nommu.c revision 4266c97a3ef4604561a22212eb0eab8a3c338971
1/*
2 *  linux/mm/nommu.c
3 *
4 *  Replacement code for mm functions to support CPU's that don't
5 *  have any form of memory management unit (thus no virtual memory).
6 *
7 *  See Documentation/nommu-mmap.txt
8 *
9 *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13 *  Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14 */
15
16#include <linux/module.h>
17#include <linux/mm.h>
18#include <linux/mman.h>
19#include <linux/swap.h>
20#include <linux/file.h>
21#include <linux/highmem.h>
22#include <linux/pagemap.h>
23#include <linux/slab.h>
24#include <linux/vmalloc.h>
25#include <linux/tracehook.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
28#include <linux/mount.h>
29#include <linux/personality.h>
30#include <linux/security.h>
31#include <linux/syscalls.h>
32
33#include <asm/uaccess.h>
34#include <asm/tlb.h>
35#include <asm/tlbflush.h>
36#include <asm/mmu_context.h>
37#include "internal.h"
38
39static inline __attribute__((format(printf, 1, 2)))
40void no_printk(const char *fmt, ...)
41{
42}
43
44#if 0
45#define kenter(FMT, ...) \
46	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
47#define kleave(FMT, ...) \
48	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
49#define kdebug(FMT, ...) \
50	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
51#else
52#define kenter(FMT, ...) \
53	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
54#define kleave(FMT, ...) \
55	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
56#define kdebug(FMT, ...) \
57	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
58#endif
59
60void *high_memory;
61struct page *mem_map;
62unsigned long max_mapnr;
63unsigned long num_physpages;
64unsigned long highest_memmap_pfn;
65struct percpu_counter vm_committed_as;
66int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67int sysctl_overcommit_ratio = 50; /* default is 50% */
68int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
69int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
70int heap_stack_gap = 0;
71
72atomic_long_t mmap_pages_allocated;
73
74EXPORT_SYMBOL(mem_map);
75EXPORT_SYMBOL(num_physpages);
76
77/* list of mapped, potentially shareable regions */
78static struct kmem_cache *vm_region_jar;
79struct rb_root nommu_region_tree = RB_ROOT;
80DECLARE_RWSEM(nommu_region_sem);
81
82struct vm_operations_struct generic_file_vm_ops = {
83};
84
85/*
86 * Handle all mappings that got truncated by a "truncate()"
87 * system call.
88 *
89 * NOTE! We have to be ready to update the memory sharing
90 * between the file and the memory map for a potential last
91 * incomplete page.  Ugly, but necessary.
92 */
93int vmtruncate(struct inode *inode, loff_t offset)
94{
95	struct address_space *mapping = inode->i_mapping;
96	unsigned long limit;
97
98	if (inode->i_size < offset)
99		goto do_expand;
100	i_size_write(inode, offset);
101
102	truncate_inode_pages(mapping, offset);
103	goto out_truncate;
104
105do_expand:
106	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
107	if (limit != RLIM_INFINITY && offset > limit)
108		goto out_sig;
109	if (offset > inode->i_sb->s_maxbytes)
110		goto out;
111	i_size_write(inode, offset);
112
113out_truncate:
114	if (inode->i_op->truncate)
115		inode->i_op->truncate(inode);
116	return 0;
117out_sig:
118	send_sig(SIGXFSZ, current, 0);
119out:
120	return -EFBIG;
121}
122
123EXPORT_SYMBOL(vmtruncate);
124
125/*
126 * Return the total memory allocated for this pointer, not
127 * just what the caller asked for.
128 *
129 * Doesn't have to be accurate, i.e. may have races.
130 */
131unsigned int kobjsize(const void *objp)
132{
133	struct page *page;
134
135	/*
136	 * If the object we have should not have ksize performed on it,
137	 * return size of 0
138	 */
139	if (!objp || !virt_addr_valid(objp))
140		return 0;
141
142	page = virt_to_head_page(objp);
143
144	/*
145	 * If the allocator sets PageSlab, we know the pointer came from
146	 * kmalloc().
147	 */
148	if (PageSlab(page))
149		return ksize(objp);
150
151	/*
152	 * If it's not a compound page, see if we have a matching VMA
153	 * region. This test is intentionally done in reverse order,
154	 * so if there's no VMA, we still fall through and hand back
155	 * PAGE_SIZE for 0-order pages.
156	 */
157	if (!PageCompound(page)) {
158		struct vm_area_struct *vma;
159
160		vma = find_vma(current->mm, (unsigned long)objp);
161		if (vma)
162			return vma->vm_end - vma->vm_start;
163	}
164
165	/*
166	 * The ksize() function is only guaranteed to work for pointers
167	 * returned by kmalloc(). So handle arbitrary pointers here.
168	 */
169	return PAGE_SIZE << compound_order(page);
170}
171
172int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
173		     unsigned long start, int nr_pages, unsigned int foll_flags,
174		     struct page **pages, struct vm_area_struct **vmas)
175{
176	struct vm_area_struct *vma;
177	unsigned long vm_flags;
178	int i;
179
180	/* calculate required read or write permissions.
181	 * If FOLL_FORCE is set, we only require the "MAY" flags.
182	 */
183	vm_flags  = (foll_flags & FOLL_WRITE) ?
184			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
185	vm_flags &= (foll_flags & FOLL_FORCE) ?
186			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
187
188	for (i = 0; i < nr_pages; i++) {
189		vma = find_vma(mm, start);
190		if (!vma)
191			goto finish_or_fault;
192
193		/* protect what we can, including chardevs */
194		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
195		    !(vm_flags & vma->vm_flags))
196			goto finish_or_fault;
197
198		if (pages) {
199			pages[i] = virt_to_page(start);
200			if (pages[i])
201				page_cache_get(pages[i]);
202		}
203		if (vmas)
204			vmas[i] = vma;
205		start += PAGE_SIZE;
206	}
207
208	return i;
209
210finish_or_fault:
211	return i ? : -EFAULT;
212}
213
214/*
215 * get a list of pages in an address range belonging to the specified process
216 * and indicate the VMA that covers each page
217 * - this is potentially dodgy as we may end incrementing the page count of a
218 *   slab page or a secondary page from a compound page
219 * - don't permit access to VMAs that don't support it, such as I/O mappings
220 */
221int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
222	unsigned long start, int nr_pages, int write, int force,
223	struct page **pages, struct vm_area_struct **vmas)
224{
225	int flags = 0;
226
227	if (write)
228		flags |= FOLL_WRITE;
229	if (force)
230		flags |= FOLL_FORCE;
231
232	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
233}
234EXPORT_SYMBOL(get_user_pages);
235
236/**
237 * follow_pfn - look up PFN at a user virtual address
238 * @vma: memory mapping
239 * @address: user virtual address
240 * @pfn: location to store found PFN
241 *
242 * Only IO mappings and raw PFN mappings are allowed.
243 *
244 * Returns zero and the pfn at @pfn on success, -ve otherwise.
245 */
246int follow_pfn(struct vm_area_struct *vma, unsigned long address,
247	unsigned long *pfn)
248{
249	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
250		return -EINVAL;
251
252	*pfn = address >> PAGE_SHIFT;
253	return 0;
254}
255EXPORT_SYMBOL(follow_pfn);
256
257DEFINE_RWLOCK(vmlist_lock);
258struct vm_struct *vmlist;
259
260void vfree(const void *addr)
261{
262	kfree(addr);
263}
264EXPORT_SYMBOL(vfree);
265
266void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
267{
268	/*
269	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
270	 * returns only a logical address.
271	 */
272	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
273}
274EXPORT_SYMBOL(__vmalloc);
275
276void *vmalloc_user(unsigned long size)
277{
278	void *ret;
279
280	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
281			PAGE_KERNEL);
282	if (ret) {
283		struct vm_area_struct *vma;
284
285		down_write(&current->mm->mmap_sem);
286		vma = find_vma(current->mm, (unsigned long)ret);
287		if (vma)
288			vma->vm_flags |= VM_USERMAP;
289		up_write(&current->mm->mmap_sem);
290	}
291
292	return ret;
293}
294EXPORT_SYMBOL(vmalloc_user);
295
296struct page *vmalloc_to_page(const void *addr)
297{
298	return virt_to_page(addr);
299}
300EXPORT_SYMBOL(vmalloc_to_page);
301
302unsigned long vmalloc_to_pfn(const void *addr)
303{
304	return page_to_pfn(virt_to_page(addr));
305}
306EXPORT_SYMBOL(vmalloc_to_pfn);
307
308long vread(char *buf, char *addr, unsigned long count)
309{
310	memcpy(buf, addr, count);
311	return count;
312}
313
314long vwrite(char *buf, char *addr, unsigned long count)
315{
316	/* Don't allow overflow */
317	if ((unsigned long) addr + count < count)
318		count = -(unsigned long) addr;
319
320	memcpy(addr, buf, count);
321	return(count);
322}
323
324/*
325 *	vmalloc  -  allocate virtually continguos memory
326 *
327 *	@size:		allocation size
328 *
329 *	Allocate enough pages to cover @size from the page level
330 *	allocator and map them into continguos kernel virtual space.
331 *
332 *	For tight control over page level allocator and protection flags
333 *	use __vmalloc() instead.
334 */
335void *vmalloc(unsigned long size)
336{
337       return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
338}
339EXPORT_SYMBOL(vmalloc);
340
341void *vmalloc_node(unsigned long size, int node)
342{
343	return vmalloc(size);
344}
345EXPORT_SYMBOL(vmalloc_node);
346
347#ifndef PAGE_KERNEL_EXEC
348# define PAGE_KERNEL_EXEC PAGE_KERNEL
349#endif
350
351/**
352 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
353 *	@size:		allocation size
354 *
355 *	Kernel-internal function to allocate enough pages to cover @size
356 *	the page level allocator and map them into contiguous and
357 *	executable kernel virtual space.
358 *
359 *	For tight control over page level allocator and protection flags
360 *	use __vmalloc() instead.
361 */
362
363void *vmalloc_exec(unsigned long size)
364{
365	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
366}
367
368/**
369 * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
370 *	@size:		allocation size
371 *
372 *	Allocate enough 32bit PA addressable pages to cover @size from the
373 *	page level allocator and map them into continguos kernel virtual space.
374 */
375void *vmalloc_32(unsigned long size)
376{
377	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
378}
379EXPORT_SYMBOL(vmalloc_32);
380
381/**
382 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
383 *	@size:		allocation size
384 *
385 * The resulting memory area is 32bit addressable and zeroed so it can be
386 * mapped to userspace without leaking data.
387 *
388 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
389 * remap_vmalloc_range() are permissible.
390 */
391void *vmalloc_32_user(unsigned long size)
392{
393	/*
394	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
395	 * but for now this can simply use vmalloc_user() directly.
396	 */
397	return vmalloc_user(size);
398}
399EXPORT_SYMBOL(vmalloc_32_user);
400
401void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
402{
403	BUG();
404	return NULL;
405}
406EXPORT_SYMBOL(vmap);
407
408void vunmap(const void *addr)
409{
410	BUG();
411}
412EXPORT_SYMBOL(vunmap);
413
414void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
415{
416	BUG();
417	return NULL;
418}
419EXPORT_SYMBOL(vm_map_ram);
420
421void vm_unmap_ram(const void *mem, unsigned int count)
422{
423	BUG();
424}
425EXPORT_SYMBOL(vm_unmap_ram);
426
427void vm_unmap_aliases(void)
428{
429}
430EXPORT_SYMBOL_GPL(vm_unmap_aliases);
431
432/*
433 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
434 * have one.
435 */
436void  __attribute__((weak)) vmalloc_sync_all(void)
437{
438}
439
440int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
441		   struct page *page)
442{
443	return -EINVAL;
444}
445EXPORT_SYMBOL(vm_insert_page);
446
447/*
448 *  sys_brk() for the most part doesn't need the global kernel
449 *  lock, except when an application is doing something nasty
450 *  like trying to un-brk an area that has already been mapped
451 *  to a regular file.  in this case, the unmapping will need
452 *  to invoke file system routines that need the global lock.
453 */
454SYSCALL_DEFINE1(brk, unsigned long, brk)
455{
456	struct mm_struct *mm = current->mm;
457
458	if (brk < mm->start_brk || brk > mm->context.end_brk)
459		return mm->brk;
460
461	if (mm->brk == brk)
462		return mm->brk;
463
464	/*
465	 * Always allow shrinking brk
466	 */
467	if (brk <= mm->brk) {
468		mm->brk = brk;
469		return brk;
470	}
471
472	/*
473	 * Ok, looks good - let it rip.
474	 */
475	return mm->brk = brk;
476}
477
478/*
479 * initialise the VMA and region record slabs
480 */
481void __init mmap_init(void)
482{
483	int ret;
484
485	ret = percpu_counter_init(&vm_committed_as, 0);
486	VM_BUG_ON(ret);
487	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
488}
489
490/*
491 * validate the region tree
492 * - the caller must hold the region lock
493 */
494#ifdef CONFIG_DEBUG_NOMMU_REGIONS
495static noinline void validate_nommu_regions(void)
496{
497	struct vm_region *region, *last;
498	struct rb_node *p, *lastp;
499
500	lastp = rb_first(&nommu_region_tree);
501	if (!lastp)
502		return;
503
504	last = rb_entry(lastp, struct vm_region, vm_rb);
505	BUG_ON(unlikely(last->vm_end <= last->vm_start));
506	BUG_ON(unlikely(last->vm_top < last->vm_end));
507
508	while ((p = rb_next(lastp))) {
509		region = rb_entry(p, struct vm_region, vm_rb);
510		last = rb_entry(lastp, struct vm_region, vm_rb);
511
512		BUG_ON(unlikely(region->vm_end <= region->vm_start));
513		BUG_ON(unlikely(region->vm_top < region->vm_end));
514		BUG_ON(unlikely(region->vm_start < last->vm_top));
515
516		lastp = p;
517	}
518}
519#else
520static void validate_nommu_regions(void)
521{
522}
523#endif
524
525/*
526 * add a region into the global tree
527 */
528static void add_nommu_region(struct vm_region *region)
529{
530	struct vm_region *pregion;
531	struct rb_node **p, *parent;
532
533	validate_nommu_regions();
534
535	parent = NULL;
536	p = &nommu_region_tree.rb_node;
537	while (*p) {
538		parent = *p;
539		pregion = rb_entry(parent, struct vm_region, vm_rb);
540		if (region->vm_start < pregion->vm_start)
541			p = &(*p)->rb_left;
542		else if (region->vm_start > pregion->vm_start)
543			p = &(*p)->rb_right;
544		else if (pregion == region)
545			return;
546		else
547			BUG();
548	}
549
550	rb_link_node(&region->vm_rb, parent, p);
551	rb_insert_color(&region->vm_rb, &nommu_region_tree);
552
553	validate_nommu_regions();
554}
555
556/*
557 * delete a region from the global tree
558 */
559static void delete_nommu_region(struct vm_region *region)
560{
561	BUG_ON(!nommu_region_tree.rb_node);
562
563	validate_nommu_regions();
564	rb_erase(&region->vm_rb, &nommu_region_tree);
565	validate_nommu_regions();
566}
567
568/*
569 * free a contiguous series of pages
570 */
571static void free_page_series(unsigned long from, unsigned long to)
572{
573	for (; from < to; from += PAGE_SIZE) {
574		struct page *page = virt_to_page(from);
575
576		kdebug("- free %lx", from);
577		atomic_long_dec(&mmap_pages_allocated);
578		if (page_count(page) != 1)
579			kdebug("free page %p: refcount not one: %d",
580			       page, page_count(page));
581		put_page(page);
582	}
583}
584
585/*
586 * release a reference to a region
587 * - the caller must hold the region semaphore for writing, which this releases
588 * - the region may not have been added to the tree yet, in which case vm_top
589 *   will equal vm_start
590 */
591static void __put_nommu_region(struct vm_region *region)
592	__releases(nommu_region_sem)
593{
594	kenter("%p{%d}", region, atomic_read(&region->vm_usage));
595
596	BUG_ON(!nommu_region_tree.rb_node);
597
598	if (atomic_dec_and_test(&region->vm_usage)) {
599		if (region->vm_top > region->vm_start)
600			delete_nommu_region(region);
601		up_write(&nommu_region_sem);
602
603		if (region->vm_file)
604			fput(region->vm_file);
605
606		/* IO memory and memory shared directly out of the pagecache
607		 * from ramfs/tmpfs mustn't be released here */
608		if (region->vm_flags & VM_MAPPED_COPY) {
609			kdebug("free series");
610			free_page_series(region->vm_start, region->vm_top);
611		}
612		kmem_cache_free(vm_region_jar, region);
613	} else {
614		up_write(&nommu_region_sem);
615	}
616}
617
618/*
619 * release a reference to a region
620 */
621static void put_nommu_region(struct vm_region *region)
622{
623	down_write(&nommu_region_sem);
624	__put_nommu_region(region);
625}
626
627/*
628 * update protection on a vma
629 */
630static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
631{
632#ifdef CONFIG_MPU
633	struct mm_struct *mm = vma->vm_mm;
634	long start = vma->vm_start & PAGE_MASK;
635	while (start < vma->vm_end) {
636		protect_page(mm, start, flags);
637		start += PAGE_SIZE;
638	}
639	update_protections(mm);
640#endif
641}
642
643/*
644 * add a VMA into a process's mm_struct in the appropriate place in the list
645 * and tree and add to the address space's page tree also if not an anonymous
646 * page
647 * - should be called with mm->mmap_sem held writelocked
648 */
649static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
650{
651	struct vm_area_struct *pvma, **pp;
652	struct address_space *mapping;
653	struct rb_node **p, *parent;
654
655	kenter(",%p", vma);
656
657	BUG_ON(!vma->vm_region);
658
659	mm->map_count++;
660	vma->vm_mm = mm;
661
662	protect_vma(vma, vma->vm_flags);
663
664	/* add the VMA to the mapping */
665	if (vma->vm_file) {
666		mapping = vma->vm_file->f_mapping;
667
668		flush_dcache_mmap_lock(mapping);
669		vma_prio_tree_insert(vma, &mapping->i_mmap);
670		flush_dcache_mmap_unlock(mapping);
671	}
672
673	/* add the VMA to the tree */
674	parent = NULL;
675	p = &mm->mm_rb.rb_node;
676	while (*p) {
677		parent = *p;
678		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
679
680		/* sort by: start addr, end addr, VMA struct addr in that order
681		 * (the latter is necessary as we may get identical VMAs) */
682		if (vma->vm_start < pvma->vm_start)
683			p = &(*p)->rb_left;
684		else if (vma->vm_start > pvma->vm_start)
685			p = &(*p)->rb_right;
686		else if (vma->vm_end < pvma->vm_end)
687			p = &(*p)->rb_left;
688		else if (vma->vm_end > pvma->vm_end)
689			p = &(*p)->rb_right;
690		else if (vma < pvma)
691			p = &(*p)->rb_left;
692		else if (vma > pvma)
693			p = &(*p)->rb_right;
694		else
695			BUG();
696	}
697
698	rb_link_node(&vma->vm_rb, parent, p);
699	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
700
701	/* add VMA to the VMA list also */
702	for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
703		if (pvma->vm_start > vma->vm_start)
704			break;
705		if (pvma->vm_start < vma->vm_start)
706			continue;
707		if (pvma->vm_end < vma->vm_end)
708			break;
709	}
710
711	vma->vm_next = *pp;
712	*pp = vma;
713}
714
715/*
716 * delete a VMA from its owning mm_struct and address space
717 */
718static void delete_vma_from_mm(struct vm_area_struct *vma)
719{
720	struct vm_area_struct **pp;
721	struct address_space *mapping;
722	struct mm_struct *mm = vma->vm_mm;
723
724	kenter("%p", vma);
725
726	protect_vma(vma, 0);
727
728	mm->map_count--;
729	if (mm->mmap_cache == vma)
730		mm->mmap_cache = NULL;
731
732	/* remove the VMA from the mapping */
733	if (vma->vm_file) {
734		mapping = vma->vm_file->f_mapping;
735
736		flush_dcache_mmap_lock(mapping);
737		vma_prio_tree_remove(vma, &mapping->i_mmap);
738		flush_dcache_mmap_unlock(mapping);
739	}
740
741	/* remove from the MM's tree and list */
742	rb_erase(&vma->vm_rb, &mm->mm_rb);
743	for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
744		if (*pp == vma) {
745			*pp = vma->vm_next;
746			break;
747		}
748	}
749
750	vma->vm_mm = NULL;
751}
752
753/*
754 * destroy a VMA record
755 */
756static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
757{
758	kenter("%p", vma);
759	if (vma->vm_ops && vma->vm_ops->close)
760		vma->vm_ops->close(vma);
761	if (vma->vm_file) {
762		fput(vma->vm_file);
763		if (vma->vm_flags & VM_EXECUTABLE)
764			removed_exe_file_vma(mm);
765	}
766	put_nommu_region(vma->vm_region);
767	kmem_cache_free(vm_area_cachep, vma);
768}
769
770/*
771 * look up the first VMA in which addr resides, NULL if none
772 * - should be called with mm->mmap_sem at least held readlocked
773 */
774struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
775{
776	struct vm_area_struct *vma;
777	struct rb_node *n = mm->mm_rb.rb_node;
778
779	/* check the cache first */
780	vma = mm->mmap_cache;
781	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
782		return vma;
783
784	/* trawl the tree (there may be multiple mappings in which addr
785	 * resides) */
786	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
787		vma = rb_entry(n, struct vm_area_struct, vm_rb);
788		if (vma->vm_start > addr)
789			return NULL;
790		if (vma->vm_end > addr) {
791			mm->mmap_cache = vma;
792			return vma;
793		}
794	}
795
796	return NULL;
797}
798EXPORT_SYMBOL(find_vma);
799
800/*
801 * find a VMA
802 * - we don't extend stack VMAs under NOMMU conditions
803 */
804struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
805{
806	return find_vma(mm, addr);
807}
808
809/*
810 * expand a stack to a given address
811 * - not supported under NOMMU conditions
812 */
813int expand_stack(struct vm_area_struct *vma, unsigned long address)
814{
815	return -ENOMEM;
816}
817
818/*
819 * look up the first VMA exactly that exactly matches addr
820 * - should be called with mm->mmap_sem at least held readlocked
821 */
822static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
823					     unsigned long addr,
824					     unsigned long len)
825{
826	struct vm_area_struct *vma;
827	struct rb_node *n = mm->mm_rb.rb_node;
828	unsigned long end = addr + len;
829
830	/* check the cache first */
831	vma = mm->mmap_cache;
832	if (vma && vma->vm_start == addr && vma->vm_end == end)
833		return vma;
834
835	/* trawl the tree (there may be multiple mappings in which addr
836	 * resides) */
837	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
838		vma = rb_entry(n, struct vm_area_struct, vm_rb);
839		if (vma->vm_start < addr)
840			continue;
841		if (vma->vm_start > addr)
842			return NULL;
843		if (vma->vm_end == end) {
844			mm->mmap_cache = vma;
845			return vma;
846		}
847	}
848
849	return NULL;
850}
851
852/*
853 * determine whether a mapping should be permitted and, if so, what sort of
854 * mapping we're capable of supporting
855 */
856static int validate_mmap_request(struct file *file,
857				 unsigned long addr,
858				 unsigned long len,
859				 unsigned long prot,
860				 unsigned long flags,
861				 unsigned long pgoff,
862				 unsigned long *_capabilities)
863{
864	unsigned long capabilities, rlen;
865	unsigned long reqprot = prot;
866	int ret;
867
868	/* do the simple checks first */
869	if (flags & MAP_FIXED || addr) {
870		printk(KERN_DEBUG
871		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
872		       current->pid);
873		return -EINVAL;
874	}
875
876	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
877	    (flags & MAP_TYPE) != MAP_SHARED)
878		return -EINVAL;
879
880	if (!len)
881		return -EINVAL;
882
883	/* Careful about overflows.. */
884	rlen = PAGE_ALIGN(len);
885	if (!rlen || rlen > TASK_SIZE)
886		return -ENOMEM;
887
888	/* offset overflow? */
889	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
890		return -EOVERFLOW;
891
892	if (file) {
893		/* validate file mapping requests */
894		struct address_space *mapping;
895
896		/* files must support mmap */
897		if (!file->f_op || !file->f_op->mmap)
898			return -ENODEV;
899
900		/* work out if what we've got could possibly be shared
901		 * - we support chardevs that provide their own "memory"
902		 * - we support files/blockdevs that are memory backed
903		 */
904		mapping = file->f_mapping;
905		if (!mapping)
906			mapping = file->f_path.dentry->d_inode->i_mapping;
907
908		capabilities = 0;
909		if (mapping && mapping->backing_dev_info)
910			capabilities = mapping->backing_dev_info->capabilities;
911
912		if (!capabilities) {
913			/* no explicit capabilities set, so assume some
914			 * defaults */
915			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
916			case S_IFREG:
917			case S_IFBLK:
918				capabilities = BDI_CAP_MAP_COPY;
919				break;
920
921			case S_IFCHR:
922				capabilities =
923					BDI_CAP_MAP_DIRECT |
924					BDI_CAP_READ_MAP |
925					BDI_CAP_WRITE_MAP;
926				break;
927
928			default:
929				return -EINVAL;
930			}
931		}
932
933		/* eliminate any capabilities that we can't support on this
934		 * device */
935		if (!file->f_op->get_unmapped_area)
936			capabilities &= ~BDI_CAP_MAP_DIRECT;
937		if (!file->f_op->read)
938			capabilities &= ~BDI_CAP_MAP_COPY;
939
940		/* The file shall have been opened with read permission. */
941		if (!(file->f_mode & FMODE_READ))
942			return -EACCES;
943
944		if (flags & MAP_SHARED) {
945			/* do checks for writing, appending and locking */
946			if ((prot & PROT_WRITE) &&
947			    !(file->f_mode & FMODE_WRITE))
948				return -EACCES;
949
950			if (IS_APPEND(file->f_path.dentry->d_inode) &&
951			    (file->f_mode & FMODE_WRITE))
952				return -EACCES;
953
954			if (locks_verify_locked(file->f_path.dentry->d_inode))
955				return -EAGAIN;
956
957			if (!(capabilities & BDI_CAP_MAP_DIRECT))
958				return -ENODEV;
959
960			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
961			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
962			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
963			    ) {
964				printk("MAP_SHARED not completely supported on !MMU\n");
965				return -EINVAL;
966			}
967
968			/* we mustn't privatise shared mappings */
969			capabilities &= ~BDI_CAP_MAP_COPY;
970		}
971		else {
972			/* we're going to read the file into private memory we
973			 * allocate */
974			if (!(capabilities & BDI_CAP_MAP_COPY))
975				return -ENODEV;
976
977			/* we don't permit a private writable mapping to be
978			 * shared with the backing device */
979			if (prot & PROT_WRITE)
980				capabilities &= ~BDI_CAP_MAP_DIRECT;
981		}
982
983		/* handle executable mappings and implied executable
984		 * mappings */
985		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
986			if (prot & PROT_EXEC)
987				return -EPERM;
988		}
989		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
990			/* handle implication of PROT_EXEC by PROT_READ */
991			if (current->personality & READ_IMPLIES_EXEC) {
992				if (capabilities & BDI_CAP_EXEC_MAP)
993					prot |= PROT_EXEC;
994			}
995		}
996		else if ((prot & PROT_READ) &&
997			 (prot & PROT_EXEC) &&
998			 !(capabilities & BDI_CAP_EXEC_MAP)
999			 ) {
1000			/* backing file is not executable, try to copy */
1001			capabilities &= ~BDI_CAP_MAP_DIRECT;
1002		}
1003	}
1004	else {
1005		/* anonymous mappings are always memory backed and can be
1006		 * privately mapped
1007		 */
1008		capabilities = BDI_CAP_MAP_COPY;
1009
1010		/* handle PROT_EXEC implication by PROT_READ */
1011		if ((prot & PROT_READ) &&
1012		    (current->personality & READ_IMPLIES_EXEC))
1013			prot |= PROT_EXEC;
1014	}
1015
1016	/* allow the security API to have its say */
1017	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1018	if (ret < 0)
1019		return ret;
1020
1021	/* looks okay */
1022	*_capabilities = capabilities;
1023	return 0;
1024}
1025
1026/*
1027 * we've determined that we can make the mapping, now translate what we
1028 * now know into VMA flags
1029 */
1030static unsigned long determine_vm_flags(struct file *file,
1031					unsigned long prot,
1032					unsigned long flags,
1033					unsigned long capabilities)
1034{
1035	unsigned long vm_flags;
1036
1037	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1038	vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1039	/* vm_flags |= mm->def_flags; */
1040
1041	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1042		/* attempt to share read-only copies of mapped file chunks */
1043		if (file && !(prot & PROT_WRITE))
1044			vm_flags |= VM_MAYSHARE;
1045	}
1046	else {
1047		/* overlay a shareable mapping on the backing device or inode
1048		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1049		 * romfs/cramfs */
1050		if (flags & MAP_SHARED)
1051			vm_flags |= VM_MAYSHARE | VM_SHARED;
1052		else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1053			vm_flags |= VM_MAYSHARE;
1054	}
1055
1056	/* refuse to let anyone share private mappings with this process if
1057	 * it's being traced - otherwise breakpoints set in it may interfere
1058	 * with another untraced process
1059	 */
1060	if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1061		vm_flags &= ~VM_MAYSHARE;
1062
1063	return vm_flags;
1064}
1065
1066/*
1067 * set up a shared mapping on a file (the driver or filesystem provides and
1068 * pins the storage)
1069 */
1070static int do_mmap_shared_file(struct vm_area_struct *vma)
1071{
1072	int ret;
1073
1074	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1075	if (ret == 0) {
1076		vma->vm_region->vm_top = vma->vm_region->vm_end;
1077		return ret;
1078	}
1079	if (ret != -ENOSYS)
1080		return ret;
1081
1082	/* getting an ENOSYS error indicates that direct mmap isn't
1083	 * possible (as opposed to tried but failed) so we'll fall
1084	 * through to making a private copy of the data and mapping
1085	 * that if we can */
1086	return -ENODEV;
1087}
1088
1089/*
1090 * set up a private mapping or an anonymous shared mapping
1091 */
1092static int do_mmap_private(struct vm_area_struct *vma,
1093			   struct vm_region *region,
1094			   unsigned long len)
1095{
1096	struct page *pages;
1097	unsigned long total, point, n, rlen;
1098	void *base;
1099	int ret, order;
1100
1101	/* invoke the file's mapping function so that it can keep track of
1102	 * shared mappings on devices or memory
1103	 * - VM_MAYSHARE will be set if it may attempt to share
1104	 */
1105	if (vma->vm_file) {
1106		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1107		if (ret == 0) {
1108			/* shouldn't return success if we're not sharing */
1109			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1110			vma->vm_region->vm_top = vma->vm_region->vm_end;
1111			return ret;
1112		}
1113		if (ret != -ENOSYS)
1114			return ret;
1115
1116		/* getting an ENOSYS error indicates that direct mmap isn't
1117		 * possible (as opposed to tried but failed) so we'll try to
1118		 * make a private copy of the data and map that instead */
1119	}
1120
1121	rlen = PAGE_ALIGN(len);
1122
1123	/* allocate some memory to hold the mapping
1124	 * - note that this may not return a page-aligned address if the object
1125	 *   we're allocating is smaller than a page
1126	 */
1127	order = get_order(rlen);
1128	kdebug("alloc order %d for %lx", order, len);
1129
1130	pages = alloc_pages(GFP_KERNEL, order);
1131	if (!pages)
1132		goto enomem;
1133
1134	total = 1 << order;
1135	atomic_long_add(total, &mmap_pages_allocated);
1136
1137	point = rlen >> PAGE_SHIFT;
1138
1139	/* we allocated a power-of-2 sized page set, so we may want to trim off
1140	 * the excess */
1141	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1142		while (total > point) {
1143			order = ilog2(total - point);
1144			n = 1 << order;
1145			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1146			atomic_long_sub(n, &mmap_pages_allocated);
1147			total -= n;
1148			set_page_refcounted(pages + total);
1149			__free_pages(pages + total, order);
1150		}
1151	}
1152
1153	for (point = 1; point < total; point++)
1154		set_page_refcounted(&pages[point]);
1155
1156	base = page_address(pages);
1157	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1158	region->vm_start = (unsigned long) base;
1159	region->vm_end   = region->vm_start + rlen;
1160	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1161
1162	vma->vm_start = region->vm_start;
1163	vma->vm_end   = region->vm_start + len;
1164
1165	if (vma->vm_file) {
1166		/* read the contents of a file into the copy */
1167		mm_segment_t old_fs;
1168		loff_t fpos;
1169
1170		fpos = vma->vm_pgoff;
1171		fpos <<= PAGE_SHIFT;
1172
1173		old_fs = get_fs();
1174		set_fs(KERNEL_DS);
1175		ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1176		set_fs(old_fs);
1177
1178		if (ret < 0)
1179			goto error_free;
1180
1181		/* clear the last little bit */
1182		if (ret < rlen)
1183			memset(base + ret, 0, rlen - ret);
1184
1185	} else {
1186		/* if it's an anonymous mapping, then just clear it */
1187		memset(base, 0, rlen);
1188	}
1189
1190	return 0;
1191
1192error_free:
1193	free_page_series(region->vm_start, region->vm_end);
1194	region->vm_start = vma->vm_start = 0;
1195	region->vm_end   = vma->vm_end = 0;
1196	region->vm_top   = 0;
1197	return ret;
1198
1199enomem:
1200	printk("Allocation of length %lu from process %d (%s) failed\n",
1201	       len, current->pid, current->comm);
1202	show_free_areas();
1203	return -ENOMEM;
1204}
1205
1206/*
1207 * handle mapping creation for uClinux
1208 */
1209unsigned long do_mmap_pgoff(struct file *file,
1210			    unsigned long addr,
1211			    unsigned long len,
1212			    unsigned long prot,
1213			    unsigned long flags,
1214			    unsigned long pgoff)
1215{
1216	struct vm_area_struct *vma;
1217	struct vm_region *region;
1218	struct rb_node *rb;
1219	unsigned long capabilities, vm_flags, result;
1220	int ret;
1221
1222	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1223
1224	if (!(flags & MAP_FIXED))
1225		addr = round_hint_to_min(addr);
1226
1227	/* decide whether we should attempt the mapping, and if so what sort of
1228	 * mapping */
1229	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1230				    &capabilities);
1231	if (ret < 0) {
1232		kleave(" = %d [val]", ret);
1233		return ret;
1234	}
1235
1236	/* we've determined that we can make the mapping, now translate what we
1237	 * now know into VMA flags */
1238	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1239
1240	/* we're going to need to record the mapping */
1241	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1242	if (!region)
1243		goto error_getting_region;
1244
1245	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1246	if (!vma)
1247		goto error_getting_vma;
1248
1249	atomic_set(&region->vm_usage, 1);
1250	region->vm_flags = vm_flags;
1251	region->vm_pgoff = pgoff;
1252
1253	INIT_LIST_HEAD(&vma->anon_vma_node);
1254	vma->vm_flags = vm_flags;
1255	vma->vm_pgoff = pgoff;
1256
1257	if (file) {
1258		region->vm_file = file;
1259		get_file(file);
1260		vma->vm_file = file;
1261		get_file(file);
1262		if (vm_flags & VM_EXECUTABLE) {
1263			added_exe_file_vma(current->mm);
1264			vma->vm_mm = current->mm;
1265		}
1266	}
1267
1268	down_write(&nommu_region_sem);
1269
1270	/* if we want to share, we need to check for regions created by other
1271	 * mmap() calls that overlap with our proposed mapping
1272	 * - we can only share with a superset match on most regular files
1273	 * - shared mappings on character devices and memory backed files are
1274	 *   permitted to overlap inexactly as far as we are concerned for in
1275	 *   these cases, sharing is handled in the driver or filesystem rather
1276	 *   than here
1277	 */
1278	if (vm_flags & VM_MAYSHARE) {
1279		struct vm_region *pregion;
1280		unsigned long pglen, rpglen, pgend, rpgend, start;
1281
1282		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1283		pgend = pgoff + pglen;
1284
1285		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1286			pregion = rb_entry(rb, struct vm_region, vm_rb);
1287
1288			if (!(pregion->vm_flags & VM_MAYSHARE))
1289				continue;
1290
1291			/* search for overlapping mappings on the same file */
1292			if (pregion->vm_file->f_path.dentry->d_inode !=
1293			    file->f_path.dentry->d_inode)
1294				continue;
1295
1296			if (pregion->vm_pgoff >= pgend)
1297				continue;
1298
1299			rpglen = pregion->vm_end - pregion->vm_start;
1300			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1301			rpgend = pregion->vm_pgoff + rpglen;
1302			if (pgoff >= rpgend)
1303				continue;
1304
1305			/* handle inexactly overlapping matches between
1306			 * mappings */
1307			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1308			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1309				/* new mapping is not a subset of the region */
1310				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1311					goto sharing_violation;
1312				continue;
1313			}
1314
1315			/* we've found a region we can share */
1316			atomic_inc(&pregion->vm_usage);
1317			vma->vm_region = pregion;
1318			start = pregion->vm_start;
1319			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1320			vma->vm_start = start;
1321			vma->vm_end = start + len;
1322
1323			if (pregion->vm_flags & VM_MAPPED_COPY) {
1324				kdebug("share copy");
1325				vma->vm_flags |= VM_MAPPED_COPY;
1326			} else {
1327				kdebug("share mmap");
1328				ret = do_mmap_shared_file(vma);
1329				if (ret < 0) {
1330					vma->vm_region = NULL;
1331					vma->vm_start = 0;
1332					vma->vm_end = 0;
1333					atomic_dec(&pregion->vm_usage);
1334					pregion = NULL;
1335					goto error_just_free;
1336				}
1337			}
1338			fput(region->vm_file);
1339			kmem_cache_free(vm_region_jar, region);
1340			region = pregion;
1341			result = start;
1342			goto share;
1343		}
1344
1345		/* obtain the address at which to make a shared mapping
1346		 * - this is the hook for quasi-memory character devices to
1347		 *   tell us the location of a shared mapping
1348		 */
1349		if (file && file->f_op->get_unmapped_area) {
1350			addr = file->f_op->get_unmapped_area(file, addr, len,
1351							     pgoff, flags);
1352			if (IS_ERR((void *) addr)) {
1353				ret = addr;
1354				if (ret != (unsigned long) -ENOSYS)
1355					goto error_just_free;
1356
1357				/* the driver refused to tell us where to site
1358				 * the mapping so we'll have to attempt to copy
1359				 * it */
1360				ret = (unsigned long) -ENODEV;
1361				if (!(capabilities & BDI_CAP_MAP_COPY))
1362					goto error_just_free;
1363
1364				capabilities &= ~BDI_CAP_MAP_DIRECT;
1365			} else {
1366				vma->vm_start = region->vm_start = addr;
1367				vma->vm_end = region->vm_end = addr + len;
1368			}
1369		}
1370	}
1371
1372	vma->vm_region = region;
1373	add_nommu_region(region);
1374
1375	/* set up the mapping */
1376	if (file && vma->vm_flags & VM_SHARED)
1377		ret = do_mmap_shared_file(vma);
1378	else
1379		ret = do_mmap_private(vma, region, len);
1380	if (ret < 0)
1381		goto error_put_region;
1382
1383	/* okay... we have a mapping; now we have to register it */
1384	result = vma->vm_start;
1385
1386	current->mm->total_vm += len >> PAGE_SHIFT;
1387
1388share:
1389	add_vma_to_mm(current->mm, vma);
1390
1391	up_write(&nommu_region_sem);
1392
1393	if (prot & PROT_EXEC)
1394		flush_icache_range(result, result + len);
1395
1396	kleave(" = %lx", result);
1397	return result;
1398
1399error_put_region:
1400	__put_nommu_region(region);
1401	if (vma) {
1402		if (vma->vm_file) {
1403			fput(vma->vm_file);
1404			if (vma->vm_flags & VM_EXECUTABLE)
1405				removed_exe_file_vma(vma->vm_mm);
1406		}
1407		kmem_cache_free(vm_area_cachep, vma);
1408	}
1409	kleave(" = %d [pr]", ret);
1410	return ret;
1411
1412error_just_free:
1413	up_write(&nommu_region_sem);
1414error:
1415	fput(region->vm_file);
1416	kmem_cache_free(vm_region_jar, region);
1417	fput(vma->vm_file);
1418	if (vma->vm_flags & VM_EXECUTABLE)
1419		removed_exe_file_vma(vma->vm_mm);
1420	kmem_cache_free(vm_area_cachep, vma);
1421	kleave(" = %d", ret);
1422	return ret;
1423
1424sharing_violation:
1425	up_write(&nommu_region_sem);
1426	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1427	ret = -EINVAL;
1428	goto error;
1429
1430error_getting_vma:
1431	kmem_cache_free(vm_region_jar, region);
1432	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1433	       " from process %d failed\n",
1434	       len, current->pid);
1435	show_free_areas();
1436	return -ENOMEM;
1437
1438error_getting_region:
1439	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1440	       " from process %d failed\n",
1441	       len, current->pid);
1442	show_free_areas();
1443	return -ENOMEM;
1444}
1445EXPORT_SYMBOL(do_mmap_pgoff);
1446
1447/*
1448 * split a vma into two pieces at address 'addr', a new vma is allocated either
1449 * for the first part or the tail.
1450 */
1451int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1452	      unsigned long addr, int new_below)
1453{
1454	struct vm_area_struct *new;
1455	struct vm_region *region;
1456	unsigned long npages;
1457
1458	kenter("");
1459
1460	/* we're only permitted to split anonymous regions that have a single
1461	 * owner */
1462	if (vma->vm_file ||
1463	    atomic_read(&vma->vm_region->vm_usage) != 1)
1464		return -ENOMEM;
1465
1466	if (mm->map_count >= sysctl_max_map_count)
1467		return -ENOMEM;
1468
1469	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1470	if (!region)
1471		return -ENOMEM;
1472
1473	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1474	if (!new) {
1475		kmem_cache_free(vm_region_jar, region);
1476		return -ENOMEM;
1477	}
1478
1479	/* most fields are the same, copy all, and then fixup */
1480	*new = *vma;
1481	*region = *vma->vm_region;
1482	new->vm_region = region;
1483
1484	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1485
1486	if (new_below) {
1487		region->vm_top = region->vm_end = new->vm_end = addr;
1488	} else {
1489		region->vm_start = new->vm_start = addr;
1490		region->vm_pgoff = new->vm_pgoff += npages;
1491	}
1492
1493	if (new->vm_ops && new->vm_ops->open)
1494		new->vm_ops->open(new);
1495
1496	delete_vma_from_mm(vma);
1497	down_write(&nommu_region_sem);
1498	delete_nommu_region(vma->vm_region);
1499	if (new_below) {
1500		vma->vm_region->vm_start = vma->vm_start = addr;
1501		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1502	} else {
1503		vma->vm_region->vm_end = vma->vm_end = addr;
1504		vma->vm_region->vm_top = addr;
1505	}
1506	add_nommu_region(vma->vm_region);
1507	add_nommu_region(new->vm_region);
1508	up_write(&nommu_region_sem);
1509	add_vma_to_mm(mm, vma);
1510	add_vma_to_mm(mm, new);
1511	return 0;
1512}
1513
1514/*
1515 * shrink a VMA by removing the specified chunk from either the beginning or
1516 * the end
1517 */
1518static int shrink_vma(struct mm_struct *mm,
1519		      struct vm_area_struct *vma,
1520		      unsigned long from, unsigned long to)
1521{
1522	struct vm_region *region;
1523
1524	kenter("");
1525
1526	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1527	 * and list */
1528	delete_vma_from_mm(vma);
1529	if (from > vma->vm_start)
1530		vma->vm_end = from;
1531	else
1532		vma->vm_start = to;
1533	add_vma_to_mm(mm, vma);
1534
1535	/* cut the backing region down to size */
1536	region = vma->vm_region;
1537	BUG_ON(atomic_read(&region->vm_usage) != 1);
1538
1539	down_write(&nommu_region_sem);
1540	delete_nommu_region(region);
1541	if (from > region->vm_start) {
1542		to = region->vm_top;
1543		region->vm_top = region->vm_end = from;
1544	} else {
1545		region->vm_start = to;
1546	}
1547	add_nommu_region(region);
1548	up_write(&nommu_region_sem);
1549
1550	free_page_series(from, to);
1551	return 0;
1552}
1553
1554/*
1555 * release a mapping
1556 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1557 *   VMA, though it need not cover the whole VMA
1558 */
1559int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1560{
1561	struct vm_area_struct *vma;
1562	struct rb_node *rb;
1563	unsigned long end = start + len;
1564	int ret;
1565
1566	kenter(",%lx,%zx", start, len);
1567
1568	if (len == 0)
1569		return -EINVAL;
1570
1571	/* find the first potentially overlapping VMA */
1572	vma = find_vma(mm, start);
1573	if (!vma) {
1574		static int limit = 0;
1575		if (limit < 5) {
1576			printk(KERN_WARNING
1577			       "munmap of memory not mmapped by process %d"
1578			       " (%s): 0x%lx-0x%lx\n",
1579			       current->pid, current->comm,
1580			       start, start + len - 1);
1581			limit++;
1582		}
1583		return -EINVAL;
1584	}
1585
1586	/* we're allowed to split an anonymous VMA but not a file-backed one */
1587	if (vma->vm_file) {
1588		do {
1589			if (start > vma->vm_start) {
1590				kleave(" = -EINVAL [miss]");
1591				return -EINVAL;
1592			}
1593			if (end == vma->vm_end)
1594				goto erase_whole_vma;
1595			rb = rb_next(&vma->vm_rb);
1596			vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1597		} while (rb);
1598		kleave(" = -EINVAL [split file]");
1599		return -EINVAL;
1600	} else {
1601		/* the chunk must be a subset of the VMA found */
1602		if (start == vma->vm_start && end == vma->vm_end)
1603			goto erase_whole_vma;
1604		if (start < vma->vm_start || end > vma->vm_end) {
1605			kleave(" = -EINVAL [superset]");
1606			return -EINVAL;
1607		}
1608		if (start & ~PAGE_MASK) {
1609			kleave(" = -EINVAL [unaligned start]");
1610			return -EINVAL;
1611		}
1612		if (end != vma->vm_end && end & ~PAGE_MASK) {
1613			kleave(" = -EINVAL [unaligned split]");
1614			return -EINVAL;
1615		}
1616		if (start != vma->vm_start && end != vma->vm_end) {
1617			ret = split_vma(mm, vma, start, 1);
1618			if (ret < 0) {
1619				kleave(" = %d [split]", ret);
1620				return ret;
1621			}
1622		}
1623		return shrink_vma(mm, vma, start, end);
1624	}
1625
1626erase_whole_vma:
1627	delete_vma_from_mm(vma);
1628	delete_vma(mm, vma);
1629	kleave(" = 0");
1630	return 0;
1631}
1632EXPORT_SYMBOL(do_munmap);
1633
1634SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1635{
1636	int ret;
1637	struct mm_struct *mm = current->mm;
1638
1639	down_write(&mm->mmap_sem);
1640	ret = do_munmap(mm, addr, len);
1641	up_write(&mm->mmap_sem);
1642	return ret;
1643}
1644
1645/*
1646 * release all the mappings made in a process's VM space
1647 */
1648void exit_mmap(struct mm_struct *mm)
1649{
1650	struct vm_area_struct *vma;
1651
1652	if (!mm)
1653		return;
1654
1655	kenter("");
1656
1657	mm->total_vm = 0;
1658
1659	while ((vma = mm->mmap)) {
1660		mm->mmap = vma->vm_next;
1661		delete_vma_from_mm(vma);
1662		delete_vma(mm, vma);
1663	}
1664
1665	kleave("");
1666}
1667
1668unsigned long do_brk(unsigned long addr, unsigned long len)
1669{
1670	return -ENOMEM;
1671}
1672
1673/*
1674 * expand (or shrink) an existing mapping, potentially moving it at the same
1675 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1676 *
1677 * under NOMMU conditions, we only permit changing a mapping's size, and only
1678 * as long as it stays within the region allocated by do_mmap_private() and the
1679 * block is not shareable
1680 *
1681 * MREMAP_FIXED is not supported under NOMMU conditions
1682 */
1683unsigned long do_mremap(unsigned long addr,
1684			unsigned long old_len, unsigned long new_len,
1685			unsigned long flags, unsigned long new_addr)
1686{
1687	struct vm_area_struct *vma;
1688
1689	/* insanity checks first */
1690	if (old_len == 0 || new_len == 0)
1691		return (unsigned long) -EINVAL;
1692
1693	if (addr & ~PAGE_MASK)
1694		return -EINVAL;
1695
1696	if (flags & MREMAP_FIXED && new_addr != addr)
1697		return (unsigned long) -EINVAL;
1698
1699	vma = find_vma_exact(current->mm, addr, old_len);
1700	if (!vma)
1701		return (unsigned long) -EINVAL;
1702
1703	if (vma->vm_end != vma->vm_start + old_len)
1704		return (unsigned long) -EFAULT;
1705
1706	if (vma->vm_flags & VM_MAYSHARE)
1707		return (unsigned long) -EPERM;
1708
1709	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1710		return (unsigned long) -ENOMEM;
1711
1712	/* all checks complete - do it */
1713	vma->vm_end = vma->vm_start + new_len;
1714	return vma->vm_start;
1715}
1716EXPORT_SYMBOL(do_mremap);
1717
1718SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1719		unsigned long, new_len, unsigned long, flags,
1720		unsigned long, new_addr)
1721{
1722	unsigned long ret;
1723
1724	down_write(&current->mm->mmap_sem);
1725	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1726	up_write(&current->mm->mmap_sem);
1727	return ret;
1728}
1729
1730struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1731			unsigned int foll_flags)
1732{
1733	return NULL;
1734}
1735
1736int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1737		unsigned long to, unsigned long size, pgprot_t prot)
1738{
1739	vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1740	return 0;
1741}
1742EXPORT_SYMBOL(remap_pfn_range);
1743
1744int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1745			unsigned long pgoff)
1746{
1747	unsigned int size = vma->vm_end - vma->vm_start;
1748
1749	if (!(vma->vm_flags & VM_USERMAP))
1750		return -EINVAL;
1751
1752	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1753	vma->vm_end = vma->vm_start + size;
1754
1755	return 0;
1756}
1757EXPORT_SYMBOL(remap_vmalloc_range);
1758
1759void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1760{
1761}
1762
1763unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1764	unsigned long len, unsigned long pgoff, unsigned long flags)
1765{
1766	return -ENOMEM;
1767}
1768
1769void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1770{
1771}
1772
1773void unmap_mapping_range(struct address_space *mapping,
1774			 loff_t const holebegin, loff_t const holelen,
1775			 int even_cows)
1776{
1777}
1778EXPORT_SYMBOL(unmap_mapping_range);
1779
1780/*
1781 * ask for an unmapped area at which to create a mapping on a file
1782 */
1783unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1784				unsigned long len, unsigned long pgoff,
1785				unsigned long flags)
1786{
1787	unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1788				  unsigned long, unsigned long);
1789
1790	get_area = current->mm->get_unmapped_area;
1791	if (file && file->f_op && file->f_op->get_unmapped_area)
1792		get_area = file->f_op->get_unmapped_area;
1793
1794	if (!get_area)
1795		return -ENOSYS;
1796
1797	return get_area(file, addr, len, pgoff, flags);
1798}
1799EXPORT_SYMBOL(get_unmapped_area);
1800
1801/*
1802 * Check that a process has enough memory to allocate a new virtual
1803 * mapping. 0 means there is enough memory for the allocation to
1804 * succeed and -ENOMEM implies there is not.
1805 *
1806 * We currently support three overcommit policies, which are set via the
1807 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1808 *
1809 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1810 * Additional code 2002 Jul 20 by Robert Love.
1811 *
1812 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1813 *
1814 * Note this is a helper function intended to be used by LSMs which
1815 * wish to use this logic.
1816 */
1817int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1818{
1819	unsigned long free, allowed;
1820
1821	vm_acct_memory(pages);
1822
1823	/*
1824	 * Sometimes we want to use more memory than we have
1825	 */
1826	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1827		return 0;
1828
1829	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1830		unsigned long n;
1831
1832		free = global_page_state(NR_FILE_PAGES);
1833		free += nr_swap_pages;
1834
1835		/*
1836		 * Any slabs which are created with the
1837		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1838		 * which are reclaimable, under pressure.  The dentry
1839		 * cache and most inode caches should fall into this
1840		 */
1841		free += global_page_state(NR_SLAB_RECLAIMABLE);
1842
1843		/*
1844		 * Leave the last 3% for root
1845		 */
1846		if (!cap_sys_admin)
1847			free -= free / 32;
1848
1849		if (free > pages)
1850			return 0;
1851
1852		/*
1853		 * nr_free_pages() is very expensive on large systems,
1854		 * only call if we're about to fail.
1855		 */
1856		n = nr_free_pages();
1857
1858		/*
1859		 * Leave reserved pages. The pages are not for anonymous pages.
1860		 */
1861		if (n <= totalreserve_pages)
1862			goto error;
1863		else
1864			n -= totalreserve_pages;
1865
1866		/*
1867		 * Leave the last 3% for root
1868		 */
1869		if (!cap_sys_admin)
1870			n -= n / 32;
1871		free += n;
1872
1873		if (free > pages)
1874			return 0;
1875
1876		goto error;
1877	}
1878
1879	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1880	/*
1881	 * Leave the last 3% for root
1882	 */
1883	if (!cap_sys_admin)
1884		allowed -= allowed / 32;
1885	allowed += total_swap_pages;
1886
1887	/* Don't let a single process grow too big:
1888	   leave 3% of the size of this process for other processes */
1889	if (mm)
1890		allowed -= mm->total_vm / 32;
1891
1892	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1893		return 0;
1894
1895error:
1896	vm_unacct_memory(pages);
1897
1898	return -ENOMEM;
1899}
1900
1901int in_gate_area_no_task(unsigned long addr)
1902{
1903	return 0;
1904}
1905
1906int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1907{
1908	BUG();
1909	return 0;
1910}
1911EXPORT_SYMBOL(filemap_fault);
1912
1913/*
1914 * Access another process' address space.
1915 * - source/target buffer must be kernel space
1916 */
1917int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1918{
1919	struct vm_area_struct *vma;
1920	struct mm_struct *mm;
1921
1922	if (addr + len < addr)
1923		return 0;
1924
1925	mm = get_task_mm(tsk);
1926	if (!mm)
1927		return 0;
1928
1929	down_read(&mm->mmap_sem);
1930
1931	/* the access must start within one of the target process's mappings */
1932	vma = find_vma(mm, addr);
1933	if (vma) {
1934		/* don't overrun this mapping */
1935		if (addr + len >= vma->vm_end)
1936			len = vma->vm_end - addr;
1937
1938		/* only read or write mappings where it is permitted */
1939		if (write && vma->vm_flags & VM_MAYWRITE)
1940			len -= copy_to_user((void *) addr, buf, len);
1941		else if (!write && vma->vm_flags & VM_MAYREAD)
1942			len -= copy_from_user(buf, (void *) addr, len);
1943		else
1944			len = 0;
1945	} else {
1946		len = 0;
1947	}
1948
1949	up_read(&mm->mmap_sem);
1950	mmput(mm);
1951	return len;
1952}
1953