nommu.c revision 8c9ed899b44c19e81859fbb0e9d659fe2f8630fc
1/*
2 *  linux/mm/nommu.c
3 *
4 *  Replacement code for mm functions to support CPU's that don't
5 *  have any form of memory management unit (thus no virtual memory).
6 *
7 *  See Documentation/nommu-mmap.txt
8 *
9 *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13 *  Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14 */
15
16#include <linux/module.h>
17#include <linux/mm.h>
18#include <linux/mman.h>
19#include <linux/swap.h>
20#include <linux/file.h>
21#include <linux/highmem.h>
22#include <linux/pagemap.h>
23#include <linux/slab.h>
24#include <linux/vmalloc.h>
25#include <linux/tracehook.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
28#include <linux/mount.h>
29#include <linux/personality.h>
30#include <linux/security.h>
31#include <linux/syscalls.h>
32
33#include <asm/uaccess.h>
34#include <asm/tlb.h>
35#include <asm/tlbflush.h>
36#include "internal.h"
37
38static inline __attribute__((format(printf, 1, 2)))
39void no_printk(const char *fmt, ...)
40{
41}
42
43#if 0
44#define kenter(FMT, ...) \
45	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
46#define kleave(FMT, ...) \
47	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
48#define kdebug(FMT, ...) \
49	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
50#else
51#define kenter(FMT, ...) \
52	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
53#define kleave(FMT, ...) \
54	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
55#define kdebug(FMT, ...) \
56	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
57#endif
58
59#include "internal.h"
60
61void *high_memory;
62struct page *mem_map;
63unsigned long max_mapnr;
64unsigned long num_physpages;
65struct percpu_counter vm_committed_as;
66int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67int sysctl_overcommit_ratio = 50; /* default is 50% */
68int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
69int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
70int heap_stack_gap = 0;
71
72atomic_long_t mmap_pages_allocated;
73
74EXPORT_SYMBOL(mem_map);
75EXPORT_SYMBOL(num_physpages);
76
77/* list of mapped, potentially shareable regions */
78static struct kmem_cache *vm_region_jar;
79struct rb_root nommu_region_tree = RB_ROOT;
80DECLARE_RWSEM(nommu_region_sem);
81
82struct vm_operations_struct generic_file_vm_ops = {
83};
84
85/*
86 * Handle all mappings that got truncated by a "truncate()"
87 * system call.
88 *
89 * NOTE! We have to be ready to update the memory sharing
90 * between the file and the memory map for a potential last
91 * incomplete page.  Ugly, but necessary.
92 */
93int vmtruncate(struct inode *inode, loff_t offset)
94{
95	struct address_space *mapping = inode->i_mapping;
96	unsigned long limit;
97
98	if (inode->i_size < offset)
99		goto do_expand;
100	i_size_write(inode, offset);
101
102	truncate_inode_pages(mapping, offset);
103	goto out_truncate;
104
105do_expand:
106	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
107	if (limit != RLIM_INFINITY && offset > limit)
108		goto out_sig;
109	if (offset > inode->i_sb->s_maxbytes)
110		goto out;
111	i_size_write(inode, offset);
112
113out_truncate:
114	if (inode->i_op->truncate)
115		inode->i_op->truncate(inode);
116	return 0;
117out_sig:
118	send_sig(SIGXFSZ, current, 0);
119out:
120	return -EFBIG;
121}
122
123EXPORT_SYMBOL(vmtruncate);
124
125/*
126 * Return the total memory allocated for this pointer, not
127 * just what the caller asked for.
128 *
129 * Doesn't have to be accurate, i.e. may have races.
130 */
131unsigned int kobjsize(const void *objp)
132{
133	struct page *page;
134
135	/*
136	 * If the object we have should not have ksize performed on it,
137	 * return size of 0
138	 */
139	if (!objp || !virt_addr_valid(objp))
140		return 0;
141
142	page = virt_to_head_page(objp);
143
144	/*
145	 * If the allocator sets PageSlab, we know the pointer came from
146	 * kmalloc().
147	 */
148	if (PageSlab(page))
149		return ksize(objp);
150
151	/*
152	 * If it's not a compound page, see if we have a matching VMA
153	 * region. This test is intentionally done in reverse order,
154	 * so if there's no VMA, we still fall through and hand back
155	 * PAGE_SIZE for 0-order pages.
156	 */
157	if (!PageCompound(page)) {
158		struct vm_area_struct *vma;
159
160		vma = find_vma(current->mm, (unsigned long)objp);
161		if (vma)
162			return vma->vm_end - vma->vm_start;
163	}
164
165	/*
166	 * The ksize() function is only guaranteed to work for pointers
167	 * returned by kmalloc(). So handle arbitrary pointers here.
168	 */
169	return PAGE_SIZE << compound_order(page);
170}
171
172int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
173		     unsigned long start, int len, int flags,
174		struct page **pages, struct vm_area_struct **vmas)
175{
176	struct vm_area_struct *vma;
177	unsigned long vm_flags;
178	int i;
179	int write = !!(flags & GUP_FLAGS_WRITE);
180	int force = !!(flags & GUP_FLAGS_FORCE);
181	int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
182
183	/* calculate required read or write permissions.
184	 * - if 'force' is set, we only require the "MAY" flags.
185	 */
186	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
187	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
188
189	for (i = 0; i < len; i++) {
190		vma = find_vma(mm, start);
191		if (!vma)
192			goto finish_or_fault;
193
194		/* protect what we can, including chardevs */
195		if (vma->vm_flags & (VM_IO | VM_PFNMAP) ||
196		    (!ignore && !(vm_flags & vma->vm_flags)))
197			goto finish_or_fault;
198
199		if (pages) {
200			pages[i] = virt_to_page(start);
201			if (pages[i])
202				page_cache_get(pages[i]);
203		}
204		if (vmas)
205			vmas[i] = vma;
206		start += PAGE_SIZE;
207	}
208
209	return i;
210
211finish_or_fault:
212	return i ? : -EFAULT;
213}
214
215
216/*
217 * get a list of pages in an address range belonging to the specified process
218 * and indicate the VMA that covers each page
219 * - this is potentially dodgy as we may end incrementing the page count of a
220 *   slab page or a secondary page from a compound page
221 * - don't permit access to VMAs that don't support it, such as I/O mappings
222 */
223int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
224	unsigned long start, int len, int write, int force,
225	struct page **pages, struct vm_area_struct **vmas)
226{
227	int flags = 0;
228
229	if (write)
230		flags |= GUP_FLAGS_WRITE;
231	if (force)
232		flags |= GUP_FLAGS_FORCE;
233
234	return __get_user_pages(tsk, mm,
235				start, len, flags,
236				pages, vmas);
237}
238EXPORT_SYMBOL(get_user_pages);
239
240DEFINE_RWLOCK(vmlist_lock);
241struct vm_struct *vmlist;
242
243void vfree(const void *addr)
244{
245	kfree(addr);
246}
247EXPORT_SYMBOL(vfree);
248
249void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
250{
251	/*
252	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
253	 * returns only a logical address.
254	 */
255	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
256}
257EXPORT_SYMBOL(__vmalloc);
258
259void *vmalloc_user(unsigned long size)
260{
261	void *ret;
262
263	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
264			PAGE_KERNEL);
265	if (ret) {
266		struct vm_area_struct *vma;
267
268		down_write(&current->mm->mmap_sem);
269		vma = find_vma(current->mm, (unsigned long)ret);
270		if (vma)
271			vma->vm_flags |= VM_USERMAP;
272		up_write(&current->mm->mmap_sem);
273	}
274
275	return ret;
276}
277EXPORT_SYMBOL(vmalloc_user);
278
279struct page *vmalloc_to_page(const void *addr)
280{
281	return virt_to_page(addr);
282}
283EXPORT_SYMBOL(vmalloc_to_page);
284
285unsigned long vmalloc_to_pfn(const void *addr)
286{
287	return page_to_pfn(virt_to_page(addr));
288}
289EXPORT_SYMBOL(vmalloc_to_pfn);
290
291long vread(char *buf, char *addr, unsigned long count)
292{
293	memcpy(buf, addr, count);
294	return count;
295}
296
297long vwrite(char *buf, char *addr, unsigned long count)
298{
299	/* Don't allow overflow */
300	if ((unsigned long) addr + count < count)
301		count = -(unsigned long) addr;
302
303	memcpy(addr, buf, count);
304	return(count);
305}
306
307/*
308 *	vmalloc  -  allocate virtually continguos memory
309 *
310 *	@size:		allocation size
311 *
312 *	Allocate enough pages to cover @size from the page level
313 *	allocator and map them into continguos kernel virtual space.
314 *
315 *	For tight control over page level allocator and protection flags
316 *	use __vmalloc() instead.
317 */
318void *vmalloc(unsigned long size)
319{
320       return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
321}
322EXPORT_SYMBOL(vmalloc);
323
324void *vmalloc_node(unsigned long size, int node)
325{
326	return vmalloc(size);
327}
328EXPORT_SYMBOL(vmalloc_node);
329
330#ifndef PAGE_KERNEL_EXEC
331# define PAGE_KERNEL_EXEC PAGE_KERNEL
332#endif
333
334/**
335 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
336 *	@size:		allocation size
337 *
338 *	Kernel-internal function to allocate enough pages to cover @size
339 *	the page level allocator and map them into contiguous and
340 *	executable kernel virtual space.
341 *
342 *	For tight control over page level allocator and protection flags
343 *	use __vmalloc() instead.
344 */
345
346void *vmalloc_exec(unsigned long size)
347{
348	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
349}
350
351/**
352 * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
353 *	@size:		allocation size
354 *
355 *	Allocate enough 32bit PA addressable pages to cover @size from the
356 *	page level allocator and map them into continguos kernel virtual space.
357 */
358void *vmalloc_32(unsigned long size)
359{
360	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
361}
362EXPORT_SYMBOL(vmalloc_32);
363
364/**
365 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
366 *	@size:		allocation size
367 *
368 * The resulting memory area is 32bit addressable and zeroed so it can be
369 * mapped to userspace without leaking data.
370 *
371 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
372 * remap_vmalloc_range() are permissible.
373 */
374void *vmalloc_32_user(unsigned long size)
375{
376	/*
377	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
378	 * but for now this can simply use vmalloc_user() directly.
379	 */
380	return vmalloc_user(size);
381}
382EXPORT_SYMBOL(vmalloc_32_user);
383
384void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
385{
386	BUG();
387	return NULL;
388}
389EXPORT_SYMBOL(vmap);
390
391void vunmap(const void *addr)
392{
393	BUG();
394}
395EXPORT_SYMBOL(vunmap);
396
397void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
398{
399	BUG();
400	return NULL;
401}
402EXPORT_SYMBOL(vm_map_ram);
403
404void vm_unmap_ram(const void *mem, unsigned int count)
405{
406	BUG();
407}
408EXPORT_SYMBOL(vm_unmap_ram);
409
410void vm_unmap_aliases(void)
411{
412}
413EXPORT_SYMBOL_GPL(vm_unmap_aliases);
414
415/*
416 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
417 * have one.
418 */
419void  __attribute__((weak)) vmalloc_sync_all(void)
420{
421}
422
423int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
424		   struct page *page)
425{
426	return -EINVAL;
427}
428EXPORT_SYMBOL(vm_insert_page);
429
430/*
431 *  sys_brk() for the most part doesn't need the global kernel
432 *  lock, except when an application is doing something nasty
433 *  like trying to un-brk an area that has already been mapped
434 *  to a regular file.  in this case, the unmapping will need
435 *  to invoke file system routines that need the global lock.
436 */
437SYSCALL_DEFINE1(brk, unsigned long, brk)
438{
439	struct mm_struct *mm = current->mm;
440
441	if (brk < mm->start_brk || brk > mm->context.end_brk)
442		return mm->brk;
443
444	if (mm->brk == brk)
445		return mm->brk;
446
447	/*
448	 * Always allow shrinking brk
449	 */
450	if (brk <= mm->brk) {
451		mm->brk = brk;
452		return brk;
453	}
454
455	/*
456	 * Ok, looks good - let it rip.
457	 */
458	return mm->brk = brk;
459}
460
461/*
462 * initialise the VMA and region record slabs
463 */
464void __init mmap_init(void)
465{
466	int ret;
467
468	ret = percpu_counter_init(&vm_committed_as, 0);
469	VM_BUG_ON(ret);
470	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
471}
472
473/*
474 * validate the region tree
475 * - the caller must hold the region lock
476 */
477#ifdef CONFIG_DEBUG_NOMMU_REGIONS
478static noinline void validate_nommu_regions(void)
479{
480	struct vm_region *region, *last;
481	struct rb_node *p, *lastp;
482
483	lastp = rb_first(&nommu_region_tree);
484	if (!lastp)
485		return;
486
487	last = rb_entry(lastp, struct vm_region, vm_rb);
488	BUG_ON(unlikely(last->vm_end <= last->vm_start));
489	BUG_ON(unlikely(last->vm_top < last->vm_end));
490
491	while ((p = rb_next(lastp))) {
492		region = rb_entry(p, struct vm_region, vm_rb);
493		last = rb_entry(lastp, struct vm_region, vm_rb);
494
495		BUG_ON(unlikely(region->vm_end <= region->vm_start));
496		BUG_ON(unlikely(region->vm_top < region->vm_end));
497		BUG_ON(unlikely(region->vm_start < last->vm_top));
498
499		lastp = p;
500	}
501}
502#else
503static void validate_nommu_regions(void)
504{
505}
506#endif
507
508/*
509 * add a region into the global tree
510 */
511static void add_nommu_region(struct vm_region *region)
512{
513	struct vm_region *pregion;
514	struct rb_node **p, *parent;
515
516	validate_nommu_regions();
517
518	parent = NULL;
519	p = &nommu_region_tree.rb_node;
520	while (*p) {
521		parent = *p;
522		pregion = rb_entry(parent, struct vm_region, vm_rb);
523		if (region->vm_start < pregion->vm_start)
524			p = &(*p)->rb_left;
525		else if (region->vm_start > pregion->vm_start)
526			p = &(*p)->rb_right;
527		else if (pregion == region)
528			return;
529		else
530			BUG();
531	}
532
533	rb_link_node(&region->vm_rb, parent, p);
534	rb_insert_color(&region->vm_rb, &nommu_region_tree);
535
536	validate_nommu_regions();
537}
538
539/*
540 * delete a region from the global tree
541 */
542static void delete_nommu_region(struct vm_region *region)
543{
544	BUG_ON(!nommu_region_tree.rb_node);
545
546	validate_nommu_regions();
547	rb_erase(&region->vm_rb, &nommu_region_tree);
548	validate_nommu_regions();
549}
550
551/*
552 * free a contiguous series of pages
553 */
554static void free_page_series(unsigned long from, unsigned long to)
555{
556	for (; from < to; from += PAGE_SIZE) {
557		struct page *page = virt_to_page(from);
558
559		kdebug("- free %lx", from);
560		atomic_long_dec(&mmap_pages_allocated);
561		if (page_count(page) != 1)
562			kdebug("free page %p: refcount not one: %d",
563			       page, page_count(page));
564		put_page(page);
565	}
566}
567
568/*
569 * release a reference to a region
570 * - the caller must hold the region semaphore for writing, which this releases
571 * - the region may not have been added to the tree yet, in which case vm_top
572 *   will equal vm_start
573 */
574static void __put_nommu_region(struct vm_region *region)
575	__releases(nommu_region_sem)
576{
577	kenter("%p{%d}", region, atomic_read(&region->vm_usage));
578
579	BUG_ON(!nommu_region_tree.rb_node);
580
581	if (atomic_dec_and_test(&region->vm_usage)) {
582		if (region->vm_top > region->vm_start)
583			delete_nommu_region(region);
584		up_write(&nommu_region_sem);
585
586		if (region->vm_file)
587			fput(region->vm_file);
588
589		/* IO memory and memory shared directly out of the pagecache
590		 * from ramfs/tmpfs mustn't be released here */
591		if (region->vm_flags & VM_MAPPED_COPY) {
592			kdebug("free series");
593			free_page_series(region->vm_start, region->vm_top);
594		}
595		kmem_cache_free(vm_region_jar, region);
596	} else {
597		up_write(&nommu_region_sem);
598	}
599}
600
601/*
602 * release a reference to a region
603 */
604static void put_nommu_region(struct vm_region *region)
605{
606	down_write(&nommu_region_sem);
607	__put_nommu_region(region);
608}
609
610/*
611 * add a VMA into a process's mm_struct in the appropriate place in the list
612 * and tree and add to the address space's page tree also if not an anonymous
613 * page
614 * - should be called with mm->mmap_sem held writelocked
615 */
616static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
617{
618	struct vm_area_struct *pvma, **pp;
619	struct address_space *mapping;
620	struct rb_node **p, *parent;
621
622	kenter(",%p", vma);
623
624	BUG_ON(!vma->vm_region);
625
626	mm->map_count++;
627	vma->vm_mm = mm;
628
629	/* add the VMA to the mapping */
630	if (vma->vm_file) {
631		mapping = vma->vm_file->f_mapping;
632
633		flush_dcache_mmap_lock(mapping);
634		vma_prio_tree_insert(vma, &mapping->i_mmap);
635		flush_dcache_mmap_unlock(mapping);
636	}
637
638	/* add the VMA to the tree */
639	parent = NULL;
640	p = &mm->mm_rb.rb_node;
641	while (*p) {
642		parent = *p;
643		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
644
645		/* sort by: start addr, end addr, VMA struct addr in that order
646		 * (the latter is necessary as we may get identical VMAs) */
647		if (vma->vm_start < pvma->vm_start)
648			p = &(*p)->rb_left;
649		else if (vma->vm_start > pvma->vm_start)
650			p = &(*p)->rb_right;
651		else if (vma->vm_end < pvma->vm_end)
652			p = &(*p)->rb_left;
653		else if (vma->vm_end > pvma->vm_end)
654			p = &(*p)->rb_right;
655		else if (vma < pvma)
656			p = &(*p)->rb_left;
657		else if (vma > pvma)
658			p = &(*p)->rb_right;
659		else
660			BUG();
661	}
662
663	rb_link_node(&vma->vm_rb, parent, p);
664	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
665
666	/* add VMA to the VMA list also */
667	for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
668		if (pvma->vm_start > vma->vm_start)
669			break;
670		if (pvma->vm_start < vma->vm_start)
671			continue;
672		if (pvma->vm_end < vma->vm_end)
673			break;
674	}
675
676	vma->vm_next = *pp;
677	*pp = vma;
678}
679
680/*
681 * delete a VMA from its owning mm_struct and address space
682 */
683static void delete_vma_from_mm(struct vm_area_struct *vma)
684{
685	struct vm_area_struct **pp;
686	struct address_space *mapping;
687	struct mm_struct *mm = vma->vm_mm;
688
689	kenter("%p", vma);
690
691	mm->map_count--;
692	if (mm->mmap_cache == vma)
693		mm->mmap_cache = NULL;
694
695	/* remove the VMA from the mapping */
696	if (vma->vm_file) {
697		mapping = vma->vm_file->f_mapping;
698
699		flush_dcache_mmap_lock(mapping);
700		vma_prio_tree_remove(vma, &mapping->i_mmap);
701		flush_dcache_mmap_unlock(mapping);
702	}
703
704	/* remove from the MM's tree and list */
705	rb_erase(&vma->vm_rb, &mm->mm_rb);
706	for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
707		if (*pp == vma) {
708			*pp = vma->vm_next;
709			break;
710		}
711	}
712
713	vma->vm_mm = NULL;
714}
715
716/*
717 * destroy a VMA record
718 */
719static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
720{
721	kenter("%p", vma);
722	if (vma->vm_ops && vma->vm_ops->close)
723		vma->vm_ops->close(vma);
724	if (vma->vm_file) {
725		fput(vma->vm_file);
726		if (vma->vm_flags & VM_EXECUTABLE)
727			removed_exe_file_vma(mm);
728	}
729	put_nommu_region(vma->vm_region);
730	kmem_cache_free(vm_area_cachep, vma);
731}
732
733/*
734 * look up the first VMA in which addr resides, NULL if none
735 * - should be called with mm->mmap_sem at least held readlocked
736 */
737struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
738{
739	struct vm_area_struct *vma;
740	struct rb_node *n = mm->mm_rb.rb_node;
741
742	/* check the cache first */
743	vma = mm->mmap_cache;
744	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
745		return vma;
746
747	/* trawl the tree (there may be multiple mappings in which addr
748	 * resides) */
749	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
750		vma = rb_entry(n, struct vm_area_struct, vm_rb);
751		if (vma->vm_start > addr)
752			return NULL;
753		if (vma->vm_end > addr) {
754			mm->mmap_cache = vma;
755			return vma;
756		}
757	}
758
759	return NULL;
760}
761EXPORT_SYMBOL(find_vma);
762
763/*
764 * find a VMA
765 * - we don't extend stack VMAs under NOMMU conditions
766 */
767struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
768{
769	return find_vma(mm, addr);
770}
771
772/*
773 * expand a stack to a given address
774 * - not supported under NOMMU conditions
775 */
776int expand_stack(struct vm_area_struct *vma, unsigned long address)
777{
778	return -ENOMEM;
779}
780
781/*
782 * look up the first VMA exactly that exactly matches addr
783 * - should be called with mm->mmap_sem at least held readlocked
784 */
785static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
786					     unsigned long addr,
787					     unsigned long len)
788{
789	struct vm_area_struct *vma;
790	struct rb_node *n = mm->mm_rb.rb_node;
791	unsigned long end = addr + len;
792
793	/* check the cache first */
794	vma = mm->mmap_cache;
795	if (vma && vma->vm_start == addr && vma->vm_end == end)
796		return vma;
797
798	/* trawl the tree (there may be multiple mappings in which addr
799	 * resides) */
800	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
801		vma = rb_entry(n, struct vm_area_struct, vm_rb);
802		if (vma->vm_start < addr)
803			continue;
804		if (vma->vm_start > addr)
805			return NULL;
806		if (vma->vm_end == end) {
807			mm->mmap_cache = vma;
808			return vma;
809		}
810	}
811
812	return NULL;
813}
814
815/*
816 * determine whether a mapping should be permitted and, if so, what sort of
817 * mapping we're capable of supporting
818 */
819static int validate_mmap_request(struct file *file,
820				 unsigned long addr,
821				 unsigned long len,
822				 unsigned long prot,
823				 unsigned long flags,
824				 unsigned long pgoff,
825				 unsigned long *_capabilities)
826{
827	unsigned long capabilities, rlen;
828	unsigned long reqprot = prot;
829	int ret;
830
831	/* do the simple checks first */
832	if (flags & MAP_FIXED || addr) {
833		printk(KERN_DEBUG
834		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
835		       current->pid);
836		return -EINVAL;
837	}
838
839	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
840	    (flags & MAP_TYPE) != MAP_SHARED)
841		return -EINVAL;
842
843	if (!len)
844		return -EINVAL;
845
846	/* Careful about overflows.. */
847	rlen = PAGE_ALIGN(len);
848	if (!rlen || rlen > TASK_SIZE)
849		return -ENOMEM;
850
851	/* offset overflow? */
852	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
853		return -EOVERFLOW;
854
855	if (file) {
856		/* validate file mapping requests */
857		struct address_space *mapping;
858
859		/* files must support mmap */
860		if (!file->f_op || !file->f_op->mmap)
861			return -ENODEV;
862
863		/* work out if what we've got could possibly be shared
864		 * - we support chardevs that provide their own "memory"
865		 * - we support files/blockdevs that are memory backed
866		 */
867		mapping = file->f_mapping;
868		if (!mapping)
869			mapping = file->f_path.dentry->d_inode->i_mapping;
870
871		capabilities = 0;
872		if (mapping && mapping->backing_dev_info)
873			capabilities = mapping->backing_dev_info->capabilities;
874
875		if (!capabilities) {
876			/* no explicit capabilities set, so assume some
877			 * defaults */
878			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
879			case S_IFREG:
880			case S_IFBLK:
881				capabilities = BDI_CAP_MAP_COPY;
882				break;
883
884			case S_IFCHR:
885				capabilities =
886					BDI_CAP_MAP_DIRECT |
887					BDI_CAP_READ_MAP |
888					BDI_CAP_WRITE_MAP;
889				break;
890
891			default:
892				return -EINVAL;
893			}
894		}
895
896		/* eliminate any capabilities that we can't support on this
897		 * device */
898		if (!file->f_op->get_unmapped_area)
899			capabilities &= ~BDI_CAP_MAP_DIRECT;
900		if (!file->f_op->read)
901			capabilities &= ~BDI_CAP_MAP_COPY;
902
903		if (flags & MAP_SHARED) {
904			/* do checks for writing, appending and locking */
905			if ((prot & PROT_WRITE) &&
906			    !(file->f_mode & FMODE_WRITE))
907				return -EACCES;
908
909			if (IS_APPEND(file->f_path.dentry->d_inode) &&
910			    (file->f_mode & FMODE_WRITE))
911				return -EACCES;
912
913			if (locks_verify_locked(file->f_path.dentry->d_inode))
914				return -EAGAIN;
915
916			if (!(capabilities & BDI_CAP_MAP_DIRECT))
917				return -ENODEV;
918
919			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
920			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
921			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
922			    ) {
923				printk("MAP_SHARED not completely supported on !MMU\n");
924				return -EINVAL;
925			}
926
927			/* we mustn't privatise shared mappings */
928			capabilities &= ~BDI_CAP_MAP_COPY;
929		}
930		else {
931			/* we're going to read the file into private memory we
932			 * allocate */
933			if (!(capabilities & BDI_CAP_MAP_COPY))
934				return -ENODEV;
935
936			/* we don't permit a private writable mapping to be
937			 * shared with the backing device */
938			if (prot & PROT_WRITE)
939				capabilities &= ~BDI_CAP_MAP_DIRECT;
940		}
941
942		/* handle executable mappings and implied executable
943		 * mappings */
944		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
945			if (prot & PROT_EXEC)
946				return -EPERM;
947		}
948		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
949			/* handle implication of PROT_EXEC by PROT_READ */
950			if (current->personality & READ_IMPLIES_EXEC) {
951				if (capabilities & BDI_CAP_EXEC_MAP)
952					prot |= PROT_EXEC;
953			}
954		}
955		else if ((prot & PROT_READ) &&
956			 (prot & PROT_EXEC) &&
957			 !(capabilities & BDI_CAP_EXEC_MAP)
958			 ) {
959			/* backing file is not executable, try to copy */
960			capabilities &= ~BDI_CAP_MAP_DIRECT;
961		}
962	}
963	else {
964		/* anonymous mappings are always memory backed and can be
965		 * privately mapped
966		 */
967		capabilities = BDI_CAP_MAP_COPY;
968
969		/* handle PROT_EXEC implication by PROT_READ */
970		if ((prot & PROT_READ) &&
971		    (current->personality & READ_IMPLIES_EXEC))
972			prot |= PROT_EXEC;
973	}
974
975	/* allow the security API to have its say */
976	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
977	if (ret < 0)
978		return ret;
979
980	/* looks okay */
981	*_capabilities = capabilities;
982	return 0;
983}
984
985/*
986 * we've determined that we can make the mapping, now translate what we
987 * now know into VMA flags
988 */
989static unsigned long determine_vm_flags(struct file *file,
990					unsigned long prot,
991					unsigned long flags,
992					unsigned long capabilities)
993{
994	unsigned long vm_flags;
995
996	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
997	vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
998	/* vm_flags |= mm->def_flags; */
999
1000	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1001		/* attempt to share read-only copies of mapped file chunks */
1002		if (file && !(prot & PROT_WRITE))
1003			vm_flags |= VM_MAYSHARE;
1004	}
1005	else {
1006		/* overlay a shareable mapping on the backing device or inode
1007		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1008		 * romfs/cramfs */
1009		if (flags & MAP_SHARED)
1010			vm_flags |= VM_MAYSHARE | VM_SHARED;
1011		else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1012			vm_flags |= VM_MAYSHARE;
1013	}
1014
1015	/* refuse to let anyone share private mappings with this process if
1016	 * it's being traced - otherwise breakpoints set in it may interfere
1017	 * with another untraced process
1018	 */
1019	if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1020		vm_flags &= ~VM_MAYSHARE;
1021
1022	return vm_flags;
1023}
1024
1025/*
1026 * set up a shared mapping on a file (the driver or filesystem provides and
1027 * pins the storage)
1028 */
1029static int do_mmap_shared_file(struct vm_area_struct *vma)
1030{
1031	int ret;
1032
1033	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1034	if (ret == 0) {
1035		vma->vm_region->vm_top = vma->vm_region->vm_end;
1036		return ret;
1037	}
1038	if (ret != -ENOSYS)
1039		return ret;
1040
1041	/* getting an ENOSYS error indicates that direct mmap isn't
1042	 * possible (as opposed to tried but failed) so we'll fall
1043	 * through to making a private copy of the data and mapping
1044	 * that if we can */
1045	return -ENODEV;
1046}
1047
1048/*
1049 * set up a private mapping or an anonymous shared mapping
1050 */
1051static int do_mmap_private(struct vm_area_struct *vma,
1052			   struct vm_region *region,
1053			   unsigned long len)
1054{
1055	struct page *pages;
1056	unsigned long total, point, n, rlen;
1057	void *base;
1058	int ret, order;
1059
1060	/* invoke the file's mapping function so that it can keep track of
1061	 * shared mappings on devices or memory
1062	 * - VM_MAYSHARE will be set if it may attempt to share
1063	 */
1064	if (vma->vm_file) {
1065		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1066		if (ret == 0) {
1067			/* shouldn't return success if we're not sharing */
1068			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1069			vma->vm_region->vm_top = vma->vm_region->vm_end;
1070			return ret;
1071		}
1072		if (ret != -ENOSYS)
1073			return ret;
1074
1075		/* getting an ENOSYS error indicates that direct mmap isn't
1076		 * possible (as opposed to tried but failed) so we'll try to
1077		 * make a private copy of the data and map that instead */
1078	}
1079
1080	rlen = PAGE_ALIGN(len);
1081
1082	/* allocate some memory to hold the mapping
1083	 * - note that this may not return a page-aligned address if the object
1084	 *   we're allocating is smaller than a page
1085	 */
1086	order = get_order(rlen);
1087	kdebug("alloc order %d for %lx", order, len);
1088
1089	pages = alloc_pages(GFP_KERNEL, order);
1090	if (!pages)
1091		goto enomem;
1092
1093	total = 1 << order;
1094	atomic_long_add(total, &mmap_pages_allocated);
1095
1096	point = rlen >> PAGE_SHIFT;
1097
1098	/* we allocated a power-of-2 sized page set, so we may want to trim off
1099	 * the excess */
1100	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1101		while (total > point) {
1102			order = ilog2(total - point);
1103			n = 1 << order;
1104			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1105			atomic_long_sub(n, &mmap_pages_allocated);
1106			total -= n;
1107			set_page_refcounted(pages + total);
1108			__free_pages(pages + total, order);
1109		}
1110	}
1111
1112	for (point = 1; point < total; point++)
1113		set_page_refcounted(&pages[point]);
1114
1115	base = page_address(pages);
1116	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1117	region->vm_start = (unsigned long) base;
1118	region->vm_end   = region->vm_start + rlen;
1119	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1120
1121	vma->vm_start = region->vm_start;
1122	vma->vm_end   = region->vm_start + len;
1123
1124	if (vma->vm_file) {
1125		/* read the contents of a file into the copy */
1126		mm_segment_t old_fs;
1127		loff_t fpos;
1128
1129		fpos = vma->vm_pgoff;
1130		fpos <<= PAGE_SHIFT;
1131
1132		old_fs = get_fs();
1133		set_fs(KERNEL_DS);
1134		ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1135		set_fs(old_fs);
1136
1137		if (ret < 0)
1138			goto error_free;
1139
1140		/* clear the last little bit */
1141		if (ret < rlen)
1142			memset(base + ret, 0, rlen - ret);
1143
1144	} else {
1145		/* if it's an anonymous mapping, then just clear it */
1146		memset(base, 0, rlen);
1147	}
1148
1149	return 0;
1150
1151error_free:
1152	free_page_series(region->vm_start, region->vm_end);
1153	region->vm_start = vma->vm_start = 0;
1154	region->vm_end   = vma->vm_end = 0;
1155	region->vm_top   = 0;
1156	return ret;
1157
1158enomem:
1159	printk("Allocation of length %lu from process %d (%s) failed\n",
1160	       len, current->pid, current->comm);
1161	show_free_areas();
1162	return -ENOMEM;
1163}
1164
1165/*
1166 * handle mapping creation for uClinux
1167 */
1168unsigned long do_mmap_pgoff(struct file *file,
1169			    unsigned long addr,
1170			    unsigned long len,
1171			    unsigned long prot,
1172			    unsigned long flags,
1173			    unsigned long pgoff)
1174{
1175	struct vm_area_struct *vma;
1176	struct vm_region *region;
1177	struct rb_node *rb;
1178	unsigned long capabilities, vm_flags, result;
1179	int ret;
1180
1181	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1182
1183	if (!(flags & MAP_FIXED))
1184		addr = round_hint_to_min(addr);
1185
1186	/* decide whether we should attempt the mapping, and if so what sort of
1187	 * mapping */
1188	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1189				    &capabilities);
1190	if (ret < 0) {
1191		kleave(" = %d [val]", ret);
1192		return ret;
1193	}
1194
1195	/* we've determined that we can make the mapping, now translate what we
1196	 * now know into VMA flags */
1197	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1198
1199	/* we're going to need to record the mapping */
1200	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1201	if (!region)
1202		goto error_getting_region;
1203
1204	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1205	if (!vma)
1206		goto error_getting_vma;
1207
1208	atomic_set(&region->vm_usage, 1);
1209	region->vm_flags = vm_flags;
1210	region->vm_pgoff = pgoff;
1211
1212	INIT_LIST_HEAD(&vma->anon_vma_node);
1213	vma->vm_flags = vm_flags;
1214	vma->vm_pgoff = pgoff;
1215
1216	if (file) {
1217		region->vm_file = file;
1218		get_file(file);
1219		vma->vm_file = file;
1220		get_file(file);
1221		if (vm_flags & VM_EXECUTABLE) {
1222			added_exe_file_vma(current->mm);
1223			vma->vm_mm = current->mm;
1224		}
1225	}
1226
1227	down_write(&nommu_region_sem);
1228
1229	/* if we want to share, we need to check for regions created by other
1230	 * mmap() calls that overlap with our proposed mapping
1231	 * - we can only share with a superset match on most regular files
1232	 * - shared mappings on character devices and memory backed files are
1233	 *   permitted to overlap inexactly as far as we are concerned for in
1234	 *   these cases, sharing is handled in the driver or filesystem rather
1235	 *   than here
1236	 */
1237	if (vm_flags & VM_MAYSHARE) {
1238		struct vm_region *pregion;
1239		unsigned long pglen, rpglen, pgend, rpgend, start;
1240
1241		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1242		pgend = pgoff + pglen;
1243
1244		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1245			pregion = rb_entry(rb, struct vm_region, vm_rb);
1246
1247			if (!(pregion->vm_flags & VM_MAYSHARE))
1248				continue;
1249
1250			/* search for overlapping mappings on the same file */
1251			if (pregion->vm_file->f_path.dentry->d_inode !=
1252			    file->f_path.dentry->d_inode)
1253				continue;
1254
1255			if (pregion->vm_pgoff >= pgend)
1256				continue;
1257
1258			rpglen = pregion->vm_end - pregion->vm_start;
1259			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1260			rpgend = pregion->vm_pgoff + rpglen;
1261			if (pgoff >= rpgend)
1262				continue;
1263
1264			/* handle inexactly overlapping matches between
1265			 * mappings */
1266			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1267			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1268				/* new mapping is not a subset of the region */
1269				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1270					goto sharing_violation;
1271				continue;
1272			}
1273
1274			/* we've found a region we can share */
1275			atomic_inc(&pregion->vm_usage);
1276			vma->vm_region = pregion;
1277			start = pregion->vm_start;
1278			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1279			vma->vm_start = start;
1280			vma->vm_end = start + len;
1281
1282			if (pregion->vm_flags & VM_MAPPED_COPY) {
1283				kdebug("share copy");
1284				vma->vm_flags |= VM_MAPPED_COPY;
1285			} else {
1286				kdebug("share mmap");
1287				ret = do_mmap_shared_file(vma);
1288				if (ret < 0) {
1289					vma->vm_region = NULL;
1290					vma->vm_start = 0;
1291					vma->vm_end = 0;
1292					atomic_dec(&pregion->vm_usage);
1293					pregion = NULL;
1294					goto error_just_free;
1295				}
1296			}
1297			fput(region->vm_file);
1298			kmem_cache_free(vm_region_jar, region);
1299			region = pregion;
1300			result = start;
1301			goto share;
1302		}
1303
1304		/* obtain the address at which to make a shared mapping
1305		 * - this is the hook for quasi-memory character devices to
1306		 *   tell us the location of a shared mapping
1307		 */
1308		if (file && file->f_op->get_unmapped_area) {
1309			addr = file->f_op->get_unmapped_area(file, addr, len,
1310							     pgoff, flags);
1311			if (IS_ERR((void *) addr)) {
1312				ret = addr;
1313				if (ret != (unsigned long) -ENOSYS)
1314					goto error_just_free;
1315
1316				/* the driver refused to tell us where to site
1317				 * the mapping so we'll have to attempt to copy
1318				 * it */
1319				ret = (unsigned long) -ENODEV;
1320				if (!(capabilities & BDI_CAP_MAP_COPY))
1321					goto error_just_free;
1322
1323				capabilities &= ~BDI_CAP_MAP_DIRECT;
1324			} else {
1325				vma->vm_start = region->vm_start = addr;
1326				vma->vm_end = region->vm_end = addr + len;
1327			}
1328		}
1329	}
1330
1331	vma->vm_region = region;
1332
1333	/* set up the mapping */
1334	if (file && vma->vm_flags & VM_SHARED)
1335		ret = do_mmap_shared_file(vma);
1336	else
1337		ret = do_mmap_private(vma, region, len);
1338	if (ret < 0)
1339		goto error_put_region;
1340
1341	add_nommu_region(region);
1342
1343	/* okay... we have a mapping; now we have to register it */
1344	result = vma->vm_start;
1345
1346	current->mm->total_vm += len >> PAGE_SHIFT;
1347
1348share:
1349	add_vma_to_mm(current->mm, vma);
1350
1351	up_write(&nommu_region_sem);
1352
1353	if (prot & PROT_EXEC)
1354		flush_icache_range(result, result + len);
1355
1356	kleave(" = %lx", result);
1357	return result;
1358
1359error_put_region:
1360	__put_nommu_region(region);
1361	if (vma) {
1362		if (vma->vm_file) {
1363			fput(vma->vm_file);
1364			if (vma->vm_flags & VM_EXECUTABLE)
1365				removed_exe_file_vma(vma->vm_mm);
1366		}
1367		kmem_cache_free(vm_area_cachep, vma);
1368	}
1369	kleave(" = %d [pr]", ret);
1370	return ret;
1371
1372error_just_free:
1373	up_write(&nommu_region_sem);
1374error:
1375	fput(region->vm_file);
1376	kmem_cache_free(vm_region_jar, region);
1377	fput(vma->vm_file);
1378	if (vma->vm_flags & VM_EXECUTABLE)
1379		removed_exe_file_vma(vma->vm_mm);
1380	kmem_cache_free(vm_area_cachep, vma);
1381	kleave(" = %d", ret);
1382	return ret;
1383
1384sharing_violation:
1385	up_write(&nommu_region_sem);
1386	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1387	ret = -EINVAL;
1388	goto error;
1389
1390error_getting_vma:
1391	kmem_cache_free(vm_region_jar, region);
1392	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1393	       " from process %d failed\n",
1394	       len, current->pid);
1395	show_free_areas();
1396	return -ENOMEM;
1397
1398error_getting_region:
1399	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1400	       " from process %d failed\n",
1401	       len, current->pid);
1402	show_free_areas();
1403	return -ENOMEM;
1404}
1405EXPORT_SYMBOL(do_mmap_pgoff);
1406
1407/*
1408 * split a vma into two pieces at address 'addr', a new vma is allocated either
1409 * for the first part or the tail.
1410 */
1411int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1412	      unsigned long addr, int new_below)
1413{
1414	struct vm_area_struct *new;
1415	struct vm_region *region;
1416	unsigned long npages;
1417
1418	kenter("");
1419
1420	/* we're only permitted to split anonymous regions that have a single
1421	 * owner */
1422	if (vma->vm_file ||
1423	    atomic_read(&vma->vm_region->vm_usage) != 1)
1424		return -ENOMEM;
1425
1426	if (mm->map_count >= sysctl_max_map_count)
1427		return -ENOMEM;
1428
1429	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1430	if (!region)
1431		return -ENOMEM;
1432
1433	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1434	if (!new) {
1435		kmem_cache_free(vm_region_jar, region);
1436		return -ENOMEM;
1437	}
1438
1439	/* most fields are the same, copy all, and then fixup */
1440	*new = *vma;
1441	*region = *vma->vm_region;
1442	new->vm_region = region;
1443
1444	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1445
1446	if (new_below) {
1447		region->vm_top = region->vm_end = new->vm_end = addr;
1448	} else {
1449		region->vm_start = new->vm_start = addr;
1450		region->vm_pgoff = new->vm_pgoff += npages;
1451	}
1452
1453	if (new->vm_ops && new->vm_ops->open)
1454		new->vm_ops->open(new);
1455
1456	delete_vma_from_mm(vma);
1457	down_write(&nommu_region_sem);
1458	delete_nommu_region(vma->vm_region);
1459	if (new_below) {
1460		vma->vm_region->vm_start = vma->vm_start = addr;
1461		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1462	} else {
1463		vma->vm_region->vm_end = vma->vm_end = addr;
1464		vma->vm_region->vm_top = addr;
1465	}
1466	add_nommu_region(vma->vm_region);
1467	add_nommu_region(new->vm_region);
1468	up_write(&nommu_region_sem);
1469	add_vma_to_mm(mm, vma);
1470	add_vma_to_mm(mm, new);
1471	return 0;
1472}
1473
1474/*
1475 * shrink a VMA by removing the specified chunk from either the beginning or
1476 * the end
1477 */
1478static int shrink_vma(struct mm_struct *mm,
1479		      struct vm_area_struct *vma,
1480		      unsigned long from, unsigned long to)
1481{
1482	struct vm_region *region;
1483
1484	kenter("");
1485
1486	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1487	 * and list */
1488	delete_vma_from_mm(vma);
1489	if (from > vma->vm_start)
1490		vma->vm_end = from;
1491	else
1492		vma->vm_start = to;
1493	add_vma_to_mm(mm, vma);
1494
1495	/* cut the backing region down to size */
1496	region = vma->vm_region;
1497	BUG_ON(atomic_read(&region->vm_usage) != 1);
1498
1499	down_write(&nommu_region_sem);
1500	delete_nommu_region(region);
1501	if (from > region->vm_start) {
1502		to = region->vm_top;
1503		region->vm_top = region->vm_end = from;
1504	} else {
1505		region->vm_start = to;
1506	}
1507	add_nommu_region(region);
1508	up_write(&nommu_region_sem);
1509
1510	free_page_series(from, to);
1511	return 0;
1512}
1513
1514/*
1515 * release a mapping
1516 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1517 *   VMA, though it need not cover the whole VMA
1518 */
1519int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1520{
1521	struct vm_area_struct *vma;
1522	struct rb_node *rb;
1523	unsigned long end = start + len;
1524	int ret;
1525
1526	kenter(",%lx,%zx", start, len);
1527
1528	if (len == 0)
1529		return -EINVAL;
1530
1531	/* find the first potentially overlapping VMA */
1532	vma = find_vma(mm, start);
1533	if (!vma) {
1534		static int limit = 0;
1535		if (limit < 5) {
1536			printk(KERN_WARNING
1537			       "munmap of memory not mmapped by process %d"
1538			       " (%s): 0x%lx-0x%lx\n",
1539			       current->pid, current->comm,
1540			       start, start + len - 1);
1541			limit++;
1542		}
1543		return -EINVAL;
1544	}
1545
1546	/* we're allowed to split an anonymous VMA but not a file-backed one */
1547	if (vma->vm_file) {
1548		do {
1549			if (start > vma->vm_start) {
1550				kleave(" = -EINVAL [miss]");
1551				return -EINVAL;
1552			}
1553			if (end == vma->vm_end)
1554				goto erase_whole_vma;
1555			rb = rb_next(&vma->vm_rb);
1556			vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1557		} while (rb);
1558		kleave(" = -EINVAL [split file]");
1559		return -EINVAL;
1560	} else {
1561		/* the chunk must be a subset of the VMA found */
1562		if (start == vma->vm_start && end == vma->vm_end)
1563			goto erase_whole_vma;
1564		if (start < vma->vm_start || end > vma->vm_end) {
1565			kleave(" = -EINVAL [superset]");
1566			return -EINVAL;
1567		}
1568		if (start & ~PAGE_MASK) {
1569			kleave(" = -EINVAL [unaligned start]");
1570			return -EINVAL;
1571		}
1572		if (end != vma->vm_end && end & ~PAGE_MASK) {
1573			kleave(" = -EINVAL [unaligned split]");
1574			return -EINVAL;
1575		}
1576		if (start != vma->vm_start && end != vma->vm_end) {
1577			ret = split_vma(mm, vma, start, 1);
1578			if (ret < 0) {
1579				kleave(" = %d [split]", ret);
1580				return ret;
1581			}
1582		}
1583		return shrink_vma(mm, vma, start, end);
1584	}
1585
1586erase_whole_vma:
1587	delete_vma_from_mm(vma);
1588	delete_vma(mm, vma);
1589	kleave(" = 0");
1590	return 0;
1591}
1592EXPORT_SYMBOL(do_munmap);
1593
1594SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1595{
1596	int ret;
1597	struct mm_struct *mm = current->mm;
1598
1599	down_write(&mm->mmap_sem);
1600	ret = do_munmap(mm, addr, len);
1601	up_write(&mm->mmap_sem);
1602	return ret;
1603}
1604
1605/*
1606 * release all the mappings made in a process's VM space
1607 */
1608void exit_mmap(struct mm_struct *mm)
1609{
1610	struct vm_area_struct *vma;
1611
1612	if (!mm)
1613		return;
1614
1615	kenter("");
1616
1617	mm->total_vm = 0;
1618
1619	while ((vma = mm->mmap)) {
1620		mm->mmap = vma->vm_next;
1621		delete_vma_from_mm(vma);
1622		delete_vma(mm, vma);
1623	}
1624
1625	kleave("");
1626}
1627
1628unsigned long do_brk(unsigned long addr, unsigned long len)
1629{
1630	return -ENOMEM;
1631}
1632
1633/*
1634 * expand (or shrink) an existing mapping, potentially moving it at the same
1635 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1636 *
1637 * under NOMMU conditions, we only permit changing a mapping's size, and only
1638 * as long as it stays within the region allocated by do_mmap_private() and the
1639 * block is not shareable
1640 *
1641 * MREMAP_FIXED is not supported under NOMMU conditions
1642 */
1643unsigned long do_mremap(unsigned long addr,
1644			unsigned long old_len, unsigned long new_len,
1645			unsigned long flags, unsigned long new_addr)
1646{
1647	struct vm_area_struct *vma;
1648
1649	/* insanity checks first */
1650	if (old_len == 0 || new_len == 0)
1651		return (unsigned long) -EINVAL;
1652
1653	if (addr & ~PAGE_MASK)
1654		return -EINVAL;
1655
1656	if (flags & MREMAP_FIXED && new_addr != addr)
1657		return (unsigned long) -EINVAL;
1658
1659	vma = find_vma_exact(current->mm, addr, old_len);
1660	if (!vma)
1661		return (unsigned long) -EINVAL;
1662
1663	if (vma->vm_end != vma->vm_start + old_len)
1664		return (unsigned long) -EFAULT;
1665
1666	if (vma->vm_flags & VM_MAYSHARE)
1667		return (unsigned long) -EPERM;
1668
1669	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1670		return (unsigned long) -ENOMEM;
1671
1672	/* all checks complete - do it */
1673	vma->vm_end = vma->vm_start + new_len;
1674	return vma->vm_start;
1675}
1676EXPORT_SYMBOL(do_mremap);
1677
1678SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1679		unsigned long, new_len, unsigned long, flags,
1680		unsigned long, new_addr)
1681{
1682	unsigned long ret;
1683
1684	down_write(&current->mm->mmap_sem);
1685	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1686	up_write(&current->mm->mmap_sem);
1687	return ret;
1688}
1689
1690struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1691			unsigned int foll_flags)
1692{
1693	return NULL;
1694}
1695
1696int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1697		unsigned long to, unsigned long size, pgprot_t prot)
1698{
1699	vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1700	return 0;
1701}
1702EXPORT_SYMBOL(remap_pfn_range);
1703
1704int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1705			unsigned long pgoff)
1706{
1707	unsigned int size = vma->vm_end - vma->vm_start;
1708
1709	if (!(vma->vm_flags & VM_USERMAP))
1710		return -EINVAL;
1711
1712	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1713	vma->vm_end = vma->vm_start + size;
1714
1715	return 0;
1716}
1717EXPORT_SYMBOL(remap_vmalloc_range);
1718
1719void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1720{
1721}
1722
1723unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1724	unsigned long len, unsigned long pgoff, unsigned long flags)
1725{
1726	return -ENOMEM;
1727}
1728
1729void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1730{
1731}
1732
1733void unmap_mapping_range(struct address_space *mapping,
1734			 loff_t const holebegin, loff_t const holelen,
1735			 int even_cows)
1736{
1737}
1738EXPORT_SYMBOL(unmap_mapping_range);
1739
1740/*
1741 * ask for an unmapped area at which to create a mapping on a file
1742 */
1743unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1744				unsigned long len, unsigned long pgoff,
1745				unsigned long flags)
1746{
1747	unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1748				  unsigned long, unsigned long);
1749
1750	get_area = current->mm->get_unmapped_area;
1751	if (file && file->f_op && file->f_op->get_unmapped_area)
1752		get_area = file->f_op->get_unmapped_area;
1753
1754	if (!get_area)
1755		return -ENOSYS;
1756
1757	return get_area(file, addr, len, pgoff, flags);
1758}
1759EXPORT_SYMBOL(get_unmapped_area);
1760
1761/*
1762 * Check that a process has enough memory to allocate a new virtual
1763 * mapping. 0 means there is enough memory for the allocation to
1764 * succeed and -ENOMEM implies there is not.
1765 *
1766 * We currently support three overcommit policies, which are set via the
1767 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1768 *
1769 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1770 * Additional code 2002 Jul 20 by Robert Love.
1771 *
1772 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1773 *
1774 * Note this is a helper function intended to be used by LSMs which
1775 * wish to use this logic.
1776 */
1777int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1778{
1779	unsigned long free, allowed;
1780
1781	vm_acct_memory(pages);
1782
1783	/*
1784	 * Sometimes we want to use more memory than we have
1785	 */
1786	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1787		return 0;
1788
1789	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1790		unsigned long n;
1791
1792		free = global_page_state(NR_FILE_PAGES);
1793		free += nr_swap_pages;
1794
1795		/*
1796		 * Any slabs which are created with the
1797		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1798		 * which are reclaimable, under pressure.  The dentry
1799		 * cache and most inode caches should fall into this
1800		 */
1801		free += global_page_state(NR_SLAB_RECLAIMABLE);
1802
1803		/*
1804		 * Leave the last 3% for root
1805		 */
1806		if (!cap_sys_admin)
1807			free -= free / 32;
1808
1809		if (free > pages)
1810			return 0;
1811
1812		/*
1813		 * nr_free_pages() is very expensive on large systems,
1814		 * only call if we're about to fail.
1815		 */
1816		n = nr_free_pages();
1817
1818		/*
1819		 * Leave reserved pages. The pages are not for anonymous pages.
1820		 */
1821		if (n <= totalreserve_pages)
1822			goto error;
1823		else
1824			n -= totalreserve_pages;
1825
1826		/*
1827		 * Leave the last 3% for root
1828		 */
1829		if (!cap_sys_admin)
1830			n -= n / 32;
1831		free += n;
1832
1833		if (free > pages)
1834			return 0;
1835
1836		goto error;
1837	}
1838
1839	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1840	/*
1841	 * Leave the last 3% for root
1842	 */
1843	if (!cap_sys_admin)
1844		allowed -= allowed / 32;
1845	allowed += total_swap_pages;
1846
1847	/* Don't let a single process grow too big:
1848	   leave 3% of the size of this process for other processes */
1849	if (mm)
1850		allowed -= mm->total_vm / 32;
1851
1852	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1853		return 0;
1854
1855error:
1856	vm_unacct_memory(pages);
1857
1858	return -ENOMEM;
1859}
1860
1861int in_gate_area_no_task(unsigned long addr)
1862{
1863	return 0;
1864}
1865
1866int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1867{
1868	BUG();
1869	return 0;
1870}
1871EXPORT_SYMBOL(filemap_fault);
1872
1873/*
1874 * Access another process' address space.
1875 * - source/target buffer must be kernel space
1876 */
1877int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1878{
1879	struct vm_area_struct *vma;
1880	struct mm_struct *mm;
1881
1882	if (addr + len < addr)
1883		return 0;
1884
1885	mm = get_task_mm(tsk);
1886	if (!mm)
1887		return 0;
1888
1889	down_read(&mm->mmap_sem);
1890
1891	/* the access must start within one of the target process's mappings */
1892	vma = find_vma(mm, addr);
1893	if (vma) {
1894		/* don't overrun this mapping */
1895		if (addr + len >= vma->vm_end)
1896			len = vma->vm_end - addr;
1897
1898		/* only read or write mappings where it is permitted */
1899		if (write && vma->vm_flags & VM_MAYWRITE)
1900			len -= copy_to_user((void *) addr, buf, len);
1901		else if (!write && vma->vm_flags & VM_MAYREAD)
1902			len -= copy_from_user(buf, (void *) addr, len);
1903		else
1904			len = 0;
1905	} else {
1906		len = 0;
1907	}
1908
1909	up_read(&mm->mmap_sem);
1910	mmput(mm);
1911	return len;
1912}
1913