nommu.c revision 7bf02ea22c6cdd09e2d3f1d3c3fe366b834ae9af
1/*
2 *  linux/mm/nommu.c
3 *
4 *  Replacement code for mm functions to support CPU's that don't
5 *  have any form of memory management unit (thus no virtual memory).
6 *
7 *  See Documentation/nommu-mmap.txt
8 *
9 *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13 *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14 */
15
16#include <linux/module.h>
17#include <linux/mm.h>
18#include <linux/mman.h>
19#include <linux/swap.h>
20#include <linux/file.h>
21#include <linux/highmem.h>
22#include <linux/pagemap.h>
23#include <linux/slab.h>
24#include <linux/vmalloc.h>
25#include <linux/tracehook.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
28#include <linux/mount.h>
29#include <linux/personality.h>
30#include <linux/security.h>
31#include <linux/syscalls.h>
32#include <linux/audit.h>
33
34#include <asm/uaccess.h>
35#include <asm/tlb.h>
36#include <asm/tlbflush.h>
37#include <asm/mmu_context.h>
38#include "internal.h"
39
40#if 0
41#define kenter(FMT, ...) \
42	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43#define kleave(FMT, ...) \
44	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45#define kdebug(FMT, ...) \
46	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
47#else
48#define kenter(FMT, ...) \
49	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50#define kleave(FMT, ...) \
51	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52#define kdebug(FMT, ...) \
53	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
54#endif
55
56void *high_memory;
57struct page *mem_map;
58unsigned long max_mapnr;
59unsigned long num_physpages;
60unsigned long highest_memmap_pfn;
61struct percpu_counter vm_committed_as;
62int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
63int sysctl_overcommit_ratio = 50; /* default is 50% */
64int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
65int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
66int heap_stack_gap = 0;
67
68atomic_long_t mmap_pages_allocated;
69
70EXPORT_SYMBOL(mem_map);
71EXPORT_SYMBOL(num_physpages);
72
73/* list of mapped, potentially shareable regions */
74static struct kmem_cache *vm_region_jar;
75struct rb_root nommu_region_tree = RB_ROOT;
76DECLARE_RWSEM(nommu_region_sem);
77
78const struct vm_operations_struct generic_file_vm_ops = {
79};
80
81/*
82 * Return the total memory allocated for this pointer, not
83 * just what the caller asked for.
84 *
85 * Doesn't have to be accurate, i.e. may have races.
86 */
87unsigned int kobjsize(const void *objp)
88{
89	struct page *page;
90
91	/*
92	 * If the object we have should not have ksize performed on it,
93	 * return size of 0
94	 */
95	if (!objp || !virt_addr_valid(objp))
96		return 0;
97
98	page = virt_to_head_page(objp);
99
100	/*
101	 * If the allocator sets PageSlab, we know the pointer came from
102	 * kmalloc().
103	 */
104	if (PageSlab(page))
105		return ksize(objp);
106
107	/*
108	 * If it's not a compound page, see if we have a matching VMA
109	 * region. This test is intentionally done in reverse order,
110	 * so if there's no VMA, we still fall through and hand back
111	 * PAGE_SIZE for 0-order pages.
112	 */
113	if (!PageCompound(page)) {
114		struct vm_area_struct *vma;
115
116		vma = find_vma(current->mm, (unsigned long)objp);
117		if (vma)
118			return vma->vm_end - vma->vm_start;
119	}
120
121	/*
122	 * The ksize() function is only guaranteed to work for pointers
123	 * returned by kmalloc(). So handle arbitrary pointers here.
124	 */
125	return PAGE_SIZE << compound_order(page);
126}
127
128int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
129		     unsigned long start, int nr_pages, unsigned int foll_flags,
130		     struct page **pages, struct vm_area_struct **vmas,
131		     int *retry)
132{
133	struct vm_area_struct *vma;
134	unsigned long vm_flags;
135	int i;
136
137	/* calculate required read or write permissions.
138	 * If FOLL_FORCE is set, we only require the "MAY" flags.
139	 */
140	vm_flags  = (foll_flags & FOLL_WRITE) ?
141			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
142	vm_flags &= (foll_flags & FOLL_FORCE) ?
143			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
144
145	for (i = 0; i < nr_pages; i++) {
146		vma = find_vma(mm, start);
147		if (!vma)
148			goto finish_or_fault;
149
150		/* protect what we can, including chardevs */
151		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
152		    !(vm_flags & vma->vm_flags))
153			goto finish_or_fault;
154
155		if (pages) {
156			pages[i] = virt_to_page(start);
157			if (pages[i])
158				page_cache_get(pages[i]);
159		}
160		if (vmas)
161			vmas[i] = vma;
162		start = (start + PAGE_SIZE) & PAGE_MASK;
163	}
164
165	return i;
166
167finish_or_fault:
168	return i ? : -EFAULT;
169}
170
171/*
172 * get a list of pages in an address range belonging to the specified process
173 * and indicate the VMA that covers each page
174 * - this is potentially dodgy as we may end incrementing the page count of a
175 *   slab page or a secondary page from a compound page
176 * - don't permit access to VMAs that don't support it, such as I/O mappings
177 */
178int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
179	unsigned long start, int nr_pages, int write, int force,
180	struct page **pages, struct vm_area_struct **vmas)
181{
182	int flags = 0;
183
184	if (write)
185		flags |= FOLL_WRITE;
186	if (force)
187		flags |= FOLL_FORCE;
188
189	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
190				NULL);
191}
192EXPORT_SYMBOL(get_user_pages);
193
194/**
195 * follow_pfn - look up PFN at a user virtual address
196 * @vma: memory mapping
197 * @address: user virtual address
198 * @pfn: location to store found PFN
199 *
200 * Only IO mappings and raw PFN mappings are allowed.
201 *
202 * Returns zero and the pfn at @pfn on success, -ve otherwise.
203 */
204int follow_pfn(struct vm_area_struct *vma, unsigned long address,
205	unsigned long *pfn)
206{
207	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
208		return -EINVAL;
209
210	*pfn = address >> PAGE_SHIFT;
211	return 0;
212}
213EXPORT_SYMBOL(follow_pfn);
214
215DEFINE_RWLOCK(vmlist_lock);
216struct vm_struct *vmlist;
217
218void vfree(const void *addr)
219{
220	kfree(addr);
221}
222EXPORT_SYMBOL(vfree);
223
224void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
225{
226	/*
227	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
228	 * returns only a logical address.
229	 */
230	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
231}
232EXPORT_SYMBOL(__vmalloc);
233
234void *vmalloc_user(unsigned long size)
235{
236	void *ret;
237
238	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
239			PAGE_KERNEL);
240	if (ret) {
241		struct vm_area_struct *vma;
242
243		down_write(&current->mm->mmap_sem);
244		vma = find_vma(current->mm, (unsigned long)ret);
245		if (vma)
246			vma->vm_flags |= VM_USERMAP;
247		up_write(&current->mm->mmap_sem);
248	}
249
250	return ret;
251}
252EXPORT_SYMBOL(vmalloc_user);
253
254struct page *vmalloc_to_page(const void *addr)
255{
256	return virt_to_page(addr);
257}
258EXPORT_SYMBOL(vmalloc_to_page);
259
260unsigned long vmalloc_to_pfn(const void *addr)
261{
262	return page_to_pfn(virt_to_page(addr));
263}
264EXPORT_SYMBOL(vmalloc_to_pfn);
265
266long vread(char *buf, char *addr, unsigned long count)
267{
268	memcpy(buf, addr, count);
269	return count;
270}
271
272long vwrite(char *buf, char *addr, unsigned long count)
273{
274	/* Don't allow overflow */
275	if ((unsigned long) addr + count < count)
276		count = -(unsigned long) addr;
277
278	memcpy(addr, buf, count);
279	return(count);
280}
281
282/*
283 *	vmalloc  -  allocate virtually continguos memory
284 *
285 *	@size:		allocation size
286 *
287 *	Allocate enough pages to cover @size from the page level
288 *	allocator and map them into continguos kernel virtual space.
289 *
290 *	For tight control over page level allocator and protection flags
291 *	use __vmalloc() instead.
292 */
293void *vmalloc(unsigned long size)
294{
295       return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
296}
297EXPORT_SYMBOL(vmalloc);
298
299/*
300 *	vzalloc - allocate virtually continguos memory with zero fill
301 *
302 *	@size:		allocation size
303 *
304 *	Allocate enough pages to cover @size from the page level
305 *	allocator and map them into continguos kernel virtual space.
306 *	The memory allocated is set to zero.
307 *
308 *	For tight control over page level allocator and protection flags
309 *	use __vmalloc() instead.
310 */
311void *vzalloc(unsigned long size)
312{
313	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
314			PAGE_KERNEL);
315}
316EXPORT_SYMBOL(vzalloc);
317
318/**
319 * vmalloc_node - allocate memory on a specific node
320 * @size:	allocation size
321 * @node:	numa node
322 *
323 * Allocate enough pages to cover @size from the page level
324 * allocator and map them into contiguous kernel virtual space.
325 *
326 * For tight control over page level allocator and protection flags
327 * use __vmalloc() instead.
328 */
329void *vmalloc_node(unsigned long size, int node)
330{
331	return vmalloc(size);
332}
333EXPORT_SYMBOL(vmalloc_node);
334
335/**
336 * vzalloc_node - allocate memory on a specific node with zero fill
337 * @size:	allocation size
338 * @node:	numa node
339 *
340 * Allocate enough pages to cover @size from the page level
341 * allocator and map them into contiguous kernel virtual space.
342 * The memory allocated is set to zero.
343 *
344 * For tight control over page level allocator and protection flags
345 * use __vmalloc() instead.
346 */
347void *vzalloc_node(unsigned long size, int node)
348{
349	return vzalloc(size);
350}
351EXPORT_SYMBOL(vzalloc_node);
352
353#ifndef PAGE_KERNEL_EXEC
354# define PAGE_KERNEL_EXEC PAGE_KERNEL
355#endif
356
357/**
358 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
359 *	@size:		allocation size
360 *
361 *	Kernel-internal function to allocate enough pages to cover @size
362 *	the page level allocator and map them into contiguous and
363 *	executable kernel virtual space.
364 *
365 *	For tight control over page level allocator and protection flags
366 *	use __vmalloc() instead.
367 */
368
369void *vmalloc_exec(unsigned long size)
370{
371	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
372}
373
374/**
375 * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
376 *	@size:		allocation size
377 *
378 *	Allocate enough 32bit PA addressable pages to cover @size from the
379 *	page level allocator and map them into continguos kernel virtual space.
380 */
381void *vmalloc_32(unsigned long size)
382{
383	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
384}
385EXPORT_SYMBOL(vmalloc_32);
386
387/**
388 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
389 *	@size:		allocation size
390 *
391 * The resulting memory area is 32bit addressable and zeroed so it can be
392 * mapped to userspace without leaking data.
393 *
394 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
395 * remap_vmalloc_range() are permissible.
396 */
397void *vmalloc_32_user(unsigned long size)
398{
399	/*
400	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
401	 * but for now this can simply use vmalloc_user() directly.
402	 */
403	return vmalloc_user(size);
404}
405EXPORT_SYMBOL(vmalloc_32_user);
406
407void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
408{
409	BUG();
410	return NULL;
411}
412EXPORT_SYMBOL(vmap);
413
414void vunmap(const void *addr)
415{
416	BUG();
417}
418EXPORT_SYMBOL(vunmap);
419
420void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
421{
422	BUG();
423	return NULL;
424}
425EXPORT_SYMBOL(vm_map_ram);
426
427void vm_unmap_ram(const void *mem, unsigned int count)
428{
429	BUG();
430}
431EXPORT_SYMBOL(vm_unmap_ram);
432
433void vm_unmap_aliases(void)
434{
435}
436EXPORT_SYMBOL_GPL(vm_unmap_aliases);
437
438/*
439 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
440 * have one.
441 */
442void  __attribute__((weak)) vmalloc_sync_all(void)
443{
444}
445
446/**
447 *	alloc_vm_area - allocate a range of kernel address space
448 *	@size:		size of the area
449 *
450 *	Returns:	NULL on failure, vm_struct on success
451 *
452 *	This function reserves a range of kernel address space, and
453 *	allocates pagetables to map that range.  No actual mappings
454 *	are created.  If the kernel address space is not shared
455 *	between processes, it syncs the pagetable across all
456 *	processes.
457 */
458struct vm_struct *alloc_vm_area(size_t size)
459{
460	BUG();
461	return NULL;
462}
463EXPORT_SYMBOL_GPL(alloc_vm_area);
464
465void free_vm_area(struct vm_struct *area)
466{
467	BUG();
468}
469EXPORT_SYMBOL_GPL(free_vm_area);
470
471int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
472		   struct page *page)
473{
474	return -EINVAL;
475}
476EXPORT_SYMBOL(vm_insert_page);
477
478/*
479 *  sys_brk() for the most part doesn't need the global kernel
480 *  lock, except when an application is doing something nasty
481 *  like trying to un-brk an area that has already been mapped
482 *  to a regular file.  in this case, the unmapping will need
483 *  to invoke file system routines that need the global lock.
484 */
485SYSCALL_DEFINE1(brk, unsigned long, brk)
486{
487	struct mm_struct *mm = current->mm;
488
489	if (brk < mm->start_brk || brk > mm->context.end_brk)
490		return mm->brk;
491
492	if (mm->brk == brk)
493		return mm->brk;
494
495	/*
496	 * Always allow shrinking brk
497	 */
498	if (brk <= mm->brk) {
499		mm->brk = brk;
500		return brk;
501	}
502
503	/*
504	 * Ok, looks good - let it rip.
505	 */
506	flush_icache_range(mm->brk, brk);
507	return mm->brk = brk;
508}
509
510/*
511 * initialise the VMA and region record slabs
512 */
513void __init mmap_init(void)
514{
515	int ret;
516
517	ret = percpu_counter_init(&vm_committed_as, 0);
518	VM_BUG_ON(ret);
519	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
520}
521
522/*
523 * validate the region tree
524 * - the caller must hold the region lock
525 */
526#ifdef CONFIG_DEBUG_NOMMU_REGIONS
527static noinline void validate_nommu_regions(void)
528{
529	struct vm_region *region, *last;
530	struct rb_node *p, *lastp;
531
532	lastp = rb_first(&nommu_region_tree);
533	if (!lastp)
534		return;
535
536	last = rb_entry(lastp, struct vm_region, vm_rb);
537	BUG_ON(unlikely(last->vm_end <= last->vm_start));
538	BUG_ON(unlikely(last->vm_top < last->vm_end));
539
540	while ((p = rb_next(lastp))) {
541		region = rb_entry(p, struct vm_region, vm_rb);
542		last = rb_entry(lastp, struct vm_region, vm_rb);
543
544		BUG_ON(unlikely(region->vm_end <= region->vm_start));
545		BUG_ON(unlikely(region->vm_top < region->vm_end));
546		BUG_ON(unlikely(region->vm_start < last->vm_top));
547
548		lastp = p;
549	}
550}
551#else
552static void validate_nommu_regions(void)
553{
554}
555#endif
556
557/*
558 * add a region into the global tree
559 */
560static void add_nommu_region(struct vm_region *region)
561{
562	struct vm_region *pregion;
563	struct rb_node **p, *parent;
564
565	validate_nommu_regions();
566
567	parent = NULL;
568	p = &nommu_region_tree.rb_node;
569	while (*p) {
570		parent = *p;
571		pregion = rb_entry(parent, struct vm_region, vm_rb);
572		if (region->vm_start < pregion->vm_start)
573			p = &(*p)->rb_left;
574		else if (region->vm_start > pregion->vm_start)
575			p = &(*p)->rb_right;
576		else if (pregion == region)
577			return;
578		else
579			BUG();
580	}
581
582	rb_link_node(&region->vm_rb, parent, p);
583	rb_insert_color(&region->vm_rb, &nommu_region_tree);
584
585	validate_nommu_regions();
586}
587
588/*
589 * delete a region from the global tree
590 */
591static void delete_nommu_region(struct vm_region *region)
592{
593	BUG_ON(!nommu_region_tree.rb_node);
594
595	validate_nommu_regions();
596	rb_erase(&region->vm_rb, &nommu_region_tree);
597	validate_nommu_regions();
598}
599
600/*
601 * free a contiguous series of pages
602 */
603static void free_page_series(unsigned long from, unsigned long to)
604{
605	for (; from < to; from += PAGE_SIZE) {
606		struct page *page = virt_to_page(from);
607
608		kdebug("- free %lx", from);
609		atomic_long_dec(&mmap_pages_allocated);
610		if (page_count(page) != 1)
611			kdebug("free page %p: refcount not one: %d",
612			       page, page_count(page));
613		put_page(page);
614	}
615}
616
617/*
618 * release a reference to a region
619 * - the caller must hold the region semaphore for writing, which this releases
620 * - the region may not have been added to the tree yet, in which case vm_top
621 *   will equal vm_start
622 */
623static void __put_nommu_region(struct vm_region *region)
624	__releases(nommu_region_sem)
625{
626	kenter("%p{%d}", region, region->vm_usage);
627
628	BUG_ON(!nommu_region_tree.rb_node);
629
630	if (--region->vm_usage == 0) {
631		if (region->vm_top > region->vm_start)
632			delete_nommu_region(region);
633		up_write(&nommu_region_sem);
634
635		if (region->vm_file)
636			fput(region->vm_file);
637
638		/* IO memory and memory shared directly out of the pagecache
639		 * from ramfs/tmpfs mustn't be released here */
640		if (region->vm_flags & VM_MAPPED_COPY) {
641			kdebug("free series");
642			free_page_series(region->vm_start, region->vm_top);
643		}
644		kmem_cache_free(vm_region_jar, region);
645	} else {
646		up_write(&nommu_region_sem);
647	}
648}
649
650/*
651 * release a reference to a region
652 */
653static void put_nommu_region(struct vm_region *region)
654{
655	down_write(&nommu_region_sem);
656	__put_nommu_region(region);
657}
658
659/*
660 * update protection on a vma
661 */
662static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
663{
664#ifdef CONFIG_MPU
665	struct mm_struct *mm = vma->vm_mm;
666	long start = vma->vm_start & PAGE_MASK;
667	while (start < vma->vm_end) {
668		protect_page(mm, start, flags);
669		start += PAGE_SIZE;
670	}
671	update_protections(mm);
672#endif
673}
674
675/*
676 * add a VMA into a process's mm_struct in the appropriate place in the list
677 * and tree and add to the address space's page tree also if not an anonymous
678 * page
679 * - should be called with mm->mmap_sem held writelocked
680 */
681static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
682{
683	struct vm_area_struct *pvma, **pp, *next;
684	struct address_space *mapping;
685	struct rb_node **p, *parent;
686
687	kenter(",%p", vma);
688
689	BUG_ON(!vma->vm_region);
690
691	mm->map_count++;
692	vma->vm_mm = mm;
693
694	protect_vma(vma, vma->vm_flags);
695
696	/* add the VMA to the mapping */
697	if (vma->vm_file) {
698		mapping = vma->vm_file->f_mapping;
699
700		flush_dcache_mmap_lock(mapping);
701		vma_prio_tree_insert(vma, &mapping->i_mmap);
702		flush_dcache_mmap_unlock(mapping);
703	}
704
705	/* add the VMA to the tree */
706	parent = NULL;
707	p = &mm->mm_rb.rb_node;
708	while (*p) {
709		parent = *p;
710		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
711
712		/* sort by: start addr, end addr, VMA struct addr in that order
713		 * (the latter is necessary as we may get identical VMAs) */
714		if (vma->vm_start < pvma->vm_start)
715			p = &(*p)->rb_left;
716		else if (vma->vm_start > pvma->vm_start)
717			p = &(*p)->rb_right;
718		else if (vma->vm_end < pvma->vm_end)
719			p = &(*p)->rb_left;
720		else if (vma->vm_end > pvma->vm_end)
721			p = &(*p)->rb_right;
722		else if (vma < pvma)
723			p = &(*p)->rb_left;
724		else if (vma > pvma)
725			p = &(*p)->rb_right;
726		else
727			BUG();
728	}
729
730	rb_link_node(&vma->vm_rb, parent, p);
731	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
732
733	/* add VMA to the VMA list also */
734	for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
735		if (pvma->vm_start > vma->vm_start)
736			break;
737		if (pvma->vm_start < vma->vm_start)
738			continue;
739		if (pvma->vm_end < vma->vm_end)
740			break;
741	}
742
743	next = *pp;
744	*pp = vma;
745	vma->vm_next = next;
746	if (next)
747		next->vm_prev = vma;
748}
749
750/*
751 * delete a VMA from its owning mm_struct and address space
752 */
753static void delete_vma_from_mm(struct vm_area_struct *vma)
754{
755	struct vm_area_struct **pp;
756	struct address_space *mapping;
757	struct mm_struct *mm = vma->vm_mm;
758
759	kenter("%p", vma);
760
761	protect_vma(vma, 0);
762
763	mm->map_count--;
764	if (mm->mmap_cache == vma)
765		mm->mmap_cache = NULL;
766
767	/* remove the VMA from the mapping */
768	if (vma->vm_file) {
769		mapping = vma->vm_file->f_mapping;
770
771		flush_dcache_mmap_lock(mapping);
772		vma_prio_tree_remove(vma, &mapping->i_mmap);
773		flush_dcache_mmap_unlock(mapping);
774	}
775
776	/* remove from the MM's tree and list */
777	rb_erase(&vma->vm_rb, &mm->mm_rb);
778	for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
779		if (*pp == vma) {
780			*pp = vma->vm_next;
781			break;
782		}
783	}
784
785	vma->vm_mm = NULL;
786}
787
788/*
789 * destroy a VMA record
790 */
791static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
792{
793	kenter("%p", vma);
794	if (vma->vm_ops && vma->vm_ops->close)
795		vma->vm_ops->close(vma);
796	if (vma->vm_file) {
797		fput(vma->vm_file);
798		if (vma->vm_flags & VM_EXECUTABLE)
799			removed_exe_file_vma(mm);
800	}
801	put_nommu_region(vma->vm_region);
802	kmem_cache_free(vm_area_cachep, vma);
803}
804
805/*
806 * look up the first VMA in which addr resides, NULL if none
807 * - should be called with mm->mmap_sem at least held readlocked
808 */
809struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
810{
811	struct vm_area_struct *vma;
812	struct rb_node *n = mm->mm_rb.rb_node;
813
814	/* check the cache first */
815	vma = mm->mmap_cache;
816	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
817		return vma;
818
819	/* trawl the tree (there may be multiple mappings in which addr
820	 * resides) */
821	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
822		vma = rb_entry(n, struct vm_area_struct, vm_rb);
823		if (vma->vm_start > addr)
824			return NULL;
825		if (vma->vm_end > addr) {
826			mm->mmap_cache = vma;
827			return vma;
828		}
829	}
830
831	return NULL;
832}
833EXPORT_SYMBOL(find_vma);
834
835/*
836 * find a VMA
837 * - we don't extend stack VMAs under NOMMU conditions
838 */
839struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
840{
841	return find_vma(mm, addr);
842}
843
844/*
845 * expand a stack to a given address
846 * - not supported under NOMMU conditions
847 */
848int expand_stack(struct vm_area_struct *vma, unsigned long address)
849{
850	return -ENOMEM;
851}
852
853/*
854 * look up the first VMA exactly that exactly matches addr
855 * - should be called with mm->mmap_sem at least held readlocked
856 */
857static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
858					     unsigned long addr,
859					     unsigned long len)
860{
861	struct vm_area_struct *vma;
862	struct rb_node *n = mm->mm_rb.rb_node;
863	unsigned long end = addr + len;
864
865	/* check the cache first */
866	vma = mm->mmap_cache;
867	if (vma && vma->vm_start == addr && vma->vm_end == end)
868		return vma;
869
870	/* trawl the tree (there may be multiple mappings in which addr
871	 * resides) */
872	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
873		vma = rb_entry(n, struct vm_area_struct, vm_rb);
874		if (vma->vm_start < addr)
875			continue;
876		if (vma->vm_start > addr)
877			return NULL;
878		if (vma->vm_end == end) {
879			mm->mmap_cache = vma;
880			return vma;
881		}
882	}
883
884	return NULL;
885}
886
887/*
888 * determine whether a mapping should be permitted and, if so, what sort of
889 * mapping we're capable of supporting
890 */
891static int validate_mmap_request(struct file *file,
892				 unsigned long addr,
893				 unsigned long len,
894				 unsigned long prot,
895				 unsigned long flags,
896				 unsigned long pgoff,
897				 unsigned long *_capabilities)
898{
899	unsigned long capabilities, rlen;
900	unsigned long reqprot = prot;
901	int ret;
902
903	/* do the simple checks first */
904	if (flags & MAP_FIXED) {
905		printk(KERN_DEBUG
906		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
907		       current->pid);
908		return -EINVAL;
909	}
910
911	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
912	    (flags & MAP_TYPE) != MAP_SHARED)
913		return -EINVAL;
914
915	if (!len)
916		return -EINVAL;
917
918	/* Careful about overflows.. */
919	rlen = PAGE_ALIGN(len);
920	if (!rlen || rlen > TASK_SIZE)
921		return -ENOMEM;
922
923	/* offset overflow? */
924	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
925		return -EOVERFLOW;
926
927	if (file) {
928		/* validate file mapping requests */
929		struct address_space *mapping;
930
931		/* files must support mmap */
932		if (!file->f_op || !file->f_op->mmap)
933			return -ENODEV;
934
935		/* work out if what we've got could possibly be shared
936		 * - we support chardevs that provide their own "memory"
937		 * - we support files/blockdevs that are memory backed
938		 */
939		mapping = file->f_mapping;
940		if (!mapping)
941			mapping = file->f_path.dentry->d_inode->i_mapping;
942
943		capabilities = 0;
944		if (mapping && mapping->backing_dev_info)
945			capabilities = mapping->backing_dev_info->capabilities;
946
947		if (!capabilities) {
948			/* no explicit capabilities set, so assume some
949			 * defaults */
950			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
951			case S_IFREG:
952			case S_IFBLK:
953				capabilities = BDI_CAP_MAP_COPY;
954				break;
955
956			case S_IFCHR:
957				capabilities =
958					BDI_CAP_MAP_DIRECT |
959					BDI_CAP_READ_MAP |
960					BDI_CAP_WRITE_MAP;
961				break;
962
963			default:
964				return -EINVAL;
965			}
966		}
967
968		/* eliminate any capabilities that we can't support on this
969		 * device */
970		if (!file->f_op->get_unmapped_area)
971			capabilities &= ~BDI_CAP_MAP_DIRECT;
972		if (!file->f_op->read)
973			capabilities &= ~BDI_CAP_MAP_COPY;
974
975		/* The file shall have been opened with read permission. */
976		if (!(file->f_mode & FMODE_READ))
977			return -EACCES;
978
979		if (flags & MAP_SHARED) {
980			/* do checks for writing, appending and locking */
981			if ((prot & PROT_WRITE) &&
982			    !(file->f_mode & FMODE_WRITE))
983				return -EACCES;
984
985			if (IS_APPEND(file->f_path.dentry->d_inode) &&
986			    (file->f_mode & FMODE_WRITE))
987				return -EACCES;
988
989			if (locks_verify_locked(file->f_path.dentry->d_inode))
990				return -EAGAIN;
991
992			if (!(capabilities & BDI_CAP_MAP_DIRECT))
993				return -ENODEV;
994
995			/* we mustn't privatise shared mappings */
996			capabilities &= ~BDI_CAP_MAP_COPY;
997		}
998		else {
999			/* we're going to read the file into private memory we
1000			 * allocate */
1001			if (!(capabilities & BDI_CAP_MAP_COPY))
1002				return -ENODEV;
1003
1004			/* we don't permit a private writable mapping to be
1005			 * shared with the backing device */
1006			if (prot & PROT_WRITE)
1007				capabilities &= ~BDI_CAP_MAP_DIRECT;
1008		}
1009
1010		if (capabilities & BDI_CAP_MAP_DIRECT) {
1011			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1012			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1013			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1014			    ) {
1015				capabilities &= ~BDI_CAP_MAP_DIRECT;
1016				if (flags & MAP_SHARED) {
1017					printk(KERN_WARNING
1018					       "MAP_SHARED not completely supported on !MMU\n");
1019					return -EINVAL;
1020				}
1021			}
1022		}
1023
1024		/* handle executable mappings and implied executable
1025		 * mappings */
1026		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1027			if (prot & PROT_EXEC)
1028				return -EPERM;
1029		}
1030		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1031			/* handle implication of PROT_EXEC by PROT_READ */
1032			if (current->personality & READ_IMPLIES_EXEC) {
1033				if (capabilities & BDI_CAP_EXEC_MAP)
1034					prot |= PROT_EXEC;
1035			}
1036		}
1037		else if ((prot & PROT_READ) &&
1038			 (prot & PROT_EXEC) &&
1039			 !(capabilities & BDI_CAP_EXEC_MAP)
1040			 ) {
1041			/* backing file is not executable, try to copy */
1042			capabilities &= ~BDI_CAP_MAP_DIRECT;
1043		}
1044	}
1045	else {
1046		/* anonymous mappings are always memory backed and can be
1047		 * privately mapped
1048		 */
1049		capabilities = BDI_CAP_MAP_COPY;
1050
1051		/* handle PROT_EXEC implication by PROT_READ */
1052		if ((prot & PROT_READ) &&
1053		    (current->personality & READ_IMPLIES_EXEC))
1054			prot |= PROT_EXEC;
1055	}
1056
1057	/* allow the security API to have its say */
1058	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1059	if (ret < 0)
1060		return ret;
1061
1062	/* looks okay */
1063	*_capabilities = capabilities;
1064	return 0;
1065}
1066
1067/*
1068 * we've determined that we can make the mapping, now translate what we
1069 * now know into VMA flags
1070 */
1071static unsigned long determine_vm_flags(struct file *file,
1072					unsigned long prot,
1073					unsigned long flags,
1074					unsigned long capabilities)
1075{
1076	unsigned long vm_flags;
1077
1078	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1079	/* vm_flags |= mm->def_flags; */
1080
1081	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1082		/* attempt to share read-only copies of mapped file chunks */
1083		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1084		if (file && !(prot & PROT_WRITE))
1085			vm_flags |= VM_MAYSHARE;
1086	} else {
1087		/* overlay a shareable mapping on the backing device or inode
1088		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1089		 * romfs/cramfs */
1090		vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1091		if (flags & MAP_SHARED)
1092			vm_flags |= VM_SHARED;
1093	}
1094
1095	/* refuse to let anyone share private mappings with this process if
1096	 * it's being traced - otherwise breakpoints set in it may interfere
1097	 * with another untraced process
1098	 */
1099	if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1100		vm_flags &= ~VM_MAYSHARE;
1101
1102	return vm_flags;
1103}
1104
1105/*
1106 * set up a shared mapping on a file (the driver or filesystem provides and
1107 * pins the storage)
1108 */
1109static int do_mmap_shared_file(struct vm_area_struct *vma)
1110{
1111	int ret;
1112
1113	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1114	if (ret == 0) {
1115		vma->vm_region->vm_top = vma->vm_region->vm_end;
1116		return 0;
1117	}
1118	if (ret != -ENOSYS)
1119		return ret;
1120
1121	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1122	 * opposed to tried but failed) so we can only give a suitable error as
1123	 * it's not possible to make a private copy if MAP_SHARED was given */
1124	return -ENODEV;
1125}
1126
1127/*
1128 * set up a private mapping or an anonymous shared mapping
1129 */
1130static int do_mmap_private(struct vm_area_struct *vma,
1131			   struct vm_region *region,
1132			   unsigned long len,
1133			   unsigned long capabilities)
1134{
1135	struct page *pages;
1136	unsigned long total, point, n, rlen;
1137	void *base;
1138	int ret, order;
1139
1140	/* invoke the file's mapping function so that it can keep track of
1141	 * shared mappings on devices or memory
1142	 * - VM_MAYSHARE will be set if it may attempt to share
1143	 */
1144	if (capabilities & BDI_CAP_MAP_DIRECT) {
1145		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1146		if (ret == 0) {
1147			/* shouldn't return success if we're not sharing */
1148			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1149			vma->vm_region->vm_top = vma->vm_region->vm_end;
1150			return 0;
1151		}
1152		if (ret != -ENOSYS)
1153			return ret;
1154
1155		/* getting an ENOSYS error indicates that direct mmap isn't
1156		 * possible (as opposed to tried but failed) so we'll try to
1157		 * make a private copy of the data and map that instead */
1158	}
1159
1160	rlen = PAGE_ALIGN(len);
1161
1162	/* allocate some memory to hold the mapping
1163	 * - note that this may not return a page-aligned address if the object
1164	 *   we're allocating is smaller than a page
1165	 */
1166	order = get_order(rlen);
1167	kdebug("alloc order %d for %lx", order, len);
1168
1169	pages = alloc_pages(GFP_KERNEL, order);
1170	if (!pages)
1171		goto enomem;
1172
1173	total = 1 << order;
1174	atomic_long_add(total, &mmap_pages_allocated);
1175
1176	point = rlen >> PAGE_SHIFT;
1177
1178	/* we allocated a power-of-2 sized page set, so we may want to trim off
1179	 * the excess */
1180	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1181		while (total > point) {
1182			order = ilog2(total - point);
1183			n = 1 << order;
1184			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1185			atomic_long_sub(n, &mmap_pages_allocated);
1186			total -= n;
1187			set_page_refcounted(pages + total);
1188			__free_pages(pages + total, order);
1189		}
1190	}
1191
1192	for (point = 1; point < total; point++)
1193		set_page_refcounted(&pages[point]);
1194
1195	base = page_address(pages);
1196	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1197	region->vm_start = (unsigned long) base;
1198	region->vm_end   = region->vm_start + rlen;
1199	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1200
1201	vma->vm_start = region->vm_start;
1202	vma->vm_end   = region->vm_start + len;
1203
1204	if (vma->vm_file) {
1205		/* read the contents of a file into the copy */
1206		mm_segment_t old_fs;
1207		loff_t fpos;
1208
1209		fpos = vma->vm_pgoff;
1210		fpos <<= PAGE_SHIFT;
1211
1212		old_fs = get_fs();
1213		set_fs(KERNEL_DS);
1214		ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1215		set_fs(old_fs);
1216
1217		if (ret < 0)
1218			goto error_free;
1219
1220		/* clear the last little bit */
1221		if (ret < rlen)
1222			memset(base + ret, 0, rlen - ret);
1223
1224	}
1225
1226	return 0;
1227
1228error_free:
1229	free_page_series(region->vm_start, region->vm_end);
1230	region->vm_start = vma->vm_start = 0;
1231	region->vm_end   = vma->vm_end = 0;
1232	region->vm_top   = 0;
1233	return ret;
1234
1235enomem:
1236	printk("Allocation of length %lu from process %d (%s) failed\n",
1237	       len, current->pid, current->comm);
1238	show_free_areas(0);
1239	return -ENOMEM;
1240}
1241
1242/*
1243 * handle mapping creation for uClinux
1244 */
1245unsigned long do_mmap_pgoff(struct file *file,
1246			    unsigned long addr,
1247			    unsigned long len,
1248			    unsigned long prot,
1249			    unsigned long flags,
1250			    unsigned long pgoff)
1251{
1252	struct vm_area_struct *vma;
1253	struct vm_region *region;
1254	struct rb_node *rb;
1255	unsigned long capabilities, vm_flags, result;
1256	int ret;
1257
1258	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1259
1260	/* decide whether we should attempt the mapping, and if so what sort of
1261	 * mapping */
1262	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1263				    &capabilities);
1264	if (ret < 0) {
1265		kleave(" = %d [val]", ret);
1266		return ret;
1267	}
1268
1269	/* we ignore the address hint */
1270	addr = 0;
1271
1272	/* we've determined that we can make the mapping, now translate what we
1273	 * now know into VMA flags */
1274	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1275
1276	/* we're going to need to record the mapping */
1277	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1278	if (!region)
1279		goto error_getting_region;
1280
1281	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1282	if (!vma)
1283		goto error_getting_vma;
1284
1285	region->vm_usage = 1;
1286	region->vm_flags = vm_flags;
1287	region->vm_pgoff = pgoff;
1288
1289	INIT_LIST_HEAD(&vma->anon_vma_chain);
1290	vma->vm_flags = vm_flags;
1291	vma->vm_pgoff = pgoff;
1292
1293	if (file) {
1294		region->vm_file = file;
1295		get_file(file);
1296		vma->vm_file = file;
1297		get_file(file);
1298		if (vm_flags & VM_EXECUTABLE) {
1299			added_exe_file_vma(current->mm);
1300			vma->vm_mm = current->mm;
1301		}
1302	}
1303
1304	down_write(&nommu_region_sem);
1305
1306	/* if we want to share, we need to check for regions created by other
1307	 * mmap() calls that overlap with our proposed mapping
1308	 * - we can only share with a superset match on most regular files
1309	 * - shared mappings on character devices and memory backed files are
1310	 *   permitted to overlap inexactly as far as we are concerned for in
1311	 *   these cases, sharing is handled in the driver or filesystem rather
1312	 *   than here
1313	 */
1314	if (vm_flags & VM_MAYSHARE) {
1315		struct vm_region *pregion;
1316		unsigned long pglen, rpglen, pgend, rpgend, start;
1317
1318		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1319		pgend = pgoff + pglen;
1320
1321		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1322			pregion = rb_entry(rb, struct vm_region, vm_rb);
1323
1324			if (!(pregion->vm_flags & VM_MAYSHARE))
1325				continue;
1326
1327			/* search for overlapping mappings on the same file */
1328			if (pregion->vm_file->f_path.dentry->d_inode !=
1329			    file->f_path.dentry->d_inode)
1330				continue;
1331
1332			if (pregion->vm_pgoff >= pgend)
1333				continue;
1334
1335			rpglen = pregion->vm_end - pregion->vm_start;
1336			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1337			rpgend = pregion->vm_pgoff + rpglen;
1338			if (pgoff >= rpgend)
1339				continue;
1340
1341			/* handle inexactly overlapping matches between
1342			 * mappings */
1343			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1344			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1345				/* new mapping is not a subset of the region */
1346				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1347					goto sharing_violation;
1348				continue;
1349			}
1350
1351			/* we've found a region we can share */
1352			pregion->vm_usage++;
1353			vma->vm_region = pregion;
1354			start = pregion->vm_start;
1355			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1356			vma->vm_start = start;
1357			vma->vm_end = start + len;
1358
1359			if (pregion->vm_flags & VM_MAPPED_COPY) {
1360				kdebug("share copy");
1361				vma->vm_flags |= VM_MAPPED_COPY;
1362			} else {
1363				kdebug("share mmap");
1364				ret = do_mmap_shared_file(vma);
1365				if (ret < 0) {
1366					vma->vm_region = NULL;
1367					vma->vm_start = 0;
1368					vma->vm_end = 0;
1369					pregion->vm_usage--;
1370					pregion = NULL;
1371					goto error_just_free;
1372				}
1373			}
1374			fput(region->vm_file);
1375			kmem_cache_free(vm_region_jar, region);
1376			region = pregion;
1377			result = start;
1378			goto share;
1379		}
1380
1381		/* obtain the address at which to make a shared mapping
1382		 * - this is the hook for quasi-memory character devices to
1383		 *   tell us the location of a shared mapping
1384		 */
1385		if (capabilities & BDI_CAP_MAP_DIRECT) {
1386			addr = file->f_op->get_unmapped_area(file, addr, len,
1387							     pgoff, flags);
1388			if (IS_ERR((void *) addr)) {
1389				ret = addr;
1390				if (ret != (unsigned long) -ENOSYS)
1391					goto error_just_free;
1392
1393				/* the driver refused to tell us where to site
1394				 * the mapping so we'll have to attempt to copy
1395				 * it */
1396				ret = (unsigned long) -ENODEV;
1397				if (!(capabilities & BDI_CAP_MAP_COPY))
1398					goto error_just_free;
1399
1400				capabilities &= ~BDI_CAP_MAP_DIRECT;
1401			} else {
1402				vma->vm_start = region->vm_start = addr;
1403				vma->vm_end = region->vm_end = addr + len;
1404			}
1405		}
1406	}
1407
1408	vma->vm_region = region;
1409
1410	/* set up the mapping
1411	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1412	 */
1413	if (file && vma->vm_flags & VM_SHARED)
1414		ret = do_mmap_shared_file(vma);
1415	else
1416		ret = do_mmap_private(vma, region, len, capabilities);
1417	if (ret < 0)
1418		goto error_just_free;
1419	add_nommu_region(region);
1420
1421	/* clear anonymous mappings that don't ask for uninitialized data */
1422	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1423		memset((void *)region->vm_start, 0,
1424		       region->vm_end - region->vm_start);
1425
1426	/* okay... we have a mapping; now we have to register it */
1427	result = vma->vm_start;
1428
1429	current->mm->total_vm += len >> PAGE_SHIFT;
1430
1431share:
1432	add_vma_to_mm(current->mm, vma);
1433
1434	/* we flush the region from the icache only when the first executable
1435	 * mapping of it is made  */
1436	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1437		flush_icache_range(region->vm_start, region->vm_end);
1438		region->vm_icache_flushed = true;
1439	}
1440
1441	up_write(&nommu_region_sem);
1442
1443	kleave(" = %lx", result);
1444	return result;
1445
1446error_just_free:
1447	up_write(&nommu_region_sem);
1448error:
1449	if (region->vm_file)
1450		fput(region->vm_file);
1451	kmem_cache_free(vm_region_jar, region);
1452	if (vma->vm_file)
1453		fput(vma->vm_file);
1454	if (vma->vm_flags & VM_EXECUTABLE)
1455		removed_exe_file_vma(vma->vm_mm);
1456	kmem_cache_free(vm_area_cachep, vma);
1457	kleave(" = %d", ret);
1458	return ret;
1459
1460sharing_violation:
1461	up_write(&nommu_region_sem);
1462	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1463	ret = -EINVAL;
1464	goto error;
1465
1466error_getting_vma:
1467	kmem_cache_free(vm_region_jar, region);
1468	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1469	       " from process %d failed\n",
1470	       len, current->pid);
1471	show_free_areas(0);
1472	return -ENOMEM;
1473
1474error_getting_region:
1475	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1476	       " from process %d failed\n",
1477	       len, current->pid);
1478	show_free_areas(0);
1479	return -ENOMEM;
1480}
1481EXPORT_SYMBOL(do_mmap_pgoff);
1482
1483SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1484		unsigned long, prot, unsigned long, flags,
1485		unsigned long, fd, unsigned long, pgoff)
1486{
1487	struct file *file = NULL;
1488	unsigned long retval = -EBADF;
1489
1490	audit_mmap_fd(fd, flags);
1491	if (!(flags & MAP_ANONYMOUS)) {
1492		file = fget(fd);
1493		if (!file)
1494			goto out;
1495	}
1496
1497	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1498
1499	down_write(&current->mm->mmap_sem);
1500	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1501	up_write(&current->mm->mmap_sem);
1502
1503	if (file)
1504		fput(file);
1505out:
1506	return retval;
1507}
1508
1509#ifdef __ARCH_WANT_SYS_OLD_MMAP
1510struct mmap_arg_struct {
1511	unsigned long addr;
1512	unsigned long len;
1513	unsigned long prot;
1514	unsigned long flags;
1515	unsigned long fd;
1516	unsigned long offset;
1517};
1518
1519SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1520{
1521	struct mmap_arg_struct a;
1522
1523	if (copy_from_user(&a, arg, sizeof(a)))
1524		return -EFAULT;
1525	if (a.offset & ~PAGE_MASK)
1526		return -EINVAL;
1527
1528	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1529			      a.offset >> PAGE_SHIFT);
1530}
1531#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1532
1533/*
1534 * split a vma into two pieces at address 'addr', a new vma is allocated either
1535 * for the first part or the tail.
1536 */
1537int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1538	      unsigned long addr, int new_below)
1539{
1540	struct vm_area_struct *new;
1541	struct vm_region *region;
1542	unsigned long npages;
1543
1544	kenter("");
1545
1546	/* we're only permitted to split anonymous regions (these should have
1547	 * only a single usage on the region) */
1548	if (vma->vm_file)
1549		return -ENOMEM;
1550
1551	if (mm->map_count >= sysctl_max_map_count)
1552		return -ENOMEM;
1553
1554	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1555	if (!region)
1556		return -ENOMEM;
1557
1558	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1559	if (!new) {
1560		kmem_cache_free(vm_region_jar, region);
1561		return -ENOMEM;
1562	}
1563
1564	/* most fields are the same, copy all, and then fixup */
1565	*new = *vma;
1566	*region = *vma->vm_region;
1567	new->vm_region = region;
1568
1569	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1570
1571	if (new_below) {
1572		region->vm_top = region->vm_end = new->vm_end = addr;
1573	} else {
1574		region->vm_start = new->vm_start = addr;
1575		region->vm_pgoff = new->vm_pgoff += npages;
1576	}
1577
1578	if (new->vm_ops && new->vm_ops->open)
1579		new->vm_ops->open(new);
1580
1581	delete_vma_from_mm(vma);
1582	down_write(&nommu_region_sem);
1583	delete_nommu_region(vma->vm_region);
1584	if (new_below) {
1585		vma->vm_region->vm_start = vma->vm_start = addr;
1586		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1587	} else {
1588		vma->vm_region->vm_end = vma->vm_end = addr;
1589		vma->vm_region->vm_top = addr;
1590	}
1591	add_nommu_region(vma->vm_region);
1592	add_nommu_region(new->vm_region);
1593	up_write(&nommu_region_sem);
1594	add_vma_to_mm(mm, vma);
1595	add_vma_to_mm(mm, new);
1596	return 0;
1597}
1598
1599/*
1600 * shrink a VMA by removing the specified chunk from either the beginning or
1601 * the end
1602 */
1603static int shrink_vma(struct mm_struct *mm,
1604		      struct vm_area_struct *vma,
1605		      unsigned long from, unsigned long to)
1606{
1607	struct vm_region *region;
1608
1609	kenter("");
1610
1611	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1612	 * and list */
1613	delete_vma_from_mm(vma);
1614	if (from > vma->vm_start)
1615		vma->vm_end = from;
1616	else
1617		vma->vm_start = to;
1618	add_vma_to_mm(mm, vma);
1619
1620	/* cut the backing region down to size */
1621	region = vma->vm_region;
1622	BUG_ON(region->vm_usage != 1);
1623
1624	down_write(&nommu_region_sem);
1625	delete_nommu_region(region);
1626	if (from > region->vm_start) {
1627		to = region->vm_top;
1628		region->vm_top = region->vm_end = from;
1629	} else {
1630		region->vm_start = to;
1631	}
1632	add_nommu_region(region);
1633	up_write(&nommu_region_sem);
1634
1635	free_page_series(from, to);
1636	return 0;
1637}
1638
1639/*
1640 * release a mapping
1641 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1642 *   VMA, though it need not cover the whole VMA
1643 */
1644int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1645{
1646	struct vm_area_struct *vma;
1647	struct rb_node *rb;
1648	unsigned long end = start + len;
1649	int ret;
1650
1651	kenter(",%lx,%zx", start, len);
1652
1653	if (len == 0)
1654		return -EINVAL;
1655
1656	/* find the first potentially overlapping VMA */
1657	vma = find_vma(mm, start);
1658	if (!vma) {
1659		static int limit = 0;
1660		if (limit < 5) {
1661			printk(KERN_WARNING
1662			       "munmap of memory not mmapped by process %d"
1663			       " (%s): 0x%lx-0x%lx\n",
1664			       current->pid, current->comm,
1665			       start, start + len - 1);
1666			limit++;
1667		}
1668		return -EINVAL;
1669	}
1670
1671	/* we're allowed to split an anonymous VMA but not a file-backed one */
1672	if (vma->vm_file) {
1673		do {
1674			if (start > vma->vm_start) {
1675				kleave(" = -EINVAL [miss]");
1676				return -EINVAL;
1677			}
1678			if (end == vma->vm_end)
1679				goto erase_whole_vma;
1680			rb = rb_next(&vma->vm_rb);
1681			vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1682		} while (rb);
1683		kleave(" = -EINVAL [split file]");
1684		return -EINVAL;
1685	} else {
1686		/* the chunk must be a subset of the VMA found */
1687		if (start == vma->vm_start && end == vma->vm_end)
1688			goto erase_whole_vma;
1689		if (start < vma->vm_start || end > vma->vm_end) {
1690			kleave(" = -EINVAL [superset]");
1691			return -EINVAL;
1692		}
1693		if (start & ~PAGE_MASK) {
1694			kleave(" = -EINVAL [unaligned start]");
1695			return -EINVAL;
1696		}
1697		if (end != vma->vm_end && end & ~PAGE_MASK) {
1698			kleave(" = -EINVAL [unaligned split]");
1699			return -EINVAL;
1700		}
1701		if (start != vma->vm_start && end != vma->vm_end) {
1702			ret = split_vma(mm, vma, start, 1);
1703			if (ret < 0) {
1704				kleave(" = %d [split]", ret);
1705				return ret;
1706			}
1707		}
1708		return shrink_vma(mm, vma, start, end);
1709	}
1710
1711erase_whole_vma:
1712	delete_vma_from_mm(vma);
1713	delete_vma(mm, vma);
1714	kleave(" = 0");
1715	return 0;
1716}
1717EXPORT_SYMBOL(do_munmap);
1718
1719SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1720{
1721	int ret;
1722	struct mm_struct *mm = current->mm;
1723
1724	down_write(&mm->mmap_sem);
1725	ret = do_munmap(mm, addr, len);
1726	up_write(&mm->mmap_sem);
1727	return ret;
1728}
1729
1730/*
1731 * release all the mappings made in a process's VM space
1732 */
1733void exit_mmap(struct mm_struct *mm)
1734{
1735	struct vm_area_struct *vma;
1736
1737	if (!mm)
1738		return;
1739
1740	kenter("");
1741
1742	mm->total_vm = 0;
1743
1744	while ((vma = mm->mmap)) {
1745		mm->mmap = vma->vm_next;
1746		delete_vma_from_mm(vma);
1747		delete_vma(mm, vma);
1748		cond_resched();
1749	}
1750
1751	kleave("");
1752}
1753
1754unsigned long do_brk(unsigned long addr, unsigned long len)
1755{
1756	return -ENOMEM;
1757}
1758
1759/*
1760 * expand (or shrink) an existing mapping, potentially moving it at the same
1761 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1762 *
1763 * under NOMMU conditions, we only permit changing a mapping's size, and only
1764 * as long as it stays within the region allocated by do_mmap_private() and the
1765 * block is not shareable
1766 *
1767 * MREMAP_FIXED is not supported under NOMMU conditions
1768 */
1769unsigned long do_mremap(unsigned long addr,
1770			unsigned long old_len, unsigned long new_len,
1771			unsigned long flags, unsigned long new_addr)
1772{
1773	struct vm_area_struct *vma;
1774
1775	/* insanity checks first */
1776	if (old_len == 0 || new_len == 0)
1777		return (unsigned long) -EINVAL;
1778
1779	if (addr & ~PAGE_MASK)
1780		return -EINVAL;
1781
1782	if (flags & MREMAP_FIXED && new_addr != addr)
1783		return (unsigned long) -EINVAL;
1784
1785	vma = find_vma_exact(current->mm, addr, old_len);
1786	if (!vma)
1787		return (unsigned long) -EINVAL;
1788
1789	if (vma->vm_end != vma->vm_start + old_len)
1790		return (unsigned long) -EFAULT;
1791
1792	if (vma->vm_flags & VM_MAYSHARE)
1793		return (unsigned long) -EPERM;
1794
1795	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1796		return (unsigned long) -ENOMEM;
1797
1798	/* all checks complete - do it */
1799	vma->vm_end = vma->vm_start + new_len;
1800	return vma->vm_start;
1801}
1802EXPORT_SYMBOL(do_mremap);
1803
1804SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1805		unsigned long, new_len, unsigned long, flags,
1806		unsigned long, new_addr)
1807{
1808	unsigned long ret;
1809
1810	down_write(&current->mm->mmap_sem);
1811	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1812	up_write(&current->mm->mmap_sem);
1813	return ret;
1814}
1815
1816struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1817			unsigned int foll_flags)
1818{
1819	return NULL;
1820}
1821
1822int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1823		unsigned long to, unsigned long size, pgprot_t prot)
1824{
1825	vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1826	return 0;
1827}
1828EXPORT_SYMBOL(remap_pfn_range);
1829
1830int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1831			unsigned long pgoff)
1832{
1833	unsigned int size = vma->vm_end - vma->vm_start;
1834
1835	if (!(vma->vm_flags & VM_USERMAP))
1836		return -EINVAL;
1837
1838	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1839	vma->vm_end = vma->vm_start + size;
1840
1841	return 0;
1842}
1843EXPORT_SYMBOL(remap_vmalloc_range);
1844
1845unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1846	unsigned long len, unsigned long pgoff, unsigned long flags)
1847{
1848	return -ENOMEM;
1849}
1850
1851void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1852{
1853}
1854
1855void unmap_mapping_range(struct address_space *mapping,
1856			 loff_t const holebegin, loff_t const holelen,
1857			 int even_cows)
1858{
1859}
1860EXPORT_SYMBOL(unmap_mapping_range);
1861
1862/*
1863 * Check that a process has enough memory to allocate a new virtual
1864 * mapping. 0 means there is enough memory for the allocation to
1865 * succeed and -ENOMEM implies there is not.
1866 *
1867 * We currently support three overcommit policies, which are set via the
1868 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1869 *
1870 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1871 * Additional code 2002 Jul 20 by Robert Love.
1872 *
1873 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1874 *
1875 * Note this is a helper function intended to be used by LSMs which
1876 * wish to use this logic.
1877 */
1878int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1879{
1880	unsigned long free, allowed;
1881
1882	vm_acct_memory(pages);
1883
1884	/*
1885	 * Sometimes we want to use more memory than we have
1886	 */
1887	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1888		return 0;
1889
1890	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1891		unsigned long n;
1892
1893		free = global_page_state(NR_FILE_PAGES);
1894		free += nr_swap_pages;
1895
1896		/*
1897		 * Any slabs which are created with the
1898		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1899		 * which are reclaimable, under pressure.  The dentry
1900		 * cache and most inode caches should fall into this
1901		 */
1902		free += global_page_state(NR_SLAB_RECLAIMABLE);
1903
1904		/*
1905		 * Leave the last 3% for root
1906		 */
1907		if (!cap_sys_admin)
1908			free -= free / 32;
1909
1910		if (free > pages)
1911			return 0;
1912
1913		/*
1914		 * nr_free_pages() is very expensive on large systems,
1915		 * only call if we're about to fail.
1916		 */
1917		n = nr_free_pages();
1918
1919		/*
1920		 * Leave reserved pages. The pages are not for anonymous pages.
1921		 */
1922		if (n <= totalreserve_pages)
1923			goto error;
1924		else
1925			n -= totalreserve_pages;
1926
1927		/*
1928		 * Leave the last 3% for root
1929		 */
1930		if (!cap_sys_admin)
1931			n -= n / 32;
1932		free += n;
1933
1934		if (free > pages)
1935			return 0;
1936
1937		goto error;
1938	}
1939
1940	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1941	/*
1942	 * Leave the last 3% for root
1943	 */
1944	if (!cap_sys_admin)
1945		allowed -= allowed / 32;
1946	allowed += total_swap_pages;
1947
1948	/* Don't let a single process grow too big:
1949	   leave 3% of the size of this process for other processes */
1950	if (mm)
1951		allowed -= mm->total_vm / 32;
1952
1953	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1954		return 0;
1955
1956error:
1957	vm_unacct_memory(pages);
1958
1959	return -ENOMEM;
1960}
1961
1962int in_gate_area_no_mm(unsigned long addr)
1963{
1964	return 0;
1965}
1966
1967int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1968{
1969	BUG();
1970	return 0;
1971}
1972EXPORT_SYMBOL(filemap_fault);
1973
1974static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1975		unsigned long addr, void *buf, int len, int write)
1976{
1977	struct vm_area_struct *vma;
1978
1979	down_read(&mm->mmap_sem);
1980
1981	/* the access must start within one of the target process's mappings */
1982	vma = find_vma(mm, addr);
1983	if (vma) {
1984		/* don't overrun this mapping */
1985		if (addr + len >= vma->vm_end)
1986			len = vma->vm_end - addr;
1987
1988		/* only read or write mappings where it is permitted */
1989		if (write && vma->vm_flags & VM_MAYWRITE)
1990			copy_to_user_page(vma, NULL, addr,
1991					 (void *) addr, buf, len);
1992		else if (!write && vma->vm_flags & VM_MAYREAD)
1993			copy_from_user_page(vma, NULL, addr,
1994					    buf, (void *) addr, len);
1995		else
1996			len = 0;
1997	} else {
1998		len = 0;
1999	}
2000
2001	up_read(&mm->mmap_sem);
2002
2003	return len;
2004}
2005
2006/**
2007 * @access_remote_vm - access another process' address space
2008 * @mm:		the mm_struct of the target address space
2009 * @addr:	start address to access
2010 * @buf:	source or destination buffer
2011 * @len:	number of bytes to transfer
2012 * @write:	whether the access is a write
2013 *
2014 * The caller must hold a reference on @mm.
2015 */
2016int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2017		void *buf, int len, int write)
2018{
2019	return __access_remote_vm(NULL, mm, addr, buf, len, write);
2020}
2021
2022/*
2023 * Access another process' address space.
2024 * - source/target buffer must be kernel space
2025 */
2026int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2027{
2028	struct mm_struct *mm;
2029
2030	if (addr + len < addr)
2031		return 0;
2032
2033	mm = get_task_mm(tsk);
2034	if (!mm)
2035		return 0;
2036
2037	len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2038
2039	mmput(mm);
2040	return len;
2041}
2042
2043/**
2044 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2045 * @inode: The inode to check
2046 * @size: The current filesize of the inode
2047 * @newsize: The proposed filesize of the inode
2048 *
2049 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2050 * make sure that that any outstanding VMAs aren't broken and then shrink the
2051 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2052 * automatically grant mappings that are too large.
2053 */
2054int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2055				size_t newsize)
2056{
2057	struct vm_area_struct *vma;
2058	struct prio_tree_iter iter;
2059	struct vm_region *region;
2060	pgoff_t low, high;
2061	size_t r_size, r_top;
2062
2063	low = newsize >> PAGE_SHIFT;
2064	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2065
2066	down_write(&nommu_region_sem);
2067
2068	/* search for VMAs that fall within the dead zone */
2069	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2070			      low, high) {
2071		/* found one - only interested if it's shared out of the page
2072		 * cache */
2073		if (vma->vm_flags & VM_SHARED) {
2074			up_write(&nommu_region_sem);
2075			return -ETXTBSY; /* not quite true, but near enough */
2076		}
2077	}
2078
2079	/* reduce any regions that overlap the dead zone - if in existence,
2080	 * these will be pointed to by VMAs that don't overlap the dead zone
2081	 *
2082	 * we don't check for any regions that start beyond the EOF as there
2083	 * shouldn't be any
2084	 */
2085	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2086			      0, ULONG_MAX) {
2087		if (!(vma->vm_flags & VM_SHARED))
2088			continue;
2089
2090		region = vma->vm_region;
2091		r_size = region->vm_top - region->vm_start;
2092		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2093
2094		if (r_top > newsize) {
2095			region->vm_top -= r_top - newsize;
2096			if (region->vm_end > region->vm_top)
2097				region->vm_end = region->vm_top;
2098		}
2099	}
2100
2101	up_write(&nommu_region_sem);
2102	return 0;
2103}
2104