nommu.c revision 1c3aff1ceec2cc86810e2690e67873ff0c505862
1/*
2 *  linux/mm/nommu.c
3 *
4 *  Replacement code for mm functions to support CPU's that don't
5 *  have any form of memory management unit (thus no virtual memory).
6 *
7 *  See Documentation/nommu-mmap.txt
8 *
9 *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13 *  Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14 */
15
16#include <linux/module.h>
17#include <linux/mm.h>
18#include <linux/mman.h>
19#include <linux/swap.h>
20#include <linux/file.h>
21#include <linux/highmem.h>
22#include <linux/pagemap.h>
23#include <linux/slab.h>
24#include <linux/vmalloc.h>
25#include <linux/tracehook.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
28#include <linux/mount.h>
29#include <linux/personality.h>
30#include <linux/security.h>
31#include <linux/syscalls.h>
32
33#include <asm/uaccess.h>
34#include <asm/tlb.h>
35#include <asm/tlbflush.h>
36#include "internal.h"
37
38static inline __attribute__((format(printf, 1, 2)))
39void no_printk(const char *fmt, ...)
40{
41}
42
43#if 0
44#define kenter(FMT, ...) \
45	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
46#define kleave(FMT, ...) \
47	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
48#define kdebug(FMT, ...) \
49	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
50#else
51#define kenter(FMT, ...) \
52	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
53#define kleave(FMT, ...) \
54	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
55#define kdebug(FMT, ...) \
56	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
57#endif
58
59void *high_memory;
60struct page *mem_map;
61unsigned long max_mapnr;
62unsigned long num_physpages;
63struct percpu_counter vm_committed_as;
64int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
65int sysctl_overcommit_ratio = 50; /* default is 50% */
66int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
67int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
68int heap_stack_gap = 0;
69
70atomic_long_t mmap_pages_allocated;
71
72EXPORT_SYMBOL(mem_map);
73EXPORT_SYMBOL(num_physpages);
74
75/* list of mapped, potentially shareable regions */
76static struct kmem_cache *vm_region_jar;
77struct rb_root nommu_region_tree = RB_ROOT;
78DECLARE_RWSEM(nommu_region_sem);
79
80struct vm_operations_struct generic_file_vm_ops = {
81};
82
83/*
84 * Handle all mappings that got truncated by a "truncate()"
85 * system call.
86 *
87 * NOTE! We have to be ready to update the memory sharing
88 * between the file and the memory map for a potential last
89 * incomplete page.  Ugly, but necessary.
90 */
91int vmtruncate(struct inode *inode, loff_t offset)
92{
93	struct address_space *mapping = inode->i_mapping;
94	unsigned long limit;
95
96	if (inode->i_size < offset)
97		goto do_expand;
98	i_size_write(inode, offset);
99
100	truncate_inode_pages(mapping, offset);
101	goto out_truncate;
102
103do_expand:
104	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
105	if (limit != RLIM_INFINITY && offset > limit)
106		goto out_sig;
107	if (offset > inode->i_sb->s_maxbytes)
108		goto out;
109	i_size_write(inode, offset);
110
111out_truncate:
112	if (inode->i_op->truncate)
113		inode->i_op->truncate(inode);
114	return 0;
115out_sig:
116	send_sig(SIGXFSZ, current, 0);
117out:
118	return -EFBIG;
119}
120
121EXPORT_SYMBOL(vmtruncate);
122
123/*
124 * Return the total memory allocated for this pointer, not
125 * just what the caller asked for.
126 *
127 * Doesn't have to be accurate, i.e. may have races.
128 */
129unsigned int kobjsize(const void *objp)
130{
131	struct page *page;
132
133	/*
134	 * If the object we have should not have ksize performed on it,
135	 * return size of 0
136	 */
137	if (!objp || !virt_addr_valid(objp))
138		return 0;
139
140	page = virt_to_head_page(objp);
141
142	/*
143	 * If the allocator sets PageSlab, we know the pointer came from
144	 * kmalloc().
145	 */
146	if (PageSlab(page))
147		return ksize(objp);
148
149	/*
150	 * If it's not a compound page, see if we have a matching VMA
151	 * region. This test is intentionally done in reverse order,
152	 * so if there's no VMA, we still fall through and hand back
153	 * PAGE_SIZE for 0-order pages.
154	 */
155	if (!PageCompound(page)) {
156		struct vm_area_struct *vma;
157
158		vma = find_vma(current->mm, (unsigned long)objp);
159		if (vma)
160			return vma->vm_end - vma->vm_start;
161	}
162
163	/*
164	 * The ksize() function is only guaranteed to work for pointers
165	 * returned by kmalloc(). So handle arbitrary pointers here.
166	 */
167	return PAGE_SIZE << compound_order(page);
168}
169
170int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
171		     unsigned long start, int nr_pages, int flags,
172		     struct page **pages, struct vm_area_struct **vmas)
173{
174	struct vm_area_struct *vma;
175	unsigned long vm_flags;
176	int i;
177	int write = !!(flags & GUP_FLAGS_WRITE);
178	int force = !!(flags & GUP_FLAGS_FORCE);
179
180	/* calculate required read or write permissions.
181	 * - if 'force' is set, we only require the "MAY" flags.
182	 */
183	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
184	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
185
186	for (i = 0; i < nr_pages; i++) {
187		vma = find_vma(mm, start);
188		if (!vma)
189			goto finish_or_fault;
190
191		/* protect what we can, including chardevs */
192		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
193		    !(vm_flags & vma->vm_flags))
194			goto finish_or_fault;
195
196		if (pages) {
197			pages[i] = virt_to_page(start);
198			if (pages[i])
199				page_cache_get(pages[i]);
200		}
201		if (vmas)
202			vmas[i] = vma;
203		start += PAGE_SIZE;
204	}
205
206	return i;
207
208finish_or_fault:
209	return i ? : -EFAULT;
210}
211
212/*
213 * get a list of pages in an address range belonging to the specified process
214 * and indicate the VMA that covers each page
215 * - this is potentially dodgy as we may end incrementing the page count of a
216 *   slab page or a secondary page from a compound page
217 * - don't permit access to VMAs that don't support it, such as I/O mappings
218 */
219int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
220	unsigned long start, int nr_pages, int write, int force,
221	struct page **pages, struct vm_area_struct **vmas)
222{
223	int flags = 0;
224
225	if (write)
226		flags |= GUP_FLAGS_WRITE;
227	if (force)
228		flags |= GUP_FLAGS_FORCE;
229
230	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
231}
232EXPORT_SYMBOL(get_user_pages);
233
234/**
235 * follow_pfn - look up PFN at a user virtual address
236 * @vma: memory mapping
237 * @address: user virtual address
238 * @pfn: location to store found PFN
239 *
240 * Only IO mappings and raw PFN mappings are allowed.
241 *
242 * Returns zero and the pfn at @pfn on success, -ve otherwise.
243 */
244int follow_pfn(struct vm_area_struct *vma, unsigned long address,
245	unsigned long *pfn)
246{
247	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
248		return -EINVAL;
249
250	*pfn = address >> PAGE_SHIFT;
251	return 0;
252}
253EXPORT_SYMBOL(follow_pfn);
254
255DEFINE_RWLOCK(vmlist_lock);
256struct vm_struct *vmlist;
257
258void vfree(const void *addr)
259{
260	kfree(addr);
261}
262EXPORT_SYMBOL(vfree);
263
264void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
265{
266	/*
267	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
268	 * returns only a logical address.
269	 */
270	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
271}
272EXPORT_SYMBOL(__vmalloc);
273
274void *vmalloc_user(unsigned long size)
275{
276	void *ret;
277
278	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
279			PAGE_KERNEL);
280	if (ret) {
281		struct vm_area_struct *vma;
282
283		down_write(&current->mm->mmap_sem);
284		vma = find_vma(current->mm, (unsigned long)ret);
285		if (vma)
286			vma->vm_flags |= VM_USERMAP;
287		up_write(&current->mm->mmap_sem);
288	}
289
290	return ret;
291}
292EXPORT_SYMBOL(vmalloc_user);
293
294struct page *vmalloc_to_page(const void *addr)
295{
296	return virt_to_page(addr);
297}
298EXPORT_SYMBOL(vmalloc_to_page);
299
300unsigned long vmalloc_to_pfn(const void *addr)
301{
302	return page_to_pfn(virt_to_page(addr));
303}
304EXPORT_SYMBOL(vmalloc_to_pfn);
305
306long vread(char *buf, char *addr, unsigned long count)
307{
308	memcpy(buf, addr, count);
309	return count;
310}
311
312long vwrite(char *buf, char *addr, unsigned long count)
313{
314	/* Don't allow overflow */
315	if ((unsigned long) addr + count < count)
316		count = -(unsigned long) addr;
317
318	memcpy(addr, buf, count);
319	return(count);
320}
321
322/*
323 *	vmalloc  -  allocate virtually continguos memory
324 *
325 *	@size:		allocation size
326 *
327 *	Allocate enough pages to cover @size from the page level
328 *	allocator and map them into continguos kernel virtual space.
329 *
330 *	For tight control over page level allocator and protection flags
331 *	use __vmalloc() instead.
332 */
333void *vmalloc(unsigned long size)
334{
335       return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
336}
337EXPORT_SYMBOL(vmalloc);
338
339void *vmalloc_node(unsigned long size, int node)
340{
341	return vmalloc(size);
342}
343EXPORT_SYMBOL(vmalloc_node);
344
345#ifndef PAGE_KERNEL_EXEC
346# define PAGE_KERNEL_EXEC PAGE_KERNEL
347#endif
348
349/**
350 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
351 *	@size:		allocation size
352 *
353 *	Kernel-internal function to allocate enough pages to cover @size
354 *	the page level allocator and map them into contiguous and
355 *	executable kernel virtual space.
356 *
357 *	For tight control over page level allocator and protection flags
358 *	use __vmalloc() instead.
359 */
360
361void *vmalloc_exec(unsigned long size)
362{
363	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
364}
365
366/**
367 * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
368 *	@size:		allocation size
369 *
370 *	Allocate enough 32bit PA addressable pages to cover @size from the
371 *	page level allocator and map them into continguos kernel virtual space.
372 */
373void *vmalloc_32(unsigned long size)
374{
375	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
376}
377EXPORT_SYMBOL(vmalloc_32);
378
379/**
380 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
381 *	@size:		allocation size
382 *
383 * The resulting memory area is 32bit addressable and zeroed so it can be
384 * mapped to userspace without leaking data.
385 *
386 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
387 * remap_vmalloc_range() are permissible.
388 */
389void *vmalloc_32_user(unsigned long size)
390{
391	/*
392	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
393	 * but for now this can simply use vmalloc_user() directly.
394	 */
395	return vmalloc_user(size);
396}
397EXPORT_SYMBOL(vmalloc_32_user);
398
399void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
400{
401	BUG();
402	return NULL;
403}
404EXPORT_SYMBOL(vmap);
405
406void vunmap(const void *addr)
407{
408	BUG();
409}
410EXPORT_SYMBOL(vunmap);
411
412void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
413{
414	BUG();
415	return NULL;
416}
417EXPORT_SYMBOL(vm_map_ram);
418
419void vm_unmap_ram(const void *mem, unsigned int count)
420{
421	BUG();
422}
423EXPORT_SYMBOL(vm_unmap_ram);
424
425void vm_unmap_aliases(void)
426{
427}
428EXPORT_SYMBOL_GPL(vm_unmap_aliases);
429
430/*
431 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
432 * have one.
433 */
434void  __attribute__((weak)) vmalloc_sync_all(void)
435{
436}
437
438int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
439		   struct page *page)
440{
441	return -EINVAL;
442}
443EXPORT_SYMBOL(vm_insert_page);
444
445/*
446 *  sys_brk() for the most part doesn't need the global kernel
447 *  lock, except when an application is doing something nasty
448 *  like trying to un-brk an area that has already been mapped
449 *  to a regular file.  in this case, the unmapping will need
450 *  to invoke file system routines that need the global lock.
451 */
452SYSCALL_DEFINE1(brk, unsigned long, brk)
453{
454	struct mm_struct *mm = current->mm;
455
456	if (brk < mm->start_brk || brk > mm->context.end_brk)
457		return mm->brk;
458
459	if (mm->brk == brk)
460		return mm->brk;
461
462	/*
463	 * Always allow shrinking brk
464	 */
465	if (brk <= mm->brk) {
466		mm->brk = brk;
467		return brk;
468	}
469
470	/*
471	 * Ok, looks good - let it rip.
472	 */
473	return mm->brk = brk;
474}
475
476/*
477 * initialise the VMA and region record slabs
478 */
479void __init mmap_init(void)
480{
481	int ret;
482
483	ret = percpu_counter_init(&vm_committed_as, 0);
484	VM_BUG_ON(ret);
485	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
486}
487
488/*
489 * validate the region tree
490 * - the caller must hold the region lock
491 */
492#ifdef CONFIG_DEBUG_NOMMU_REGIONS
493static noinline void validate_nommu_regions(void)
494{
495	struct vm_region *region, *last;
496	struct rb_node *p, *lastp;
497
498	lastp = rb_first(&nommu_region_tree);
499	if (!lastp)
500		return;
501
502	last = rb_entry(lastp, struct vm_region, vm_rb);
503	BUG_ON(unlikely(last->vm_end <= last->vm_start));
504	BUG_ON(unlikely(last->vm_top < last->vm_end));
505
506	while ((p = rb_next(lastp))) {
507		region = rb_entry(p, struct vm_region, vm_rb);
508		last = rb_entry(lastp, struct vm_region, vm_rb);
509
510		BUG_ON(unlikely(region->vm_end <= region->vm_start));
511		BUG_ON(unlikely(region->vm_top < region->vm_end));
512		BUG_ON(unlikely(region->vm_start < last->vm_top));
513
514		lastp = p;
515	}
516}
517#else
518static void validate_nommu_regions(void)
519{
520}
521#endif
522
523/*
524 * add a region into the global tree
525 */
526static void add_nommu_region(struct vm_region *region)
527{
528	struct vm_region *pregion;
529	struct rb_node **p, *parent;
530
531	validate_nommu_regions();
532
533	parent = NULL;
534	p = &nommu_region_tree.rb_node;
535	while (*p) {
536		parent = *p;
537		pregion = rb_entry(parent, struct vm_region, vm_rb);
538		if (region->vm_start < pregion->vm_start)
539			p = &(*p)->rb_left;
540		else if (region->vm_start > pregion->vm_start)
541			p = &(*p)->rb_right;
542		else if (pregion == region)
543			return;
544		else
545			BUG();
546	}
547
548	rb_link_node(&region->vm_rb, parent, p);
549	rb_insert_color(&region->vm_rb, &nommu_region_tree);
550
551	validate_nommu_regions();
552}
553
554/*
555 * delete a region from the global tree
556 */
557static void delete_nommu_region(struct vm_region *region)
558{
559	BUG_ON(!nommu_region_tree.rb_node);
560
561	validate_nommu_regions();
562	rb_erase(&region->vm_rb, &nommu_region_tree);
563	validate_nommu_regions();
564}
565
566/*
567 * free a contiguous series of pages
568 */
569static void free_page_series(unsigned long from, unsigned long to)
570{
571	for (; from < to; from += PAGE_SIZE) {
572		struct page *page = virt_to_page(from);
573
574		kdebug("- free %lx", from);
575		atomic_long_dec(&mmap_pages_allocated);
576		if (page_count(page) != 1)
577			kdebug("free page %p: refcount not one: %d",
578			       page, page_count(page));
579		put_page(page);
580	}
581}
582
583/*
584 * release a reference to a region
585 * - the caller must hold the region semaphore for writing, which this releases
586 * - the region may not have been added to the tree yet, in which case vm_top
587 *   will equal vm_start
588 */
589static void __put_nommu_region(struct vm_region *region)
590	__releases(nommu_region_sem)
591{
592	kenter("%p{%d}", region, atomic_read(&region->vm_usage));
593
594	BUG_ON(!nommu_region_tree.rb_node);
595
596	if (atomic_dec_and_test(&region->vm_usage)) {
597		if (region->vm_top > region->vm_start)
598			delete_nommu_region(region);
599		up_write(&nommu_region_sem);
600
601		if (region->vm_file)
602			fput(region->vm_file);
603
604		/* IO memory and memory shared directly out of the pagecache
605		 * from ramfs/tmpfs mustn't be released here */
606		if (region->vm_flags & VM_MAPPED_COPY) {
607			kdebug("free series");
608			free_page_series(region->vm_start, region->vm_top);
609		}
610		kmem_cache_free(vm_region_jar, region);
611	} else {
612		up_write(&nommu_region_sem);
613	}
614}
615
616/*
617 * release a reference to a region
618 */
619static void put_nommu_region(struct vm_region *region)
620{
621	down_write(&nommu_region_sem);
622	__put_nommu_region(region);
623}
624
625/*
626 * add a VMA into a process's mm_struct in the appropriate place in the list
627 * and tree and add to the address space's page tree also if not an anonymous
628 * page
629 * - should be called with mm->mmap_sem held writelocked
630 */
631static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
632{
633	struct vm_area_struct *pvma, **pp;
634	struct address_space *mapping;
635	struct rb_node **p, *parent;
636
637	kenter(",%p", vma);
638
639	BUG_ON(!vma->vm_region);
640
641	mm->map_count++;
642	vma->vm_mm = mm;
643
644	/* add the VMA to the mapping */
645	if (vma->vm_file) {
646		mapping = vma->vm_file->f_mapping;
647
648		flush_dcache_mmap_lock(mapping);
649		vma_prio_tree_insert(vma, &mapping->i_mmap);
650		flush_dcache_mmap_unlock(mapping);
651	}
652
653	/* add the VMA to the tree */
654	parent = NULL;
655	p = &mm->mm_rb.rb_node;
656	while (*p) {
657		parent = *p;
658		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
659
660		/* sort by: start addr, end addr, VMA struct addr in that order
661		 * (the latter is necessary as we may get identical VMAs) */
662		if (vma->vm_start < pvma->vm_start)
663			p = &(*p)->rb_left;
664		else if (vma->vm_start > pvma->vm_start)
665			p = &(*p)->rb_right;
666		else if (vma->vm_end < pvma->vm_end)
667			p = &(*p)->rb_left;
668		else if (vma->vm_end > pvma->vm_end)
669			p = &(*p)->rb_right;
670		else if (vma < pvma)
671			p = &(*p)->rb_left;
672		else if (vma > pvma)
673			p = &(*p)->rb_right;
674		else
675			BUG();
676	}
677
678	rb_link_node(&vma->vm_rb, parent, p);
679	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
680
681	/* add VMA to the VMA list also */
682	for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
683		if (pvma->vm_start > vma->vm_start)
684			break;
685		if (pvma->vm_start < vma->vm_start)
686			continue;
687		if (pvma->vm_end < vma->vm_end)
688			break;
689	}
690
691	vma->vm_next = *pp;
692	*pp = vma;
693}
694
695/*
696 * delete a VMA from its owning mm_struct and address space
697 */
698static void delete_vma_from_mm(struct vm_area_struct *vma)
699{
700	struct vm_area_struct **pp;
701	struct address_space *mapping;
702	struct mm_struct *mm = vma->vm_mm;
703
704	kenter("%p", vma);
705
706	mm->map_count--;
707	if (mm->mmap_cache == vma)
708		mm->mmap_cache = NULL;
709
710	/* remove the VMA from the mapping */
711	if (vma->vm_file) {
712		mapping = vma->vm_file->f_mapping;
713
714		flush_dcache_mmap_lock(mapping);
715		vma_prio_tree_remove(vma, &mapping->i_mmap);
716		flush_dcache_mmap_unlock(mapping);
717	}
718
719	/* remove from the MM's tree and list */
720	rb_erase(&vma->vm_rb, &mm->mm_rb);
721	for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
722		if (*pp == vma) {
723			*pp = vma->vm_next;
724			break;
725		}
726	}
727
728	vma->vm_mm = NULL;
729}
730
731/*
732 * destroy a VMA record
733 */
734static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
735{
736	kenter("%p", vma);
737	if (vma->vm_ops && vma->vm_ops->close)
738		vma->vm_ops->close(vma);
739	if (vma->vm_file) {
740		fput(vma->vm_file);
741		if (vma->vm_flags & VM_EXECUTABLE)
742			removed_exe_file_vma(mm);
743	}
744	put_nommu_region(vma->vm_region);
745	kmem_cache_free(vm_area_cachep, vma);
746}
747
748/*
749 * look up the first VMA in which addr resides, NULL if none
750 * - should be called with mm->mmap_sem at least held readlocked
751 */
752struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
753{
754	struct vm_area_struct *vma;
755	struct rb_node *n = mm->mm_rb.rb_node;
756
757	/* check the cache first */
758	vma = mm->mmap_cache;
759	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
760		return vma;
761
762	/* trawl the tree (there may be multiple mappings in which addr
763	 * resides) */
764	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
765		vma = rb_entry(n, struct vm_area_struct, vm_rb);
766		if (vma->vm_start > addr)
767			return NULL;
768		if (vma->vm_end > addr) {
769			mm->mmap_cache = vma;
770			return vma;
771		}
772	}
773
774	return NULL;
775}
776EXPORT_SYMBOL(find_vma);
777
778/*
779 * find a VMA
780 * - we don't extend stack VMAs under NOMMU conditions
781 */
782struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
783{
784	return find_vma(mm, addr);
785}
786
787/*
788 * expand a stack to a given address
789 * - not supported under NOMMU conditions
790 */
791int expand_stack(struct vm_area_struct *vma, unsigned long address)
792{
793	return -ENOMEM;
794}
795
796/*
797 * look up the first VMA exactly that exactly matches addr
798 * - should be called with mm->mmap_sem at least held readlocked
799 */
800static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
801					     unsigned long addr,
802					     unsigned long len)
803{
804	struct vm_area_struct *vma;
805	struct rb_node *n = mm->mm_rb.rb_node;
806	unsigned long end = addr + len;
807
808	/* check the cache first */
809	vma = mm->mmap_cache;
810	if (vma && vma->vm_start == addr && vma->vm_end == end)
811		return vma;
812
813	/* trawl the tree (there may be multiple mappings in which addr
814	 * resides) */
815	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
816		vma = rb_entry(n, struct vm_area_struct, vm_rb);
817		if (vma->vm_start < addr)
818			continue;
819		if (vma->vm_start > addr)
820			return NULL;
821		if (vma->vm_end == end) {
822			mm->mmap_cache = vma;
823			return vma;
824		}
825	}
826
827	return NULL;
828}
829
830/*
831 * determine whether a mapping should be permitted and, if so, what sort of
832 * mapping we're capable of supporting
833 */
834static int validate_mmap_request(struct file *file,
835				 unsigned long addr,
836				 unsigned long len,
837				 unsigned long prot,
838				 unsigned long flags,
839				 unsigned long pgoff,
840				 unsigned long *_capabilities)
841{
842	unsigned long capabilities, rlen;
843	unsigned long reqprot = prot;
844	int ret;
845
846	/* do the simple checks first */
847	if (flags & MAP_FIXED || addr) {
848		printk(KERN_DEBUG
849		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
850		       current->pid);
851		return -EINVAL;
852	}
853
854	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
855	    (flags & MAP_TYPE) != MAP_SHARED)
856		return -EINVAL;
857
858	if (!len)
859		return -EINVAL;
860
861	/* Careful about overflows.. */
862	rlen = PAGE_ALIGN(len);
863	if (!rlen || rlen > TASK_SIZE)
864		return -ENOMEM;
865
866	/* offset overflow? */
867	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
868		return -EOVERFLOW;
869
870	if (file) {
871		/* validate file mapping requests */
872		struct address_space *mapping;
873
874		/* files must support mmap */
875		if (!file->f_op || !file->f_op->mmap)
876			return -ENODEV;
877
878		/* work out if what we've got could possibly be shared
879		 * - we support chardevs that provide their own "memory"
880		 * - we support files/blockdevs that are memory backed
881		 */
882		mapping = file->f_mapping;
883		if (!mapping)
884			mapping = file->f_path.dentry->d_inode->i_mapping;
885
886		capabilities = 0;
887		if (mapping && mapping->backing_dev_info)
888			capabilities = mapping->backing_dev_info->capabilities;
889
890		if (!capabilities) {
891			/* no explicit capabilities set, so assume some
892			 * defaults */
893			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
894			case S_IFREG:
895			case S_IFBLK:
896				capabilities = BDI_CAP_MAP_COPY;
897				break;
898
899			case S_IFCHR:
900				capabilities =
901					BDI_CAP_MAP_DIRECT |
902					BDI_CAP_READ_MAP |
903					BDI_CAP_WRITE_MAP;
904				break;
905
906			default:
907				return -EINVAL;
908			}
909		}
910
911		/* eliminate any capabilities that we can't support on this
912		 * device */
913		if (!file->f_op->get_unmapped_area)
914			capabilities &= ~BDI_CAP_MAP_DIRECT;
915		if (!file->f_op->read)
916			capabilities &= ~BDI_CAP_MAP_COPY;
917
918		/* The file shall have been opened with read permission. */
919		if (!(file->f_mode & FMODE_READ))
920			return -EACCES;
921
922		if (flags & MAP_SHARED) {
923			/* do checks for writing, appending and locking */
924			if ((prot & PROT_WRITE) &&
925			    !(file->f_mode & FMODE_WRITE))
926				return -EACCES;
927
928			if (IS_APPEND(file->f_path.dentry->d_inode) &&
929			    (file->f_mode & FMODE_WRITE))
930				return -EACCES;
931
932			if (locks_verify_locked(file->f_path.dentry->d_inode))
933				return -EAGAIN;
934
935			if (!(capabilities & BDI_CAP_MAP_DIRECT))
936				return -ENODEV;
937
938			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
939			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
940			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
941			    ) {
942				printk("MAP_SHARED not completely supported on !MMU\n");
943				return -EINVAL;
944			}
945
946			/* we mustn't privatise shared mappings */
947			capabilities &= ~BDI_CAP_MAP_COPY;
948		}
949		else {
950			/* we're going to read the file into private memory we
951			 * allocate */
952			if (!(capabilities & BDI_CAP_MAP_COPY))
953				return -ENODEV;
954
955			/* we don't permit a private writable mapping to be
956			 * shared with the backing device */
957			if (prot & PROT_WRITE)
958				capabilities &= ~BDI_CAP_MAP_DIRECT;
959		}
960
961		/* handle executable mappings and implied executable
962		 * mappings */
963		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
964			if (prot & PROT_EXEC)
965				return -EPERM;
966		}
967		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
968			/* handle implication of PROT_EXEC by PROT_READ */
969			if (current->personality & READ_IMPLIES_EXEC) {
970				if (capabilities & BDI_CAP_EXEC_MAP)
971					prot |= PROT_EXEC;
972			}
973		}
974		else if ((prot & PROT_READ) &&
975			 (prot & PROT_EXEC) &&
976			 !(capabilities & BDI_CAP_EXEC_MAP)
977			 ) {
978			/* backing file is not executable, try to copy */
979			capabilities &= ~BDI_CAP_MAP_DIRECT;
980		}
981	}
982	else {
983		/* anonymous mappings are always memory backed and can be
984		 * privately mapped
985		 */
986		capabilities = BDI_CAP_MAP_COPY;
987
988		/* handle PROT_EXEC implication by PROT_READ */
989		if ((prot & PROT_READ) &&
990		    (current->personality & READ_IMPLIES_EXEC))
991			prot |= PROT_EXEC;
992	}
993
994	/* allow the security API to have its say */
995	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
996	if (ret < 0)
997		return ret;
998
999	/* looks okay */
1000	*_capabilities = capabilities;
1001	return 0;
1002}
1003
1004/*
1005 * we've determined that we can make the mapping, now translate what we
1006 * now know into VMA flags
1007 */
1008static unsigned long determine_vm_flags(struct file *file,
1009					unsigned long prot,
1010					unsigned long flags,
1011					unsigned long capabilities)
1012{
1013	unsigned long vm_flags;
1014
1015	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1016	vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1017	/* vm_flags |= mm->def_flags; */
1018
1019	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1020		/* attempt to share read-only copies of mapped file chunks */
1021		if (file && !(prot & PROT_WRITE))
1022			vm_flags |= VM_MAYSHARE;
1023	}
1024	else {
1025		/* overlay a shareable mapping on the backing device or inode
1026		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1027		 * romfs/cramfs */
1028		if (flags & MAP_SHARED)
1029			vm_flags |= VM_MAYSHARE | VM_SHARED;
1030		else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1031			vm_flags |= VM_MAYSHARE;
1032	}
1033
1034	/* refuse to let anyone share private mappings with this process if
1035	 * it's being traced - otherwise breakpoints set in it may interfere
1036	 * with another untraced process
1037	 */
1038	if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1039		vm_flags &= ~VM_MAYSHARE;
1040
1041	return vm_flags;
1042}
1043
1044/*
1045 * set up a shared mapping on a file (the driver or filesystem provides and
1046 * pins the storage)
1047 */
1048static int do_mmap_shared_file(struct vm_area_struct *vma)
1049{
1050	int ret;
1051
1052	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1053	if (ret == 0) {
1054		vma->vm_region->vm_top = vma->vm_region->vm_end;
1055		return ret;
1056	}
1057	if (ret != -ENOSYS)
1058		return ret;
1059
1060	/* getting an ENOSYS error indicates that direct mmap isn't
1061	 * possible (as opposed to tried but failed) so we'll fall
1062	 * through to making a private copy of the data and mapping
1063	 * that if we can */
1064	return -ENODEV;
1065}
1066
1067/*
1068 * set up a private mapping or an anonymous shared mapping
1069 */
1070static int do_mmap_private(struct vm_area_struct *vma,
1071			   struct vm_region *region,
1072			   unsigned long len)
1073{
1074	struct page *pages;
1075	unsigned long total, point, n, rlen;
1076	void *base;
1077	int ret, order;
1078
1079	/* invoke the file's mapping function so that it can keep track of
1080	 * shared mappings on devices or memory
1081	 * - VM_MAYSHARE will be set if it may attempt to share
1082	 */
1083	if (vma->vm_file) {
1084		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1085		if (ret == 0) {
1086			/* shouldn't return success if we're not sharing */
1087			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1088			vma->vm_region->vm_top = vma->vm_region->vm_end;
1089			return ret;
1090		}
1091		if (ret != -ENOSYS)
1092			return ret;
1093
1094		/* getting an ENOSYS error indicates that direct mmap isn't
1095		 * possible (as opposed to tried but failed) so we'll try to
1096		 * make a private copy of the data and map that instead */
1097	}
1098
1099	rlen = PAGE_ALIGN(len);
1100
1101	/* allocate some memory to hold the mapping
1102	 * - note that this may not return a page-aligned address if the object
1103	 *   we're allocating is smaller than a page
1104	 */
1105	order = get_order(rlen);
1106	kdebug("alloc order %d for %lx", order, len);
1107
1108	pages = alloc_pages(GFP_KERNEL, order);
1109	if (!pages)
1110		goto enomem;
1111
1112	total = 1 << order;
1113	atomic_long_add(total, &mmap_pages_allocated);
1114
1115	point = rlen >> PAGE_SHIFT;
1116
1117	/* we allocated a power-of-2 sized page set, so we may want to trim off
1118	 * the excess */
1119	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1120		while (total > point) {
1121			order = ilog2(total - point);
1122			n = 1 << order;
1123			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1124			atomic_long_sub(n, &mmap_pages_allocated);
1125			total -= n;
1126			set_page_refcounted(pages + total);
1127			__free_pages(pages + total, order);
1128		}
1129	}
1130
1131	for (point = 1; point < total; point++)
1132		set_page_refcounted(&pages[point]);
1133
1134	base = page_address(pages);
1135	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1136	region->vm_start = (unsigned long) base;
1137	region->vm_end   = region->vm_start + rlen;
1138	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1139
1140	vma->vm_start = region->vm_start;
1141	vma->vm_end   = region->vm_start + len;
1142
1143	if (vma->vm_file) {
1144		/* read the contents of a file into the copy */
1145		mm_segment_t old_fs;
1146		loff_t fpos;
1147
1148		fpos = vma->vm_pgoff;
1149		fpos <<= PAGE_SHIFT;
1150
1151		old_fs = get_fs();
1152		set_fs(KERNEL_DS);
1153		ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1154		set_fs(old_fs);
1155
1156		if (ret < 0)
1157			goto error_free;
1158
1159		/* clear the last little bit */
1160		if (ret < rlen)
1161			memset(base + ret, 0, rlen - ret);
1162
1163	} else {
1164		/* if it's an anonymous mapping, then just clear it */
1165		memset(base, 0, rlen);
1166	}
1167
1168	return 0;
1169
1170error_free:
1171	free_page_series(region->vm_start, region->vm_end);
1172	region->vm_start = vma->vm_start = 0;
1173	region->vm_end   = vma->vm_end = 0;
1174	region->vm_top   = 0;
1175	return ret;
1176
1177enomem:
1178	printk("Allocation of length %lu from process %d (%s) failed\n",
1179	       len, current->pid, current->comm);
1180	show_free_areas();
1181	return -ENOMEM;
1182}
1183
1184/*
1185 * handle mapping creation for uClinux
1186 */
1187unsigned long do_mmap_pgoff(struct file *file,
1188			    unsigned long addr,
1189			    unsigned long len,
1190			    unsigned long prot,
1191			    unsigned long flags,
1192			    unsigned long pgoff)
1193{
1194	struct vm_area_struct *vma;
1195	struct vm_region *region;
1196	struct rb_node *rb;
1197	unsigned long capabilities, vm_flags, result;
1198	int ret;
1199
1200	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1201
1202	if (!(flags & MAP_FIXED))
1203		addr = round_hint_to_min(addr);
1204
1205	/* decide whether we should attempt the mapping, and if so what sort of
1206	 * mapping */
1207	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1208				    &capabilities);
1209	if (ret < 0) {
1210		kleave(" = %d [val]", ret);
1211		return ret;
1212	}
1213
1214	/* we've determined that we can make the mapping, now translate what we
1215	 * now know into VMA flags */
1216	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1217
1218	/* we're going to need to record the mapping */
1219	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1220	if (!region)
1221		goto error_getting_region;
1222
1223	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1224	if (!vma)
1225		goto error_getting_vma;
1226
1227	atomic_set(&region->vm_usage, 1);
1228	region->vm_flags = vm_flags;
1229	region->vm_pgoff = pgoff;
1230
1231	INIT_LIST_HEAD(&vma->anon_vma_node);
1232	vma->vm_flags = vm_flags;
1233	vma->vm_pgoff = pgoff;
1234
1235	if (file) {
1236		region->vm_file = file;
1237		get_file(file);
1238		vma->vm_file = file;
1239		get_file(file);
1240		if (vm_flags & VM_EXECUTABLE) {
1241			added_exe_file_vma(current->mm);
1242			vma->vm_mm = current->mm;
1243		}
1244	}
1245
1246	down_write(&nommu_region_sem);
1247
1248	/* if we want to share, we need to check for regions created by other
1249	 * mmap() calls that overlap with our proposed mapping
1250	 * - we can only share with a superset match on most regular files
1251	 * - shared mappings on character devices and memory backed files are
1252	 *   permitted to overlap inexactly as far as we are concerned for in
1253	 *   these cases, sharing is handled in the driver or filesystem rather
1254	 *   than here
1255	 */
1256	if (vm_flags & VM_MAYSHARE) {
1257		struct vm_region *pregion;
1258		unsigned long pglen, rpglen, pgend, rpgend, start;
1259
1260		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1261		pgend = pgoff + pglen;
1262
1263		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1264			pregion = rb_entry(rb, struct vm_region, vm_rb);
1265
1266			if (!(pregion->vm_flags & VM_MAYSHARE))
1267				continue;
1268
1269			/* search for overlapping mappings on the same file */
1270			if (pregion->vm_file->f_path.dentry->d_inode !=
1271			    file->f_path.dentry->d_inode)
1272				continue;
1273
1274			if (pregion->vm_pgoff >= pgend)
1275				continue;
1276
1277			rpglen = pregion->vm_end - pregion->vm_start;
1278			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1279			rpgend = pregion->vm_pgoff + rpglen;
1280			if (pgoff >= rpgend)
1281				continue;
1282
1283			/* handle inexactly overlapping matches between
1284			 * mappings */
1285			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1286			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1287				/* new mapping is not a subset of the region */
1288				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1289					goto sharing_violation;
1290				continue;
1291			}
1292
1293			/* we've found a region we can share */
1294			atomic_inc(&pregion->vm_usage);
1295			vma->vm_region = pregion;
1296			start = pregion->vm_start;
1297			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1298			vma->vm_start = start;
1299			vma->vm_end = start + len;
1300
1301			if (pregion->vm_flags & VM_MAPPED_COPY) {
1302				kdebug("share copy");
1303				vma->vm_flags |= VM_MAPPED_COPY;
1304			} else {
1305				kdebug("share mmap");
1306				ret = do_mmap_shared_file(vma);
1307				if (ret < 0) {
1308					vma->vm_region = NULL;
1309					vma->vm_start = 0;
1310					vma->vm_end = 0;
1311					atomic_dec(&pregion->vm_usage);
1312					pregion = NULL;
1313					goto error_just_free;
1314				}
1315			}
1316			fput(region->vm_file);
1317			kmem_cache_free(vm_region_jar, region);
1318			region = pregion;
1319			result = start;
1320			goto share;
1321		}
1322
1323		/* obtain the address at which to make a shared mapping
1324		 * - this is the hook for quasi-memory character devices to
1325		 *   tell us the location of a shared mapping
1326		 */
1327		if (file && file->f_op->get_unmapped_area) {
1328			addr = file->f_op->get_unmapped_area(file, addr, len,
1329							     pgoff, flags);
1330			if (IS_ERR((void *) addr)) {
1331				ret = addr;
1332				if (ret != (unsigned long) -ENOSYS)
1333					goto error_just_free;
1334
1335				/* the driver refused to tell us where to site
1336				 * the mapping so we'll have to attempt to copy
1337				 * it */
1338				ret = (unsigned long) -ENODEV;
1339				if (!(capabilities & BDI_CAP_MAP_COPY))
1340					goto error_just_free;
1341
1342				capabilities &= ~BDI_CAP_MAP_DIRECT;
1343			} else {
1344				vma->vm_start = region->vm_start = addr;
1345				vma->vm_end = region->vm_end = addr + len;
1346			}
1347		}
1348	}
1349
1350	vma->vm_region = region;
1351	add_nommu_region(region);
1352
1353	/* set up the mapping */
1354	if (file && vma->vm_flags & VM_SHARED)
1355		ret = do_mmap_shared_file(vma);
1356	else
1357		ret = do_mmap_private(vma, region, len);
1358	if (ret < 0)
1359		goto error_put_region;
1360
1361	/* okay... we have a mapping; now we have to register it */
1362	result = vma->vm_start;
1363
1364	current->mm->total_vm += len >> PAGE_SHIFT;
1365
1366share:
1367	add_vma_to_mm(current->mm, vma);
1368
1369	up_write(&nommu_region_sem);
1370
1371	if (prot & PROT_EXEC)
1372		flush_icache_range(result, result + len);
1373
1374	kleave(" = %lx", result);
1375	return result;
1376
1377error_put_region:
1378	__put_nommu_region(region);
1379	if (vma) {
1380		if (vma->vm_file) {
1381			fput(vma->vm_file);
1382			if (vma->vm_flags & VM_EXECUTABLE)
1383				removed_exe_file_vma(vma->vm_mm);
1384		}
1385		kmem_cache_free(vm_area_cachep, vma);
1386	}
1387	kleave(" = %d [pr]", ret);
1388	return ret;
1389
1390error_just_free:
1391	up_write(&nommu_region_sem);
1392error:
1393	fput(region->vm_file);
1394	kmem_cache_free(vm_region_jar, region);
1395	fput(vma->vm_file);
1396	if (vma->vm_flags & VM_EXECUTABLE)
1397		removed_exe_file_vma(vma->vm_mm);
1398	kmem_cache_free(vm_area_cachep, vma);
1399	kleave(" = %d", ret);
1400	return ret;
1401
1402sharing_violation:
1403	up_write(&nommu_region_sem);
1404	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1405	ret = -EINVAL;
1406	goto error;
1407
1408error_getting_vma:
1409	kmem_cache_free(vm_region_jar, region);
1410	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1411	       " from process %d failed\n",
1412	       len, current->pid);
1413	show_free_areas();
1414	return -ENOMEM;
1415
1416error_getting_region:
1417	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1418	       " from process %d failed\n",
1419	       len, current->pid);
1420	show_free_areas();
1421	return -ENOMEM;
1422}
1423EXPORT_SYMBOL(do_mmap_pgoff);
1424
1425/*
1426 * split a vma into two pieces at address 'addr', a new vma is allocated either
1427 * for the first part or the tail.
1428 */
1429int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1430	      unsigned long addr, int new_below)
1431{
1432	struct vm_area_struct *new;
1433	struct vm_region *region;
1434	unsigned long npages;
1435
1436	kenter("");
1437
1438	/* we're only permitted to split anonymous regions that have a single
1439	 * owner */
1440	if (vma->vm_file ||
1441	    atomic_read(&vma->vm_region->vm_usage) != 1)
1442		return -ENOMEM;
1443
1444	if (mm->map_count >= sysctl_max_map_count)
1445		return -ENOMEM;
1446
1447	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1448	if (!region)
1449		return -ENOMEM;
1450
1451	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1452	if (!new) {
1453		kmem_cache_free(vm_region_jar, region);
1454		return -ENOMEM;
1455	}
1456
1457	/* most fields are the same, copy all, and then fixup */
1458	*new = *vma;
1459	*region = *vma->vm_region;
1460	new->vm_region = region;
1461
1462	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1463
1464	if (new_below) {
1465		region->vm_top = region->vm_end = new->vm_end = addr;
1466	} else {
1467		region->vm_start = new->vm_start = addr;
1468		region->vm_pgoff = new->vm_pgoff += npages;
1469	}
1470
1471	if (new->vm_ops && new->vm_ops->open)
1472		new->vm_ops->open(new);
1473
1474	delete_vma_from_mm(vma);
1475	down_write(&nommu_region_sem);
1476	delete_nommu_region(vma->vm_region);
1477	if (new_below) {
1478		vma->vm_region->vm_start = vma->vm_start = addr;
1479		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1480	} else {
1481		vma->vm_region->vm_end = vma->vm_end = addr;
1482		vma->vm_region->vm_top = addr;
1483	}
1484	add_nommu_region(vma->vm_region);
1485	add_nommu_region(new->vm_region);
1486	up_write(&nommu_region_sem);
1487	add_vma_to_mm(mm, vma);
1488	add_vma_to_mm(mm, new);
1489	return 0;
1490}
1491
1492/*
1493 * shrink a VMA by removing the specified chunk from either the beginning or
1494 * the end
1495 */
1496static int shrink_vma(struct mm_struct *mm,
1497		      struct vm_area_struct *vma,
1498		      unsigned long from, unsigned long to)
1499{
1500	struct vm_region *region;
1501
1502	kenter("");
1503
1504	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1505	 * and list */
1506	delete_vma_from_mm(vma);
1507	if (from > vma->vm_start)
1508		vma->vm_end = from;
1509	else
1510		vma->vm_start = to;
1511	add_vma_to_mm(mm, vma);
1512
1513	/* cut the backing region down to size */
1514	region = vma->vm_region;
1515	BUG_ON(atomic_read(&region->vm_usage) != 1);
1516
1517	down_write(&nommu_region_sem);
1518	delete_nommu_region(region);
1519	if (from > region->vm_start) {
1520		to = region->vm_top;
1521		region->vm_top = region->vm_end = from;
1522	} else {
1523		region->vm_start = to;
1524	}
1525	add_nommu_region(region);
1526	up_write(&nommu_region_sem);
1527
1528	free_page_series(from, to);
1529	return 0;
1530}
1531
1532/*
1533 * release a mapping
1534 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1535 *   VMA, though it need not cover the whole VMA
1536 */
1537int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1538{
1539	struct vm_area_struct *vma;
1540	struct rb_node *rb;
1541	unsigned long end = start + len;
1542	int ret;
1543
1544	kenter(",%lx,%zx", start, len);
1545
1546	if (len == 0)
1547		return -EINVAL;
1548
1549	/* find the first potentially overlapping VMA */
1550	vma = find_vma(mm, start);
1551	if (!vma) {
1552		static int limit = 0;
1553		if (limit < 5) {
1554			printk(KERN_WARNING
1555			       "munmap of memory not mmapped by process %d"
1556			       " (%s): 0x%lx-0x%lx\n",
1557			       current->pid, current->comm,
1558			       start, start + len - 1);
1559			limit++;
1560		}
1561		return -EINVAL;
1562	}
1563
1564	/* we're allowed to split an anonymous VMA but not a file-backed one */
1565	if (vma->vm_file) {
1566		do {
1567			if (start > vma->vm_start) {
1568				kleave(" = -EINVAL [miss]");
1569				return -EINVAL;
1570			}
1571			if (end == vma->vm_end)
1572				goto erase_whole_vma;
1573			rb = rb_next(&vma->vm_rb);
1574			vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1575		} while (rb);
1576		kleave(" = -EINVAL [split file]");
1577		return -EINVAL;
1578	} else {
1579		/* the chunk must be a subset of the VMA found */
1580		if (start == vma->vm_start && end == vma->vm_end)
1581			goto erase_whole_vma;
1582		if (start < vma->vm_start || end > vma->vm_end) {
1583			kleave(" = -EINVAL [superset]");
1584			return -EINVAL;
1585		}
1586		if (start & ~PAGE_MASK) {
1587			kleave(" = -EINVAL [unaligned start]");
1588			return -EINVAL;
1589		}
1590		if (end != vma->vm_end && end & ~PAGE_MASK) {
1591			kleave(" = -EINVAL [unaligned split]");
1592			return -EINVAL;
1593		}
1594		if (start != vma->vm_start && end != vma->vm_end) {
1595			ret = split_vma(mm, vma, start, 1);
1596			if (ret < 0) {
1597				kleave(" = %d [split]", ret);
1598				return ret;
1599			}
1600		}
1601		return shrink_vma(mm, vma, start, end);
1602	}
1603
1604erase_whole_vma:
1605	delete_vma_from_mm(vma);
1606	delete_vma(mm, vma);
1607	kleave(" = 0");
1608	return 0;
1609}
1610EXPORT_SYMBOL(do_munmap);
1611
1612SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1613{
1614	int ret;
1615	struct mm_struct *mm = current->mm;
1616
1617	down_write(&mm->mmap_sem);
1618	ret = do_munmap(mm, addr, len);
1619	up_write(&mm->mmap_sem);
1620	return ret;
1621}
1622
1623/*
1624 * release all the mappings made in a process's VM space
1625 */
1626void exit_mmap(struct mm_struct *mm)
1627{
1628	struct vm_area_struct *vma;
1629
1630	if (!mm)
1631		return;
1632
1633	kenter("");
1634
1635	mm->total_vm = 0;
1636
1637	while ((vma = mm->mmap)) {
1638		mm->mmap = vma->vm_next;
1639		delete_vma_from_mm(vma);
1640		delete_vma(mm, vma);
1641	}
1642
1643	kleave("");
1644}
1645
1646unsigned long do_brk(unsigned long addr, unsigned long len)
1647{
1648	return -ENOMEM;
1649}
1650
1651/*
1652 * expand (or shrink) an existing mapping, potentially moving it at the same
1653 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1654 *
1655 * under NOMMU conditions, we only permit changing a mapping's size, and only
1656 * as long as it stays within the region allocated by do_mmap_private() and the
1657 * block is not shareable
1658 *
1659 * MREMAP_FIXED is not supported under NOMMU conditions
1660 */
1661unsigned long do_mremap(unsigned long addr,
1662			unsigned long old_len, unsigned long new_len,
1663			unsigned long flags, unsigned long new_addr)
1664{
1665	struct vm_area_struct *vma;
1666
1667	/* insanity checks first */
1668	if (old_len == 0 || new_len == 0)
1669		return (unsigned long) -EINVAL;
1670
1671	if (addr & ~PAGE_MASK)
1672		return -EINVAL;
1673
1674	if (flags & MREMAP_FIXED && new_addr != addr)
1675		return (unsigned long) -EINVAL;
1676
1677	vma = find_vma_exact(current->mm, addr, old_len);
1678	if (!vma)
1679		return (unsigned long) -EINVAL;
1680
1681	if (vma->vm_end != vma->vm_start + old_len)
1682		return (unsigned long) -EFAULT;
1683
1684	if (vma->vm_flags & VM_MAYSHARE)
1685		return (unsigned long) -EPERM;
1686
1687	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1688		return (unsigned long) -ENOMEM;
1689
1690	/* all checks complete - do it */
1691	vma->vm_end = vma->vm_start + new_len;
1692	return vma->vm_start;
1693}
1694EXPORT_SYMBOL(do_mremap);
1695
1696SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1697		unsigned long, new_len, unsigned long, flags,
1698		unsigned long, new_addr)
1699{
1700	unsigned long ret;
1701
1702	down_write(&current->mm->mmap_sem);
1703	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1704	up_write(&current->mm->mmap_sem);
1705	return ret;
1706}
1707
1708struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1709			unsigned int foll_flags)
1710{
1711	return NULL;
1712}
1713
1714int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1715		unsigned long to, unsigned long size, pgprot_t prot)
1716{
1717	vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1718	return 0;
1719}
1720EXPORT_SYMBOL(remap_pfn_range);
1721
1722int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1723			unsigned long pgoff)
1724{
1725	unsigned int size = vma->vm_end - vma->vm_start;
1726
1727	if (!(vma->vm_flags & VM_USERMAP))
1728		return -EINVAL;
1729
1730	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1731	vma->vm_end = vma->vm_start + size;
1732
1733	return 0;
1734}
1735EXPORT_SYMBOL(remap_vmalloc_range);
1736
1737void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1738{
1739}
1740
1741unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1742	unsigned long len, unsigned long pgoff, unsigned long flags)
1743{
1744	return -ENOMEM;
1745}
1746
1747void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1748{
1749}
1750
1751void unmap_mapping_range(struct address_space *mapping,
1752			 loff_t const holebegin, loff_t const holelen,
1753			 int even_cows)
1754{
1755}
1756EXPORT_SYMBOL(unmap_mapping_range);
1757
1758/*
1759 * ask for an unmapped area at which to create a mapping on a file
1760 */
1761unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1762				unsigned long len, unsigned long pgoff,
1763				unsigned long flags)
1764{
1765	unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1766				  unsigned long, unsigned long);
1767
1768	get_area = current->mm->get_unmapped_area;
1769	if (file && file->f_op && file->f_op->get_unmapped_area)
1770		get_area = file->f_op->get_unmapped_area;
1771
1772	if (!get_area)
1773		return -ENOSYS;
1774
1775	return get_area(file, addr, len, pgoff, flags);
1776}
1777EXPORT_SYMBOL(get_unmapped_area);
1778
1779/*
1780 * Check that a process has enough memory to allocate a new virtual
1781 * mapping. 0 means there is enough memory for the allocation to
1782 * succeed and -ENOMEM implies there is not.
1783 *
1784 * We currently support three overcommit policies, which are set via the
1785 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1786 *
1787 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1788 * Additional code 2002 Jul 20 by Robert Love.
1789 *
1790 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1791 *
1792 * Note this is a helper function intended to be used by LSMs which
1793 * wish to use this logic.
1794 */
1795int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1796{
1797	unsigned long free, allowed;
1798
1799	vm_acct_memory(pages);
1800
1801	/*
1802	 * Sometimes we want to use more memory than we have
1803	 */
1804	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1805		return 0;
1806
1807	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1808		unsigned long n;
1809
1810		free = global_page_state(NR_FILE_PAGES);
1811		free += nr_swap_pages;
1812
1813		/*
1814		 * Any slabs which are created with the
1815		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1816		 * which are reclaimable, under pressure.  The dentry
1817		 * cache and most inode caches should fall into this
1818		 */
1819		free += global_page_state(NR_SLAB_RECLAIMABLE);
1820
1821		/*
1822		 * Leave the last 3% for root
1823		 */
1824		if (!cap_sys_admin)
1825			free -= free / 32;
1826
1827		if (free > pages)
1828			return 0;
1829
1830		/*
1831		 * nr_free_pages() is very expensive on large systems,
1832		 * only call if we're about to fail.
1833		 */
1834		n = nr_free_pages();
1835
1836		/*
1837		 * Leave reserved pages. The pages are not for anonymous pages.
1838		 */
1839		if (n <= totalreserve_pages)
1840			goto error;
1841		else
1842			n -= totalreserve_pages;
1843
1844		/*
1845		 * Leave the last 3% for root
1846		 */
1847		if (!cap_sys_admin)
1848			n -= n / 32;
1849		free += n;
1850
1851		if (free > pages)
1852			return 0;
1853
1854		goto error;
1855	}
1856
1857	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1858	/*
1859	 * Leave the last 3% for root
1860	 */
1861	if (!cap_sys_admin)
1862		allowed -= allowed / 32;
1863	allowed += total_swap_pages;
1864
1865	/* Don't let a single process grow too big:
1866	   leave 3% of the size of this process for other processes */
1867	if (mm)
1868		allowed -= mm->total_vm / 32;
1869
1870	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1871		return 0;
1872
1873error:
1874	vm_unacct_memory(pages);
1875
1876	return -ENOMEM;
1877}
1878
1879int in_gate_area_no_task(unsigned long addr)
1880{
1881	return 0;
1882}
1883
1884int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1885{
1886	BUG();
1887	return 0;
1888}
1889EXPORT_SYMBOL(filemap_fault);
1890
1891/*
1892 * Access another process' address space.
1893 * - source/target buffer must be kernel space
1894 */
1895int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1896{
1897	struct vm_area_struct *vma;
1898	struct mm_struct *mm;
1899
1900	if (addr + len < addr)
1901		return 0;
1902
1903	mm = get_task_mm(tsk);
1904	if (!mm)
1905		return 0;
1906
1907	down_read(&mm->mmap_sem);
1908
1909	/* the access must start within one of the target process's mappings */
1910	vma = find_vma(mm, addr);
1911	if (vma) {
1912		/* don't overrun this mapping */
1913		if (addr + len >= vma->vm_end)
1914			len = vma->vm_end - addr;
1915
1916		/* only read or write mappings where it is permitted */
1917		if (write && vma->vm_flags & VM_MAYWRITE)
1918			len -= copy_to_user((void *) addr, buf, len);
1919		else if (!write && vma->vm_flags & VM_MAYREAD)
1920			len -= copy_from_user(buf, (void *) addr, len);
1921		else
1922			len = 0;
1923	} else {
1924		len = 0;
1925	}
1926
1927	up_read(&mm->mmap_sem);
1928	mmput(mm);
1929	return len;
1930}
1931