone! */
1737	}
1738	return vma;
1739}
1740#endif
1741
1742/*
1743 * Ok - we have the memory areas we should free on the vma list,
1744 * so release them, and do the vma updates.
1745 *
1746 * Called with the mm semaphore held.
1747 */
1748static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1749{
1750	/* Update high watermark before we lower total_vm */
1751	update_hiwater_vm(mm);
1752	do {
1753		long nrpages = vma_pages(vma);
1754
1755		mm->total_vm -= nrpages;
1756		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1757		vma = remove_vma(vma);
1758	} while (vma);
1759	validate_mm(mm);
1760}
1761
1762/*
1763 * Get rid of page table information in the indicated region.
1764 *
1765 * Called with the mm semaphore held.
1766 */
1767static void unmap_region(struct mm_struct *mm,
1768		struct vm_area_struct *vma, struct vm_area_struct *prev,
1769		unsigned long start, unsigned long end)
1770{
1771	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1772	struct mmu_gather *tlb;
1773	unsigned long nr_accounted = 0;
1774
1775	lru_add_drain();
1776	tlb = tlb_gather_mmu(mm, 0);
1777	update_hiwater_rss(mm);
1778	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1779	vm_unacct_memory(nr_accounted);
1780	free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1781				 next? next->vm_start: 0);
1782	tlb_finish_mmu(tlb, start, end);
1783}
1784
1785/*
1786 * Create a list of vma's touched by the unmap, removing them from the mm's
1787 * vma list as we go..
1788 */
1789static void
1790detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1791	struct vm_area_struct *prev, unsigned long end)
1792{
1793	struct vm_area_struct **insertion_point;
1794	struct vm_area_struct *tail_vma = NULL;
1795	unsigned long addr;
1796
1797	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1798	do {
1799		rb_erase(&vma->vm_rb, &mm->mm_rb);
1800		mm->map_count--;
1801		tail_vma = vma;
1802		vma = vma->vm_next;
1803	} while (vma && vma->vm_start < end);
1804	*insertion_point = vma;
1805	tail_vma->vm_next = NULL;
1806	if (mm->unmap_area == arch_unmap_area)
1807		addr = prev ? prev->vm_end : mm->mmap_base;
1808	else
1809		addr = vma ?  vma->vm_start : mm->mmap_base;
1810	mm->unmap_area(mm, addr);
1811	mm->mmap_cache = NULL;		/* Kill the cache. */
1812}
1813
1814/*
1815 * Split a vma into two pieces at address 'addr', a new vma is allocated
1816 * either for the first part or the tail.
1817 */
1818int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1819	      unsigned long addr, int new_below)
1820{
1821	struct mempolicy *pol;
1822	struct vm_area_struct *new;
1823
1824	if (is_vm_hugetlb_page(vma) && (addr &
1825					~(huge_page_mask(hstate_vma(vma)))))
1826		return -EINVAL;
1827
1828	if (mm->map_count >= sysctl_max_map_count)
1829		return -ENOMEM;
1830
1831	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1832	if (!new)
1833		return -ENOMEM;
1834
1835	/* most fields are the same, copy all, and then fixup */
1836	*new = *vma;
1837
1838	if (new_below)
1839		new->vm_end = addr;
1840	else {
1841		new->vm_start = addr;
1842		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1843	}
1844
1845	pol = mpol_dup(vma_policy(vma));
1846	if (IS_ERR(pol)) {
1847		kmem_cache_free(vm_area_cachep, new);
1848		return PTR_ERR(pol);
1849	}
1850	vma_set_policy(new, pol);
1851
1852	if (new->vm_file) {
1853		get_file(new->vm_file);
1854		if (vma->vm_flags & VM_EXECUTABLE)
1855			added_exe_file_vma(mm);
1856	}
1857
1858	if (new->vm_ops && new->vm_ops->open)
1859		new->vm_ops->open(new);
1860
1861	if (new_below)
1862		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1863			((addr - new->vm_start) >> PAGE_SHIFT), new);
1864	else
1865		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1866
1867	return 0;
1868}
1869
1870/* Munmap is split into 2 main parts -- this part which finds
1871 * what needs doing, and the areas themselves, which do the
1872 * work.  This now handles partial unmappings.
1873 * Jeremy Fitzhardinge <jeremy@goop.org>
1874 */
1875int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1876{
1877	unsigned long end;
1878	struct vm_area_struct *vma, *prev, *last;
1879
1880	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1881		return -EINVAL;
1882
1883	if ((len = PAGE_ALIGN(len)) == 0)
1884		return -EINVAL;
1885
1886	/* Find the first overlapping VMA */
1887	vma = find_vma_prev(mm, start, &prev);
1888	if (!vma)
1889		return 0;
1890	/* we have  start < vma->vm_end  */
1891
1892	/* if it doesn't overlap, we have nothing.. */
1893	end = start + len;
1894	if (vma->vm_start >= end)
1895		return 0;
1896
1897	/*
1898	 * If we need to split any vma, do it now to save pain later.
1899	 *
1900	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1901	 * unmapped vm_area_struct will remain in use: so lower split_vma
1902	 * places tmp vma above, and higher split_vma places tmp vma below.
1903	 */
1904	if (start > vma->vm_start) {
1905		int error = split_vma(mm, vma, start, 0);
1906		if (error)
1907			return error;
1908		prev = vma;
1909	}
1910
1911	/* Does it split the last one? */
1912	last = find_vma(mm, end);
1913	if (last && end > last->vm_start) {
1914		int error = split_vma(mm, last, end, 1);
1915		if (error)
1916			return error;
1917	}
1918	vma = prev? prev->vm_next: mm->mmap;
1919
1920	/*
1921	 * unlock any mlock()ed ranges before detaching vmas
1922	 */
1923	if (mm->locked_vm) {
1924		struct vm_area_struct *tmp = vma;
1925		while (tmp && tmp->vm_start < end) {
1926			if (tmp->vm_flags & VM_LOCKED) {
1927				mm->locked_vm -= vma_pages(tmp);
1928				munlock_vma_pages_all(tmp);
1929			}
1930			tmp = tmp->vm_next;
1931		}
1932	}
1933
1934	/*
1935	 * Remove the vma's, and unmap the actual pages
1936	 */
1937	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1938	unmap_region(mm, vma, prev, start, end);
1939
1940	/* Fix up all other VM information */
1941	remove_vma_list(mm, vma);
1942
1943	return 0;
1944}
1945
1946EXPORT_SYMBOL(do_munmap);
1947
1948SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1949{
1950	int ret;
1951	struct mm_struct *mm = current->mm;
1952
1953	profile_munmap(addr);
1954
1955	down_write(&mm->mmap_sem);
1956	ret = do_munmap(mm, addr, len);
1957	up_write(&mm->mmap_sem);
1958	return ret;
1959}
1960
1961static inline void verify_mm_writelocked(struct mm_struct *mm)
1962{
1963#ifdef CONFIG_DEBUG_VM
1964	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1965		WARN_ON(1);
1966		up_read(&mm->mmap_sem);
1967	}
1968#endif
1969}
1970
1971/*
1972 *  this is really a simplified "do_mmap".  it only handles
1973 *  anonymous maps.  eventually we may be able to do some
1974 *  brk-specific accounting here.
1975 */
1976unsigned long do_brk(unsigned long addr, unsigned long len)
1977{
1978	struct mm_struct * mm = current->mm;
1979	struct vm_area_struct * vma, * prev;
1980	unsigned long flags;
1981	struct rb_node ** rb_link, * rb_parent;
1982	pgoff_t pgoff = addr >> PAGE_SHIFT;
1983	int error;
1984
1985	len = PAGE_ALIGN(len);
1986	if (!len)
1987		return addr;
1988
1989	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1990		return -EINVAL;
1991
1992	if (is_hugepage_only_range(mm, addr, len))
1993		return -EINVAL;
1994
1995	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
1996	if (error)
1997		return error;
1998
1999	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2000
2001	error = arch_mmap_check(addr, len, flags);
2002	if (error)
2003		return error;
2004
2005	/*
2006	 * mlock MCL_FUTURE?
2007	 */
2008	if (mm->def_flags & VM_LOCKED) {
2009		unsigned long locked, lock_limit;
2010		locked = len >> PAGE_SHIFT;
2011		locked += mm->locked_vm;
2012		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2013		lock_limit >>= PAGE_SHIFT;
2014		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2015			return -EAGAIN;
2016	}
2017
2018	/*
2019	 * mm->mmap_sem is required to protect against another thread
2020	 * changing the mappings in case we sleep.
2021	 */
2022	verify_mm_writelocked(mm);
2023
2024	/*
2025	 * Clear old maps.  this also does some error checking for us
2026	 */
2027 munmap_back:
2028	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2029	if (vma && vma->vm_start < addr + len) {
2030		if (do_munmap(mm, addr, len))
2031			return -ENOMEM;
2032		goto munmap_back;
2033	}
2034
2035	/* Check against address space limits *after* clearing old maps... */
2036	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2037		return -ENOMEM;
2038
2039	if (mm->map_count > sysctl_max_map_count)
2040		return -ENOMEM;
2041
2042	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2043		return -ENOMEM;
2044
2045	/* Can we just expand an old private anonymous mapping? */
2046	vma = vma_merge(mm, prev, addr, addr + len, flags,
2047					NULL, NULL, pgoff, NULL);
2048	if (vma)
2049		goto out;
2050
2051	/*
2052	 * create a vma struct for an anonymous mapping
2053	 */
2054	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2055	if (!vma) {
2056		vm_unacct_memory(len >> PAGE_SHIFT);
2057		return -ENOMEM;
2058	}
2059
2060	vma->vm_mm = mm;
2061	vma->vm_start = addr;
2062	vma->vm_end = addr + len;
2063	vma->vm_pgoff = pgoff;
2064	vma->vm_flags = flags;
2065	vma->vm_page_prot = vm_get_page_prot(flags);
2066	vma_link(mm, vma, prev, rb_link, rb_parent);
2067out:
2068	mm->total_vm += len >> PAGE_SHIFT;
2069	if (flags & VM_LOCKED) {
2070		if (!mlock_vma_pages_range(vma, addr, addr + len))
2071			mm->locked_vm += (len >> PAGE_SHIFT);
2072	}
2073	return addr;
2074}
2075
2076EXPORT_SYMBOL(do_brk);
2077
2078/* Release all mmaps. */
2079void exit_mmap(struct mm_struct *mm)
2080{
2081	struct mmu_gather *tlb;
2082	struct vm_area_struct *vma;
2083	unsigned long nr_accounted = 0;
2084	unsigned long end;
2085
2086	/* mm's last user has gone, and its about to be pulled down */
2087	mmu_notifier_release(mm);
2088
2089	if (mm->locked_vm) {
2090		vma = mm->mmap;
2091		while (vma) {
2092			if (vma->vm_flags & VM_LOCKED)
2093				munlock_vma_pages_all(vma);
2094			vma = vma->vm_next;
2095		}
2096	}
2097
2098	arch_exit_mmap(mm);
2099
2100	vma = mm->mmap;
2101	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2102		return;
2103
2104	lru_add_drain();
2105	flush_cache_mm(mm);
2106	tlb = tlb_gather_mmu(mm, 1);
2107	/* update_hiwater_rss(mm) here? but nobody should be looking */
2108	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2109	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2110	vm_unacct_memory(nr_accounted);
2111	free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2112	tlb_finish_mmu(tlb, 0, end);
2113
2114	/*
2115	 * Walk the list again, actually closing and freeing it,
2116	 * with preemption enabled, without holding any MM locks.
2117	 */
2118	while (vma)
2119		vma = remove_vma(vma);
2120
2121	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2122}
2123
2124/* Insert vm structure into process list sorted by address
2125 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2126 * then i_mmap_lock is taken here.
2127 */
2128int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2129{
2130	struct vm_area_struct * __vma, * prev;
2131	struct rb_node ** rb_link, * rb_parent;
2132
2133	/*
2134	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2135	 * until its first write fault, when page's anon_vma and index
2136	 * are set.  But now set the vm_pgoff it will almost certainly
2137	 * end up with (unless mremap moves it elsewhere before that
2138	 * first wfault), so /proc/pid/maps tells a consistent story.
2139	 *
2140	 * By setting it to reflect the virtual start address of the
2141	 * vma, merges and splits can happen in a seamless way, just
2142	 * using the existing file pgoff checks and manipulations.
2143	 * Similarly in do_mmap_pgoff and in do_brk.
2144	 */
2145	if (!vma->vm_file) {
2146		BUG_ON(vma->anon_vma);
2147		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2148	}
2149	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2150	if (__vma && __vma->vm_start < vma->vm_end)
2151		return -ENOMEM;
2152	if ((vma->vm_flags & VM_ACCOUNT) &&
2153	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2154		return -ENOMEM;
2155	vma_link(mm, vma, prev, rb_link, rb_parent);
2156	return 0;
2157}
2158
2159/*
2160 * Copy the vma structure to a new location in the same mm,
2161 * prior to moving page table entries, to effect an mremap move.
2162 */
2163struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2164	unsigned long addr, unsigned long len, pgoff_t pgoff)
2165{
2166	struct vm_area_struct *vma = *vmap;
2167	unsigned long vma_start = vma->vm_start;
2168	struct mm_struct *mm = vma->vm_mm;
2169	struct vm_area_struct *new_vma, *prev;
2170	struct rb_node **rb_link, *rb_parent;
2171	struct mempolicy *pol;
2172
2173	/*
2174	 * If anonymous vma has not yet been faulted, update new pgoff
2175	 * to match new location, to increase its chance of merging.
2176	 */
2177	if (!vma->vm_file && !vma->anon_vma)
2178		pgoff = addr >> PAGE_SHIFT;
2179
2180	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2181	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2182			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2183	if (new_vma) {
2184		/*
2185		 * Source vma may have been merged into new_vma
2186		 */
2187		if (vma_start >= new_vma->vm_start &&
2188		    vma_start < new_vma->vm_end)
2189			*vmap = new_vma;
2190	} else {
2191		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2192		if (new_vma) {
2193			*new_vma = *vma;
2194			pol = mpol_dup(vma_policy(vma));
2195			if (IS_ERR(pol)) {
2196				kmem_cache_free(vm_area_cachep, new_vma);
2197				return NULL;
2198			}
2199			vma_set_policy(new_vma, pol);
2200			new_vma->vm_start = addr;
2201			new_vma->vm_end = addr + len;
2202			new_vma->vm_pgoff = pgoff;
2203			if (new_vma->vm_file) {
2204				get_file(new_vma->vm_file);
2205				if (vma->vm_flags & VM_EXECUTABLE)
2206					added_exe_file_vma(mm);
2207			}
2208			if (new_vma->vm_ops && new_vma->vm_ops->open)
2209				new_vma->vm_ops->open(new_vma);
2210			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2211		}
2212	}
2213	return new_vma;
2214}
2215
2216/*
2217 * Return true if the calling process may expand its vm space by the passed
2218 * number of pages
2219 */
2220int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2221{
2222	unsigned long cur = mm->total_vm;	/* pages */
2223	unsigned long lim;
2224
2225	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2226
2227	if (cur + npages > lim)
2228		return 0;
2229	return 1;
2230}
2231
2232
2233static int special_mapping_fault(struct vm_area_struct *vma,
2234				struct vm_fault *vmf)
2235{
2236	pgoff_t pgoff;
2237	struct page **pages;
2238
2239	/*
2240	 * special mappings have no vm_file, and in that case, the mm
2241	 * uses vm_pgoff internally. So we have to subtract it from here.
2242	 * We are allowed to do this because we are the mm; do not copy
2243	 * this code into drivers!
2244	 */
2245	pgoff = vmf->pgoff - vma->vm_pgoff;
2246
2247	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2248		pgoff--;
2249
2250	if (*pages) {
2251		struct page *page = *pages;
2252		get_page(page);
2253		vmf->page = page;
2254		return 0;
2255	}
2256
2257	return VM_FAULT_SIGBUS;
2258}
2259
2260/*
2261 * Having a close hook prevents vma merging regardless of flags.
2262 */
2263static void special_mapping_close(struct vm_area_struct *vma)
2264{
2265}
2266
2267static struct vm_operations_struct special_mapping_vmops = {
2268	.close = special_mapping_close,
2269	.fault = special_mapping_fault,
2270};
2271
2272/*
2273 * Called with mm->mmap_sem held for writing.
2274 * Insert a new vma covering the given region, with the given flags.
2275 * Its pages are supplied by the given array of struct page *.
2276 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2277 * The region past the last page supplied will always produce SIGBUS.
2278 * The array pointer and the pages it points to are assumed to stay alive
2279 * for as long as this mapping might exist.
2280 */
2281int install_special_mapping(struct mm_struct *mm,
2282			    unsigned long addr, unsigned long len,
2283			    unsigned long vm_flags, struct page **pages)
2284{
2285	struct vm_area_struct *vma;
2286
2287	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2288	if (unlikely(vma == NULL))
2289		return -ENOMEM;
2290
2291	vma->vm_mm = mm;
2292	vma->vm_start = addr;
2293	vma->vm_end = addr + len;
2294
2295	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2296	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2297
2298	vma->vm_ops = &special_mapping_vmops;
2299	vma->vm_private_data = pages;
2300
2301	if (unlikely(insert_vm_struct(mm, vma))) {
2302		kmem_cache_free(vm_area_cachep, vma);
2303		return -ENOMEM;
2304	}
2305
2306	mm->total_vm += len >> PAGE_SHIFT;
2307
2308	return 0;
2309}
2310
2311static DEFINE_MUTEX(mm_all_locks_mutex);
2312
2313static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2314{
2315	if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2316		/*
2317		 * The LSB of head.next can't change from under us
2318		 * because we hold the mm_all_locks_mutex.
2319		 */
2320		spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2321		/*
2322		 * We can safely modify head.next after taking the
2323		 * anon_vma->lock. If some other vma in this mm shares
2324		 * the same anon_vma we won't take it again.
2325		 *
2326		 * No need of atomic instructions here, head.next
2327		 * can't change from under us thanks to the
2328		 * anon_vma->lock.
2329		 */
2330		if (__test_and_set_bit(0, (unsigned long *)
2331				       &anon_vma->head.next))
2332			BUG();
2333	}
2334}
2335
2336static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2337{
2338	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2339		/*
2340		 * AS_MM_ALL_LOCKS can't change from under us because
2341		 * we hold the mm_all_locks_mutex.
2342		 *
2343		 * Operations on ->flags have to be atomic because
2344		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2345		 * mm_all_locks_mutex, there may be other cpus
2346		 * changing other bitflags in parallel to us.
2347		 */
2348		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2349			BUG();
2350		spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2351	}
2352}
2353
2354/*
2355 * This operation locks against the VM for all pte/vma/mm related
2356 * operations that could ever happen on a certain mm. This includes
2357 * vmtruncate, try_to_unmap, and all page faults.
2358 *
2359 * The caller must take the mmap_sem in write mode before calling
2360 * mm_take_all_locks(). The caller isn't allowed to release the
2361 * mmap_sem until mm_drop_all_locks() returns.
2362 *
2363 * mmap_sem in write mode is required in order to block all operations
2364 * that could modify pagetables and free pages without need of
2365 * altering the vma layout (for example populate_range() with
2366 * nonlinear vmas). It's also needed in write mode to avoid new
2367 * anon_vmas to be associated with existing vmas.
2368 *
2369 * A single task can't take more than one mm_take_all_locks() in a row
2370 * or it would deadlock.
2371 *
2372 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2373 * mapping->flags avoid to take the same lock twice, if more than one
2374 * vma in this mm is backed by the same anon_vma or address_space.
2375 *
2376 * We can take all the locks in random order because the VM code
2377 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2378 * takes more than one of them in a row. Secondly we're protected
2379 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2380 *
2381 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2382 * that may have to take thousand of locks.
2383 *
2384 * mm_take_all_locks() can fail if it's interrupted by signals.
2385 */
2386int mm_take_all_locks(struct mm_struct *mm)
2387{
2388	struct vm_area_struct *vma;
2389	int ret = -EINTR;
2390
2391	BUG_ON(down_read_trylock(&mm->mmap_sem));
2392
2393	mutex_lock(&mm_all_locks_mutex);
2394
2395	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2396		if (signal_pending(current))
2397			goto out_unlock;
2398		if (vma->vm_file && vma->vm_file->f_mapping)
2399			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2400	}
2401
2402	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2403		if (signal_pending(current))
2404			goto out_unlock;
2405		if (vma->anon_vma)
2406			vm_lock_anon_vma(mm, vma->anon_vma);
2407	}
2408
2409	ret = 0;
2410
2411out_unlock:
2412	if (ret)
2413		mm_drop_all_locks(mm);
2414
2415	return ret;
2416}
2417
2418static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2419{
2420	if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2421		/*
2422		 * The LSB of head.next can't change to 0 from under
2423		 * us because we hold the mm_all_locks_mutex.
2424		 *
2425		 * We must however clear the bitflag before unlocking
2426		 * the vma so the users using the anon_vma->head will
2427		 * never see our bitflag.
2428		 *
2429		 * No need of atomic instructions here, head.next
2430		 * can't change from under us until we release the
2431		 * anon_vma->lock.
2432		 */
2433		if (!__test_and_clear_bit(0, (unsigned long *)
2434					  &anon_vma->head.next))
2435			BUG();
2436		spin_unlock(&anon_vma->lock);
2437	}
2438}
2439
2440static void vm_unlock_mapping(struct address_space *mapping)
2441{
2442	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2443		/*
2444		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2445		 * because we hold the mm_all_locks_mutex.
2446		 */
2447		spin_unlock(&mapping->i_mmap_lock);
2448		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2449					&mapping->flags))
2450			BUG();
2451	}
2452}
2453
2454/*
2455 * The mmap_sem cannot be released by the caller until
2456 * mm_drop_all_locks() returns.
2457 */
2458void mm_drop_all_locks(struct mm_struct *mm)
2459{
2460	struct vm_area_struct *vma;
2461
2462	BUG_ON(down_read_trylock(&mm->mmap_sem));
2463	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2464
2465	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2466		if (vma->anon_vma)
2467			vm_unlock_anon_vma(vma->anon_vma);
2468		if (vma->vm_file && vma->vm_file->f_mapping)
2469			vm_unlock_mapping(vma->vm_file->f_mapping);
2470	}
2471
2472	mutex_unlock(&mm_all_locks_mutex);
2473}
2474
2475/*
2476 * initialise the VMA slab
2477 */
2478void __init mmap_init(void)
2479{
2480	vm_area_cachep = kmem_cache_create("vm_area_struct",
2481			sizeof(struct vm_area_struct), 0,
2482			SLAB_PANIC, NULL);
2483}
2484