nommu.c revision e922c4c5360980bfeb862b3ec307d36bb344dcae
1/*
2 *  linux/mm/nommu.c
3 *
4 *  Replacement code for mm functions to support CPU's that don't
5 *  have any form of memory management unit (thus no virtual memory).
6 *
7 *  See Documentation/nommu-mmap.txt
8 *
9 *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13 *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14 */
15
16#include <linux/module.h>
17#include <linux/mm.h>
18#include <linux/mman.h>
19#include <linux/swap.h>
20#include <linux/file.h>
21#include <linux/highmem.h>
22#include <linux/pagemap.h>
23#include <linux/slab.h>
24#include <linux/vmalloc.h>
25#include <linux/tracehook.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
28#include <linux/mount.h>
29#include <linux/personality.h>
30#include <linux/security.h>
31#include <linux/syscalls.h>
32#include <linux/audit.h>
33
34#include <asm/uaccess.h>
35#include <asm/tlb.h>
36#include <asm/tlbflush.h>
37#include <asm/mmu_context.h>
38#include "internal.h"
39
40#if 0
41#define kenter(FMT, ...) \
42	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43#define kleave(FMT, ...) \
44	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45#define kdebug(FMT, ...) \
46	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
47#else
48#define kenter(FMT, ...) \
49	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50#define kleave(FMT, ...) \
51	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52#define kdebug(FMT, ...) \
53	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
54#endif
55
56void *high_memory;
57struct page *mem_map;
58unsigned long max_mapnr;
59unsigned long num_physpages;
60unsigned long highest_memmap_pfn;
61struct percpu_counter vm_committed_as;
62int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
63int sysctl_overcommit_ratio = 50; /* default is 50% */
64int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
65int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
66int heap_stack_gap = 0;
67
68atomic_long_t mmap_pages_allocated;
69
70EXPORT_SYMBOL(mem_map);
71EXPORT_SYMBOL(num_physpages);
72
73/* list of mapped, potentially shareable regions */
74static struct kmem_cache *vm_region_jar;
75struct rb_root nommu_region_tree = RB_ROOT;
76DECLARE_RWSEM(nommu_region_sem);
77
78const struct vm_operations_struct generic_file_vm_ops = {
79};
80
81/*
82 * Return the total memory allocated for this pointer, not
83 * just what the caller asked for.
84 *
85 * Doesn't have to be accurate, i.e. may have races.
86 */
87unsigned int kobjsize(const void *objp)
88{
89	struct page *page;
90
91	/*
92	 * If the object we have should not have ksize performed on it,
93	 * return size of 0
94	 */
95	if (!objp || !virt_addr_valid(objp))
96		return 0;
97
98	page = virt_to_head_page(objp);
99
100	/*
101	 * If the allocator sets PageSlab, we know the pointer came from
102	 * kmalloc().
103	 */
104	if (PageSlab(page))
105		return ksize(objp);
106
107	/*
108	 * If it's not a compound page, see if we have a matching VMA
109	 * region. This test is intentionally done in reverse order,
110	 * so if there's no VMA, we still fall through and hand back
111	 * PAGE_SIZE for 0-order pages.
112	 */
113	if (!PageCompound(page)) {
114		struct vm_area_struct *vma;
115
116		vma = find_vma(current->mm, (unsigned long)objp);
117		if (vma)
118			return vma->vm_end - vma->vm_start;
119	}
120
121	/*
122	 * The ksize() function is only guaranteed to work for pointers
123	 * returned by kmalloc(). So handle arbitrary pointers here.
124	 */
125	return PAGE_SIZE << compound_order(page);
126}
127
128int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
129		     unsigned long start, int nr_pages, unsigned int foll_flags,
130		     struct page **pages, struct vm_area_struct **vmas,
131		     int *retry)
132{
133	struct vm_area_struct *vma;
134	unsigned long vm_flags;
135	int i;
136
137	/* calculate required read or write permissions.
138	 * If FOLL_FORCE is set, we only require the "MAY" flags.
139	 */
140	vm_flags  = (foll_flags & FOLL_WRITE) ?
141			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
142	vm_flags &= (foll_flags & FOLL_FORCE) ?
143			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
144
145	for (i = 0; i < nr_pages; i++) {
146		vma = find_vma(mm, start);
147		if (!vma)
148			goto finish_or_fault;
149
150		/* protect what we can, including chardevs */
151		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
152		    !(vm_flags & vma->vm_flags))
153			goto finish_or_fault;
154
155		if (pages) {
156			pages[i] = virt_to_page(start);
157			if (pages[i])
158				page_cache_get(pages[i]);
159		}
160		if (vmas)
161			vmas[i] = vma;
162		start = (start + PAGE_SIZE) & PAGE_MASK;
163	}
164
165	return i;
166
167finish_or_fault:
168	return i ? : -EFAULT;
169}
170
171/*
172 * get a list of pages in an address range belonging to the specified process
173 * and indicate the VMA that covers each page
174 * - this is potentially dodgy as we may end incrementing the page count of a
175 *   slab page or a secondary page from a compound page
176 * - don't permit access to VMAs that don't support it, such as I/O mappings
177 */
178int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
179	unsigned long start, int nr_pages, int write, int force,
180	struct page **pages, struct vm_area_struct **vmas)
181{
182	int flags = 0;
183
184	if (write)
185		flags |= FOLL_WRITE;
186	if (force)
187		flags |= FOLL_FORCE;
188
189	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
190				NULL);
191}
192EXPORT_SYMBOL(get_user_pages);
193
194/**
195 * follow_pfn - look up PFN at a user virtual address
196 * @vma: memory mapping
197 * @address: user virtual address
198 * @pfn: location to store found PFN
199 *
200 * Only IO mappings and raw PFN mappings are allowed.
201 *
202 * Returns zero and the pfn at @pfn on success, -ve otherwise.
203 */
204int follow_pfn(struct vm_area_struct *vma, unsigned long address,
205	unsigned long *pfn)
206{
207	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
208		return -EINVAL;
209
210	*pfn = address >> PAGE_SHIFT;
211	return 0;
212}
213EXPORT_SYMBOL(follow_pfn);
214
215DEFINE_RWLOCK(vmlist_lock);
216struct vm_struct *vmlist;
217
218void vfree(const void *addr)
219{
220	kfree(addr);
221}
222EXPORT_SYMBOL(vfree);
223
224void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
225{
226	/*
227	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
228	 * returns only a logical address.
229	 */
230	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
231}
232EXPORT_SYMBOL(__vmalloc);
233
234void *vmalloc_user(unsigned long size)
235{
236	void *ret;
237
238	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
239			PAGE_KERNEL);
240	if (ret) {
241		struct vm_area_struct *vma;
242
243		down_write(&current->mm->mmap_sem);
244		vma = find_vma(current->mm, (unsigned long)ret);
245		if (vma)
246			vma->vm_flags |= VM_USERMAP;
247		up_write(&current->mm->mmap_sem);
248	}
249
250	return ret;
251}
252EXPORT_SYMBOL(vmalloc_user);
253
254struct page *vmalloc_to_page(const void *addr)
255{
256	return virt_to_page(addr);
257}
258EXPORT_SYMBOL(vmalloc_to_page);
259
260unsigned long vmalloc_to_pfn(const void *addr)
261{
262	return page_to_pfn(virt_to_page(addr));
263}
264EXPORT_SYMBOL(vmalloc_to_pfn);
265
266long vread(char *buf, char *addr, unsigned long count)
267{
268	memcpy(buf, addr, count);
269	return count;
270}
271
272long vwrite(char *buf, char *addr, unsigned long count)
273{
274	/* Don't allow overflow */
275	if ((unsigned long) addr + count < count)
276		count = -(unsigned long) addr;
277
278	memcpy(addr, buf, count);
279	return(count);
280}
281
282/*
283 *	vmalloc  -  allocate virtually continguos memory
284 *
285 *	@size:		allocation size
286 *
287 *	Allocate enough pages to cover @size from the page level
288 *	allocator and map them into continguos kernel virtual space.
289 *
290 *	For tight control over page level allocator and protection flags
291 *	use __vmalloc() instead.
292 */
293void *vmalloc(unsigned long size)
294{
295       return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
296}
297EXPORT_SYMBOL(vmalloc);
298
299/*
300 *	vzalloc - allocate virtually continguos memory with zero fill
301 *
302 *	@size:		allocation size
303 *
304 *	Allocate enough pages to cover @size from the page level
305 *	allocator and map them into continguos kernel virtual space.
306 *	The memory allocated is set to zero.
307 *
308 *	For tight control over page level allocator and protection flags
309 *	use __vmalloc() instead.
310 */
311void *vzalloc(unsigned long size)
312{
313	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
314			PAGE_KERNEL);
315}
316EXPORT_SYMBOL(vzalloc);
317
318/**
319 * vmalloc_node - allocate memory on a specific node
320 * @size:	allocation size
321 * @node:	numa node
322 *
323 * Allocate enough pages to cover @size from the page level
324 * allocator and map them into contiguous kernel virtual space.
325 *
326 * For tight control over page level allocator and protection flags
327 * use __vmalloc() instead.
328 */
329void *vmalloc_node(unsigned long size, int node)
330{
331	return vmalloc(size);
332}
333EXPORT_SYMBOL(vmalloc_node);
334
335/**
336 * vzalloc_node - allocate memory on a specific node with zero fill
337 * @size:	allocation size
338 * @node:	numa node
339 *
340 * Allocate enough pages to cover @size from the page level
341 * allocator and map them into contiguous kernel virtual space.
342 * The memory allocated is set to zero.
343 *
344 * For tight control over page level allocator and protection flags
345 * use __vmalloc() instead.
346 */
347void *vzalloc_node(unsigned long size, int node)
348{
349	return vzalloc(size);
350}
351EXPORT_SYMBOL(vzalloc_node);
352
353#ifndef PAGE_KERNEL_EXEC
354# define PAGE_KERNEL_EXEC PAGE_KERNEL
355#endif
356
357/**
358 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
359 *	@size:		allocation size
360 *
361 *	Kernel-internal function to allocate enough pages to cover @size
362 *	the page level allocator and map them into contiguous and
363 *	executable kernel virtual space.
364 *
365 *	For tight control over page level allocator and protection flags
366 *	use __vmalloc() instead.
367 */
368
369void *vmalloc_exec(unsigned long size)
370{
371	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
372}
373
374/**
375 * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
376 *	@size:		allocation size
377 *
378 *	Allocate enough 32bit PA addressable pages to cover @size from the
379 *	page level allocator and map them into continguos kernel virtual space.
380 */
381void *vmalloc_32(unsigned long size)
382{
383	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
384}
385EXPORT_SYMBOL(vmalloc_32);
386
387/**
388 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
389 *	@size:		allocation size
390 *
391 * The resulting memory area is 32bit addressable and zeroed so it can be
392 * mapped to userspace without leaking data.
393 *
394 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
395 * remap_vmalloc_range() are permissible.
396 */
397void *vmalloc_32_user(unsigned long size)
398{
399	/*
400	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
401	 * but for now this can simply use vmalloc_user() directly.
402	 */
403	return vmalloc_user(size);
404}
405EXPORT_SYMBOL(vmalloc_32_user);
406
407void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
408{
409	BUG();
410	return NULL;
411}
412EXPORT_SYMBOL(vmap);
413
414void vunmap(const void *addr)
415{
416	BUG();
417}
418EXPORT_SYMBOL(vunmap);
419
420void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
421{
422	BUG();
423	return NULL;
424}
425EXPORT_SYMBOL(vm_map_ram);
426
427void vm_unmap_ram(const void *mem, unsigned int count)
428{
429	BUG();
430}
431EXPORT_SYMBOL(vm_unmap_ram);
432
433void vm_unmap_aliases(void)
434{
435}
436EXPORT_SYMBOL_GPL(vm_unmap_aliases);
437
438/*
439 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
440 * have one.
441 */
442void  __attribute__((weak)) vmalloc_sync_all(void)
443{
444}
445
446/**
447 *	alloc_vm_area - allocate a range of kernel address space
448 *	@size:		size of the area
449 *
450 *	Returns:	NULL on failure, vm_struct on success
451 *
452 *	This function reserves a range of kernel address space, and
453 *	allocates pagetables to map that range.  No actual mappings
454 *	are created.  If the kernel address space is not shared
455 *	between processes, it syncs the pagetable across all
456 *	processes.
457 */
458struct vm_struct *alloc_vm_area(size_t size)
459{
460	BUG();
461	return NULL;
462}
463EXPORT_SYMBOL_GPL(alloc_vm_area);
464
465void free_vm_area(struct vm_struct *area)
466{
467	BUG();
468}
469EXPORT_SYMBOL_GPL(free_vm_area);
470
471int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
472		   struct page *page)
473{
474	return -EINVAL;
475}
476EXPORT_SYMBOL(vm_insert_page);
477
478/*
479 *  sys_brk() for the most part doesn't need the global kernel
480 *  lock, except when an application is doing something nasty
481 *  like trying to un-brk an area that has already been mapped
482 *  to a regular file.  in this case, the unmapping will need
483 *  to invoke file system routines that need the global lock.
484 */
485SYSCALL_DEFINE1(brk, unsigned long, brk)
486{
487	struct mm_struct *mm = current->mm;
488
489	if (brk < mm->start_brk || brk > mm->context.end_brk)
490		return mm->brk;
491
492	if (mm->brk == brk)
493		return mm->brk;
494
495	/*
496	 * Always allow shrinking brk
497	 */
498	if (brk <= mm->brk) {
499		mm->brk = brk;
500		return brk;
501	}
502
503	/*
504	 * Ok, looks good - let it rip.
505	 */
506	flush_icache_range(mm->brk, brk);
507	return mm->brk = brk;
508}
509
510/*
511 * initialise the VMA and region record slabs
512 */
513void __init mmap_init(void)
514{
515	int ret;
516
517	ret = percpu_counter_init(&vm_committed_as, 0);
518	VM_BUG_ON(ret);
519	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
520}
521
522/*
523 * validate the region tree
524 * - the caller must hold the region lock
525 */
526#ifdef CONFIG_DEBUG_NOMMU_REGIONS
527static noinline void validate_nommu_regions(void)
528{
529	struct vm_region *region, *last;
530	struct rb_node *p, *lastp;
531
532	lastp = rb_first(&nommu_region_tree);
533	if (!lastp)
534		return;
535
536	last = rb_entry(lastp, struct vm_region, vm_rb);
537	BUG_ON(unlikely(last->vm_end <= last->vm_start));
538	BUG_ON(unlikely(last->vm_top < last->vm_end));
539
540	while ((p = rb_next(lastp))) {
541		region = rb_entry(p, struct vm_region, vm_rb);
542		last = rb_entry(lastp, struct vm_region, vm_rb);
543
544		BUG_ON(unlikely(region->vm_end <= region->vm_start));
545		BUG_ON(unlikely(region->vm_top < region->vm_end));
546		BUG_ON(unlikely(region->vm_start < last->vm_top));
547
548		lastp = p;
549	}
550}
551#else
552static void validate_nommu_regions(void)
553{
554}
555#endif
556
557/*
558 * add a region into the global tree
559 */
560static void add_nommu_region(struct vm_region *region)
561{
562	struct vm_region *pregion;
563	struct rb_node **p, *parent;
564
565	validate_nommu_regions();
566
567	parent = NULL;
568	p = &nommu_region_tree.rb_node;
569	while (*p) {
570		parent = *p;
571		pregion = rb_entry(parent, struct vm_region, vm_rb);
572		if (region->vm_start < pregion->vm_start)
573			p = &(*p)->rb_left;
574		else if (region->vm_start > pregion->vm_start)
575			p = &(*p)->rb_right;
576		else if (pregion == region)
577			return;
578		else
579			BUG();
580	}
581
582	rb_link_node(&region->vm_rb, parent, p);
583	rb_insert_color(&region->vm_rb, &nommu_region_tree);
584
585	validate_nommu_regions();
586}
587
588/*
589 * delete a region from the global tree
590 */
591static void delete_nommu_region(struct vm_region *region)
592{
593	BUG_ON(!nommu_region_tree.rb_node);
594
595	validate_nommu_regions();
596	rb_erase(&region->vm_rb, &nommu_region_tree);
597	validate_nommu_regions();
598}
599
600/*
601 * free a contiguous series of pages
602 */
603static void free_page_series(unsigned long from, unsigned long to)
604{
605	for (; from < to; from += PAGE_SIZE) {
606		struct page *page = virt_to_page(from);
607
608		kdebug("- free %lx", from);
609		atomic_long_dec(&mmap_pages_allocated);
610		if (page_count(page) != 1)
611			kdebug("free page %p: refcount not one: %d",
612			       page, page_count(page));
613		put_page(page);
614	}
615}
616
617/*
618 * release a reference to a region
619 * - the caller must hold the region semaphore for writing, which this releases
620 * - the region may not have been added to the tree yet, in which case vm_top
621 *   will equal vm_start
622 */
623static void __put_nommu_region(struct vm_region *region)
624	__releases(nommu_region_sem)
625{
626	kenter("%p{%d}", region, region->vm_usage);
627
628	BUG_ON(!nommu_region_tree.rb_node);
629
630	if (--region->vm_usage == 0) {
631		if (region->vm_top > region->vm_start)
632			delete_nommu_region(region);
633		up_write(&nommu_region_sem);
634
635		if (region->vm_file)
636			fput(region->vm_file);
637
638		/* IO memory and memory shared directly out of the pagecache
639		 * from ramfs/tmpfs mustn't be released here */
640		if (region->vm_flags & VM_MAPPED_COPY) {
641			kdebug("free series");
642			free_page_series(region->vm_start, region->vm_top);
643		}
644		kmem_cache_free(vm_region_jar, region);
645	} else {
646		up_write(&nommu_region_sem);
647	}
648}
649
650/*
651 * release a reference to a region
652 */
653static void put_nommu_region(struct vm_region *region)
654{
655	down_write(&nommu_region_sem);
656	__put_nommu_region(region);
657}
658
659/*
660 * update protection on a vma
661 */
662static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
663{
664#ifdef CONFIG_MPU
665	struct mm_struct *mm = vma->vm_mm;
666	long start = vma->vm_start & PAGE_MASK;
667	while (start < vma->vm_end) {
668		protect_page(mm, start, flags);
669		start += PAGE_SIZE;
670	}
671	update_protections(mm);
672#endif
673}
674
675/*
676 * add a VMA into a process's mm_struct in the appropriate place in the list
677 * and tree and add to the address space's page tree also if not an anonymous
678 * page
679 * - should be called with mm->mmap_sem held writelocked
680 */
681static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
682{
683	struct vm_area_struct *pvma, *prev;
684	struct address_space *mapping;
685	struct rb_node **p, *parent, *rb_prev;
686
687	kenter(",%p", vma);
688
689	BUG_ON(!vma->vm_region);
690
691	mm->map_count++;
692	vma->vm_mm = mm;
693
694	protect_vma(vma, vma->vm_flags);
695
696	/* add the VMA to the mapping */
697	if (vma->vm_file) {
698		mapping = vma->vm_file->f_mapping;
699
700		flush_dcache_mmap_lock(mapping);
701		vma_prio_tree_insert(vma, &mapping->i_mmap);
702		flush_dcache_mmap_unlock(mapping);
703	}
704
705	/* add the VMA to the tree */
706	parent = rb_prev = NULL;
707	p = &mm->mm_rb.rb_node;
708	while (*p) {
709		parent = *p;
710		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
711
712		/* sort by: start addr, end addr, VMA struct addr in that order
713		 * (the latter is necessary as we may get identical VMAs) */
714		if (vma->vm_start < pvma->vm_start)
715			p = &(*p)->rb_left;
716		else if (vma->vm_start > pvma->vm_start) {
717			rb_prev = parent;
718			p = &(*p)->rb_right;
719		} else if (vma->vm_end < pvma->vm_end)
720			p = &(*p)->rb_left;
721		else if (vma->vm_end > pvma->vm_end) {
722			rb_prev = parent;
723			p = &(*p)->rb_right;
724		} else if (vma < pvma)
725			p = &(*p)->rb_left;
726		else if (vma > pvma) {
727			rb_prev = parent;
728			p = &(*p)->rb_right;
729		} else
730			BUG();
731	}
732
733	rb_link_node(&vma->vm_rb, parent, p);
734	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
735
736	/* add VMA to the VMA list also */
737	prev = NULL;
738	if (rb_prev)
739		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
740
741	__vma_link_list(mm, vma, prev, parent);
742}
743
744/*
745 * delete a VMA from its owning mm_struct and address space
746 */
747static void delete_vma_from_mm(struct vm_area_struct *vma)
748{
749	struct address_space *mapping;
750	struct mm_struct *mm = vma->vm_mm;
751
752	kenter("%p", vma);
753
754	protect_vma(vma, 0);
755
756	mm->map_count--;
757	if (mm->mmap_cache == vma)
758		mm->mmap_cache = NULL;
759
760	/* remove the VMA from the mapping */
761	if (vma->vm_file) {
762		mapping = vma->vm_file->f_mapping;
763
764		flush_dcache_mmap_lock(mapping);
765		vma_prio_tree_remove(vma, &mapping->i_mmap);
766		flush_dcache_mmap_unlock(mapping);
767	}
768
769	/* remove from the MM's tree and list */
770	rb_erase(&vma->vm_rb, &mm->mm_rb);
771
772	if (vma->vm_prev)
773		vma->vm_prev->vm_next = vma->vm_next;
774	else
775		mm->mmap = vma->vm_next;
776
777	if (vma->vm_next)
778		vma->vm_next->vm_prev = vma->vm_prev;
779
780	vma->vm_mm = NULL;
781}
782
783/*
784 * destroy a VMA record
785 */
786static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
787{
788	kenter("%p", vma);
789	if (vma->vm_ops && vma->vm_ops->close)
790		vma->vm_ops->close(vma);
791	if (vma->vm_file) {
792		fput(vma->vm_file);
793		if (vma->vm_flags & VM_EXECUTABLE)
794			removed_exe_file_vma(mm);
795	}
796	put_nommu_region(vma->vm_region);
797	kmem_cache_free(vm_area_cachep, vma);
798}
799
800/*
801 * look up the first VMA in which addr resides, NULL if none
802 * - should be called with mm->mmap_sem at least held readlocked
803 */
804struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
805{
806	struct vm_area_struct *vma;
807
808	/* check the cache first */
809	vma = mm->mmap_cache;
810	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
811		return vma;
812
813	/* trawl the list (there may be multiple mappings in which addr
814	 * resides) */
815	for (vma = mm->mmap; vma; vma = vma->vm_next) {
816		if (vma->vm_start > addr)
817			return NULL;
818		if (vma->vm_end > addr) {
819			mm->mmap_cache = vma;
820			return vma;
821		}
822	}
823
824	return NULL;
825}
826EXPORT_SYMBOL(find_vma);
827
828/*
829 * find a VMA
830 * - we don't extend stack VMAs under NOMMU conditions
831 */
832struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
833{
834	return find_vma(mm, addr);
835}
836
837/*
838 * expand a stack to a given address
839 * - not supported under NOMMU conditions
840 */
841int expand_stack(struct vm_area_struct *vma, unsigned long address)
842{
843	return -ENOMEM;
844}
845
846/*
847 * look up the first VMA exactly that exactly matches addr
848 * - should be called with mm->mmap_sem at least held readlocked
849 */
850static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
851					     unsigned long addr,
852					     unsigned long len)
853{
854	struct vm_area_struct *vma;
855	unsigned long end = addr + len;
856
857	/* check the cache first */
858	vma = mm->mmap_cache;
859	if (vma && vma->vm_start == addr && vma->vm_end == end)
860		return vma;
861
862	/* trawl the list (there may be multiple mappings in which addr
863	 * resides) */
864	for (vma = mm->mmap; vma; vma = vma->vm_next) {
865		if (vma->vm_start < addr)
866			continue;
867		if (vma->vm_start > addr)
868			return NULL;
869		if (vma->vm_end == end) {
870			mm->mmap_cache = vma;
871			return vma;
872		}
873	}
874
875	return NULL;
876}
877
878/*
879 * determine whether a mapping should be permitted and, if so, what sort of
880 * mapping we're capable of supporting
881 */
882static int validate_mmap_request(struct file *file,
883				 unsigned long addr,
884				 unsigned long len,
885				 unsigned long prot,
886				 unsigned long flags,
887				 unsigned long pgoff,
888				 unsigned long *_capabilities)
889{
890	unsigned long capabilities, rlen;
891	unsigned long reqprot = prot;
892	int ret;
893
894	/* do the simple checks first */
895	if (flags & MAP_FIXED) {
896		printk(KERN_DEBUG
897		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
898		       current->pid);
899		return -EINVAL;
900	}
901
902	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
903	    (flags & MAP_TYPE) != MAP_SHARED)
904		return -EINVAL;
905
906	if (!len)
907		return -EINVAL;
908
909	/* Careful about overflows.. */
910	rlen = PAGE_ALIGN(len);
911	if (!rlen || rlen > TASK_SIZE)
912		return -ENOMEM;
913
914	/* offset overflow? */
915	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
916		return -EOVERFLOW;
917
918	if (file) {
919		/* validate file mapping requests */
920		struct address_space *mapping;
921
922		/* files must support mmap */
923		if (!file->f_op || !file->f_op->mmap)
924			return -ENODEV;
925
926		/* work out if what we've got could possibly be shared
927		 * - we support chardevs that provide their own "memory"
928		 * - we support files/blockdevs that are memory backed
929		 */
930		mapping = file->f_mapping;
931		if (!mapping)
932			mapping = file->f_path.dentry->d_inode->i_mapping;
933
934		capabilities = 0;
935		if (mapping && mapping->backing_dev_info)
936			capabilities = mapping->backing_dev_info->capabilities;
937
938		if (!capabilities) {
939			/* no explicit capabilities set, so assume some
940			 * defaults */
941			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
942			case S_IFREG:
943			case S_IFBLK:
944				capabilities = BDI_CAP_MAP_COPY;
945				break;
946
947			case S_IFCHR:
948				capabilities =
949					BDI_CAP_MAP_DIRECT |
950					BDI_CAP_READ_MAP |
951					BDI_CAP_WRITE_MAP;
952				break;
953
954			default:
955				return -EINVAL;
956			}
957		}
958
959		/* eliminate any capabilities that we can't support on this
960		 * device */
961		if (!file->f_op->get_unmapped_area)
962			capabilities &= ~BDI_CAP_MAP_DIRECT;
963		if (!file->f_op->read)
964			capabilities &= ~BDI_CAP_MAP_COPY;
965
966		/* The file shall have been opened with read permission. */
967		if (!(file->f_mode & FMODE_READ))
968			return -EACCES;
969
970		if (flags & MAP_SHARED) {
971			/* do checks for writing, appending and locking */
972			if ((prot & PROT_WRITE) &&
973			    !(file->f_mode & FMODE_WRITE))
974				return -EACCES;
975
976			if (IS_APPEND(file->f_path.dentry->d_inode) &&
977			    (file->f_mode & FMODE_WRITE))
978				return -EACCES;
979
980			if (locks_verify_locked(file->f_path.dentry->d_inode))
981				return -EAGAIN;
982
983			if (!(capabilities & BDI_CAP_MAP_DIRECT))
984				return -ENODEV;
985
986			/* we mustn't privatise shared mappings */
987			capabilities &= ~BDI_CAP_MAP_COPY;
988		}
989		else {
990			/* we're going to read the file into private memory we
991			 * allocate */
992			if (!(capabilities & BDI_CAP_MAP_COPY))
993				return -ENODEV;
994
995			/* we don't permit a private writable mapping to be
996			 * shared with the backing device */
997			if (prot & PROT_WRITE)
998				capabilities &= ~BDI_CAP_MAP_DIRECT;
999		}
1000
1001		if (capabilities & BDI_CAP_MAP_DIRECT) {
1002			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1003			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1004			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1005			    ) {
1006				capabilities &= ~BDI_CAP_MAP_DIRECT;
1007				if (flags & MAP_SHARED) {
1008					printk(KERN_WARNING
1009					       "MAP_SHARED not completely supported on !MMU\n");
1010					return -EINVAL;
1011				}
1012			}
1013		}
1014
1015		/* handle executable mappings and implied executable
1016		 * mappings */
1017		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1018			if (prot & PROT_EXEC)
1019				return -EPERM;
1020		}
1021		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1022			/* handle implication of PROT_EXEC by PROT_READ */
1023			if (current->personality & READ_IMPLIES_EXEC) {
1024				if (capabilities & BDI_CAP_EXEC_MAP)
1025					prot |= PROT_EXEC;
1026			}
1027		}
1028		else if ((prot & PROT_READ) &&
1029			 (prot & PROT_EXEC) &&
1030			 !(capabilities & BDI_CAP_EXEC_MAP)
1031			 ) {
1032			/* backing file is not executable, try to copy */
1033			capabilities &= ~BDI_CAP_MAP_DIRECT;
1034		}
1035	}
1036	else {
1037		/* anonymous mappings are always memory backed and can be
1038		 * privately mapped
1039		 */
1040		capabilities = BDI_CAP_MAP_COPY;
1041
1042		/* handle PROT_EXEC implication by PROT_READ */
1043		if ((prot & PROT_READ) &&
1044		    (current->personality & READ_IMPLIES_EXEC))
1045			prot |= PROT_EXEC;
1046	}
1047
1048	/* allow the security API to have its say */
1049	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1050	if (ret < 0)
1051		return ret;
1052
1053	/* looks okay */
1054	*_capabilities = capabilities;
1055	return 0;
1056}
1057
1058/*
1059 * we've determined that we can make the mapping, now translate what we
1060 * now know into VMA flags
1061 */
1062static unsigned long determine_vm_flags(struct file *file,
1063					unsigned long prot,
1064					unsigned long flags,
1065					unsigned long capabilities)
1066{
1067	unsigned long vm_flags;
1068
1069	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1070	/* vm_flags |= mm->def_flags; */
1071
1072	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1073		/* attempt to share read-only copies of mapped file chunks */
1074		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1075		if (file && !(prot & PROT_WRITE))
1076			vm_flags |= VM_MAYSHARE;
1077	} else {
1078		/* overlay a shareable mapping on the backing device or inode
1079		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1080		 * romfs/cramfs */
1081		vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1082		if (flags & MAP_SHARED)
1083			vm_flags |= VM_SHARED;
1084	}
1085
1086	/* refuse to let anyone share private mappings with this process if
1087	 * it's being traced - otherwise breakpoints set in it may interfere
1088	 * with another untraced process
1089	 */
1090	if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1091		vm_flags &= ~VM_MAYSHARE;
1092
1093	return vm_flags;
1094}
1095
1096/*
1097 * set up a shared mapping on a file (the driver or filesystem provides and
1098 * pins the storage)
1099 */
1100static int do_mmap_shared_file(struct vm_area_struct *vma)
1101{
1102	int ret;
1103
1104	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1105	if (ret == 0) {
1106		vma->vm_region->vm_top = vma->vm_region->vm_end;
1107		return 0;
1108	}
1109	if (ret != -ENOSYS)
1110		return ret;
1111
1112	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1113	 * opposed to tried but failed) so we can only give a suitable error as
1114	 * it's not possible to make a private copy if MAP_SHARED was given */
1115	return -ENODEV;
1116}
1117
1118/*
1119 * set up a private mapping or an anonymous shared mapping
1120 */
1121static int do_mmap_private(struct vm_area_struct *vma,
1122			   struct vm_region *region,
1123			   unsigned long len,
1124			   unsigned long capabilities)
1125{
1126	struct page *pages;
1127	unsigned long total, point, n, rlen;
1128	void *base;
1129	int ret, order;
1130
1131	/* invoke the file's mapping function so that it can keep track of
1132	 * shared mappings on devices or memory
1133	 * - VM_MAYSHARE will be set if it may attempt to share
1134	 */
1135	if (capabilities & BDI_CAP_MAP_DIRECT) {
1136		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1137		if (ret == 0) {
1138			/* shouldn't return success if we're not sharing */
1139			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1140			vma->vm_region->vm_top = vma->vm_region->vm_end;
1141			return 0;
1142		}
1143		if (ret != -ENOSYS)
1144			return ret;
1145
1146		/* getting an ENOSYS error indicates that direct mmap isn't
1147		 * possible (as opposed to tried but failed) so we'll try to
1148		 * make a private copy of the data and map that instead */
1149	}
1150
1151	rlen = PAGE_ALIGN(len);
1152
1153	/* allocate some memory to hold the mapping
1154	 * - note that this may not return a page-aligned address if the object
1155	 *   we're allocating is smaller than a page
1156	 */
1157	order = get_order(rlen);
1158	kdebug("alloc order %d for %lx", order, len);
1159
1160	pages = alloc_pages(GFP_KERNEL, order);
1161	if (!pages)
1162		goto enomem;
1163
1164	total = 1 << order;
1165	atomic_long_add(total, &mmap_pages_allocated);
1166
1167	point = rlen >> PAGE_SHIFT;
1168
1169	/* we allocated a power-of-2 sized page set, so we may want to trim off
1170	 * the excess */
1171	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1172		while (total > point) {
1173			order = ilog2(total - point);
1174			n = 1 << order;
1175			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1176			atomic_long_sub(n, &mmap_pages_allocated);
1177			total -= n;
1178			set_page_refcounted(pages + total);
1179			__free_pages(pages + total, order);
1180		}
1181	}
1182
1183	for (point = 1; point < total; point++)
1184		set_page_refcounted(&pages[point]);
1185
1186	base = page_address(pages);
1187	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1188	region->vm_start = (unsigned long) base;
1189	region->vm_end   = region->vm_start + rlen;
1190	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1191
1192	vma->vm_start = region->vm_start;
1193	vma->vm_end   = region->vm_start + len;
1194
1195	if (vma->vm_file) {
1196		/* read the contents of a file into the copy */
1197		mm_segment_t old_fs;
1198		loff_t fpos;
1199
1200		fpos = vma->vm_pgoff;
1201		fpos <<= PAGE_SHIFT;
1202
1203		old_fs = get_fs();
1204		set_fs(KERNEL_DS);
1205		ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1206		set_fs(old_fs);
1207
1208		if (ret < 0)
1209			goto error_free;
1210
1211		/* clear the last little bit */
1212		if (ret < rlen)
1213			memset(base + ret, 0, rlen - ret);
1214
1215	}
1216
1217	return 0;
1218
1219error_free:
1220	free_page_series(region->vm_start, region->vm_end);
1221	region->vm_start = vma->vm_start = 0;
1222	region->vm_end   = vma->vm_end = 0;
1223	region->vm_top   = 0;
1224	return ret;
1225
1226enomem:
1227	printk("Allocation of length %lu from process %d (%s) failed\n",
1228	       len, current->pid, current->comm);
1229	show_free_areas(0);
1230	return -ENOMEM;
1231}
1232
1233/*
1234 * handle mapping creation for uClinux
1235 */
1236unsigned long do_mmap_pgoff(struct file *file,
1237			    unsigned long addr,
1238			    unsigned long len,
1239			    unsigned long prot,
1240			    unsigned long flags,
1241			    unsigned long pgoff)
1242{
1243	struct vm_area_struct *vma;
1244	struct vm_region *region;
1245	struct rb_node *rb;
1246	unsigned long capabilities, vm_flags, result;
1247	int ret;
1248
1249	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1250
1251	/* decide whether we should attempt the mapping, and if so what sort of
1252	 * mapping */
1253	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1254				    &capabilities);
1255	if (ret < 0) {
1256		kleave(" = %d [val]", ret);
1257		return ret;
1258	}
1259
1260	/* we ignore the address hint */
1261	addr = 0;
1262
1263	/* we've determined that we can make the mapping, now translate what we
1264	 * now know into VMA flags */
1265	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1266
1267	/* we're going to need to record the mapping */
1268	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1269	if (!region)
1270		goto error_getting_region;
1271
1272	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1273	if (!vma)
1274		goto error_getting_vma;
1275
1276	region->vm_usage = 1;
1277	region->vm_flags = vm_flags;
1278	region->vm_pgoff = pgoff;
1279
1280	INIT_LIST_HEAD(&vma->anon_vma_chain);
1281	vma->vm_flags = vm_flags;
1282	vma->vm_pgoff = pgoff;
1283
1284	if (file) {
1285		region->vm_file = file;
1286		get_file(file);
1287		vma->vm_file = file;
1288		get_file(file);
1289		if (vm_flags & VM_EXECUTABLE) {
1290			added_exe_file_vma(current->mm);
1291			vma->vm_mm = current->mm;
1292		}
1293	}
1294
1295	down_write(&nommu_region_sem);
1296
1297	/* if we want to share, we need to check for regions created by other
1298	 * mmap() calls that overlap with our proposed mapping
1299	 * - we can only share with a superset match on most regular files
1300	 * - shared mappings on character devices and memory backed files are
1301	 *   permitted to overlap inexactly as far as we are concerned for in
1302	 *   these cases, sharing is handled in the driver or filesystem rather
1303	 *   than here
1304	 */
1305	if (vm_flags & VM_MAYSHARE) {
1306		struct vm_region *pregion;
1307		unsigned long pglen, rpglen, pgend, rpgend, start;
1308
1309		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1310		pgend = pgoff + pglen;
1311
1312		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1313			pregion = rb_entry(rb, struct vm_region, vm_rb);
1314
1315			if (!(pregion->vm_flags & VM_MAYSHARE))
1316				continue;
1317
1318			/* search for overlapping mappings on the same file */
1319			if (pregion->vm_file->f_path.dentry->d_inode !=
1320			    file->f_path.dentry->d_inode)
1321				continue;
1322
1323			if (pregion->vm_pgoff >= pgend)
1324				continue;
1325
1326			rpglen = pregion->vm_end - pregion->vm_start;
1327			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1328			rpgend = pregion->vm_pgoff + rpglen;
1329			if (pgoff >= rpgend)
1330				continue;
1331
1332			/* handle inexactly overlapping matches between
1333			 * mappings */
1334			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1335			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1336				/* new mapping is not a subset of the region */
1337				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1338					goto sharing_violation;
1339				continue;
1340			}
1341
1342			/* we've found a region we can share */
1343			pregion->vm_usage++;
1344			vma->vm_region = pregion;
1345			start = pregion->vm_start;
1346			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1347			vma->vm_start = start;
1348			vma->vm_end = start + len;
1349
1350			if (pregion->vm_flags & VM_MAPPED_COPY) {
1351				kdebug("share copy");
1352				vma->vm_flags |= VM_MAPPED_COPY;
1353			} else {
1354				kdebug("share mmap");
1355				ret = do_mmap_shared_file(vma);
1356				if (ret < 0) {
1357					vma->vm_region = NULL;
1358					vma->vm_start = 0;
1359					vma->vm_end = 0;
1360					pregion->vm_usage--;
1361					pregion = NULL;
1362					goto error_just_free;
1363				}
1364			}
1365			fput(region->vm_file);
1366			kmem_cache_free(vm_region_jar, region);
1367			region = pregion;
1368			result = start;
1369			goto share;
1370		}
1371
1372		/* obtain the address at which to make a shared mapping
1373		 * - this is the hook for quasi-memory character devices to
1374		 *   tell us the location of a shared mapping
1375		 */
1376		if (capabilities & BDI_CAP_MAP_DIRECT) {
1377			addr = file->f_op->get_unmapped_area(file, addr, len,
1378							     pgoff, flags);
1379			if (IS_ERR((void *) addr)) {
1380				ret = addr;
1381				if (ret != (unsigned long) -ENOSYS)
1382					goto error_just_free;
1383
1384				/* the driver refused to tell us where to site
1385				 * the mapping so we'll have to attempt to copy
1386				 * it */
1387				ret = (unsigned long) -ENODEV;
1388				if (!(capabilities & BDI_CAP_MAP_COPY))
1389					goto error_just_free;
1390
1391				capabilities &= ~BDI_CAP_MAP_DIRECT;
1392			} else {
1393				vma->vm_start = region->vm_start = addr;
1394				vma->vm_end = region->vm_end = addr + len;
1395			}
1396		}
1397	}
1398
1399	vma->vm_region = region;
1400
1401	/* set up the mapping
1402	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1403	 */
1404	if (file && vma->vm_flags & VM_SHARED)
1405		ret = do_mmap_shared_file(vma);
1406	else
1407		ret = do_mmap_private(vma, region, len, capabilities);
1408	if (ret < 0)
1409		goto error_just_free;
1410	add_nommu_region(region);
1411
1412	/* clear anonymous mappings that don't ask for uninitialized data */
1413	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1414		memset((void *)region->vm_start, 0,
1415		       region->vm_end - region->vm_start);
1416
1417	/* okay... we have a mapping; now we have to register it */
1418	result = vma->vm_start;
1419
1420	current->mm->total_vm += len >> PAGE_SHIFT;
1421
1422share:
1423	add_vma_to_mm(current->mm, vma);
1424
1425	/* we flush the region from the icache only when the first executable
1426	 * mapping of it is made  */
1427	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1428		flush_icache_range(region->vm_start, region->vm_end);
1429		region->vm_icache_flushed = true;
1430	}
1431
1432	up_write(&nommu_region_sem);
1433
1434	kleave(" = %lx", result);
1435	return result;
1436
1437error_just_free:
1438	up_write(&nommu_region_sem);
1439error:
1440	if (region->vm_file)
1441		fput(region->vm_file);
1442	kmem_cache_free(vm_region_jar, region);
1443	if (vma->vm_file)
1444		fput(vma->vm_file);
1445	if (vma->vm_flags & VM_EXECUTABLE)
1446		removed_exe_file_vma(vma->vm_mm);
1447	kmem_cache_free(vm_area_cachep, vma);
1448	kleave(" = %d", ret);
1449	return ret;
1450
1451sharing_violation:
1452	up_write(&nommu_region_sem);
1453	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1454	ret = -EINVAL;
1455	goto error;
1456
1457error_getting_vma:
1458	kmem_cache_free(vm_region_jar, region);
1459	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1460	       " from process %d failed\n",
1461	       len, current->pid);
1462	show_free_areas(0);
1463	return -ENOMEM;
1464
1465error_getting_region:
1466	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1467	       " from process %d failed\n",
1468	       len, current->pid);
1469	show_free_areas(0);
1470	return -ENOMEM;
1471}
1472EXPORT_SYMBOL(do_mmap_pgoff);
1473
1474SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1475		unsigned long, prot, unsigned long, flags,
1476		unsigned long, fd, unsigned long, pgoff)
1477{
1478	struct file *file = NULL;
1479	unsigned long retval = -EBADF;
1480
1481	audit_mmap_fd(fd, flags);
1482	if (!(flags & MAP_ANONYMOUS)) {
1483		file = fget(fd);
1484		if (!file)
1485			goto out;
1486	}
1487
1488	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1489
1490	down_write(&current->mm->mmap_sem);
1491	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1492	up_write(&current->mm->mmap_sem);
1493
1494	if (file)
1495		fput(file);
1496out:
1497	return retval;
1498}
1499
1500#ifdef __ARCH_WANT_SYS_OLD_MMAP
1501struct mmap_arg_struct {
1502	unsigned long addr;
1503	unsigned long len;
1504	unsigned long prot;
1505	unsigned long flags;
1506	unsigned long fd;
1507	unsigned long offset;
1508};
1509
1510SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1511{
1512	struct mmap_arg_struct a;
1513
1514	if (copy_from_user(&a, arg, sizeof(a)))
1515		return -EFAULT;
1516	if (a.offset & ~PAGE_MASK)
1517		return -EINVAL;
1518
1519	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1520			      a.offset >> PAGE_SHIFT);
1521}
1522#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1523
1524/*
1525 * split a vma into two pieces at address 'addr', a new vma is allocated either
1526 * for the first part or the tail.
1527 */
1528int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1529	      unsigned long addr, int new_below)
1530{
1531	struct vm_area_struct *new;
1532	struct vm_region *region;
1533	unsigned long npages;
1534
1535	kenter("");
1536
1537	/* we're only permitted to split anonymous regions (these should have
1538	 * only a single usage on the region) */
1539	if (vma->vm_file)
1540		return -ENOMEM;
1541
1542	if (mm->map_count >= sysctl_max_map_count)
1543		return -ENOMEM;
1544
1545	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1546	if (!region)
1547		return -ENOMEM;
1548
1549	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1550	if (!new) {
1551		kmem_cache_free(vm_region_jar, region);
1552		return -ENOMEM;
1553	}
1554
1555	/* most fields are the same, copy all, and then fixup */
1556	*new = *vma;
1557	*region = *vma->vm_region;
1558	new->vm_region = region;
1559
1560	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1561
1562	if (new_below) {
1563		region->vm_top = region->vm_end = new->vm_end = addr;
1564	} else {
1565		region->vm_start = new->vm_start = addr;
1566		region->vm_pgoff = new->vm_pgoff += npages;
1567	}
1568
1569	if (new->vm_ops && new->vm_ops->open)
1570		new->vm_ops->open(new);
1571
1572	delete_vma_from_mm(vma);
1573	down_write(&nommu_region_sem);
1574	delete_nommu_region(vma->vm_region);
1575	if (new_below) {
1576		vma->vm_region->vm_start = vma->vm_start = addr;
1577		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1578	} else {
1579		vma->vm_region->vm_end = vma->vm_end = addr;
1580		vma->vm_region->vm_top = addr;
1581	}
1582	add_nommu_region(vma->vm_region);
1583	add_nommu_region(new->vm_region);
1584	up_write(&nommu_region_sem);
1585	add_vma_to_mm(mm, vma);
1586	add_vma_to_mm(mm, new);
1587	return 0;
1588}
1589
1590/*
1591 * shrink a VMA by removing the specified chunk from either the beginning or
1592 * the end
1593 */
1594static int shrink_vma(struct mm_struct *mm,
1595		      struct vm_area_struct *vma,
1596		      unsigned long from, unsigned long to)
1597{
1598	struct vm_region *region;
1599
1600	kenter("");
1601
1602	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1603	 * and list */
1604	delete_vma_from_mm(vma);
1605	if (from > vma->vm_start)
1606		vma->vm_end = from;
1607	else
1608		vma->vm_start = to;
1609	add_vma_to_mm(mm, vma);
1610
1611	/* cut the backing region down to size */
1612	region = vma->vm_region;
1613	BUG_ON(region->vm_usage != 1);
1614
1615	down_write(&nommu_region_sem);
1616	delete_nommu_region(region);
1617	if (from > region->vm_start) {
1618		to = region->vm_top;
1619		region->vm_top = region->vm_end = from;
1620	} else {
1621		region->vm_start = to;
1622	}
1623	add_nommu_region(region);
1624	up_write(&nommu_region_sem);
1625
1626	free_page_series(from, to);
1627	return 0;
1628}
1629
1630/*
1631 * release a mapping
1632 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1633 *   VMA, though it need not cover the whole VMA
1634 */
1635int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1636{
1637	struct vm_area_struct *vma;
1638	struct rb_node *rb;
1639	unsigned long end = start + len;
1640	int ret;
1641
1642	kenter(",%lx,%zx", start, len);
1643
1644	if (len == 0)
1645		return -EINVAL;
1646
1647	/* find the first potentially overlapping VMA */
1648	vma = find_vma(mm, start);
1649	if (!vma) {
1650		static int limit = 0;
1651		if (limit < 5) {
1652			printk(KERN_WARNING
1653			       "munmap of memory not mmapped by process %d"
1654			       " (%s): 0x%lx-0x%lx\n",
1655			       current->pid, current->comm,
1656			       start, start + len - 1);
1657			limit++;
1658		}
1659		return -EINVAL;
1660	}
1661
1662	/* we're allowed to split an anonymous VMA but not a file-backed one */
1663	if (vma->vm_file) {
1664		do {
1665			if (start > vma->vm_start) {
1666				kleave(" = -EINVAL [miss]");
1667				return -EINVAL;
1668			}
1669			if (end == vma->vm_end)
1670				goto erase_whole_vma;
1671			rb = rb_next(&vma->vm_rb);
1672			vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1673		} while (rb);
1674		kleave(" = -EINVAL [split file]");
1675		return -EINVAL;
1676	} else {
1677		/* the chunk must be a subset of the VMA found */
1678		if (start == vma->vm_start && end == vma->vm_end)
1679			goto erase_whole_vma;
1680		if (start < vma->vm_start || end > vma->vm_end) {
1681			kleave(" = -EINVAL [superset]");
1682			return -EINVAL;
1683		}
1684		if (start & ~PAGE_MASK) {
1685			kleave(" = -EINVAL [unaligned start]");
1686			return -EINVAL;
1687		}
1688		if (end != vma->vm_end && end & ~PAGE_MASK) {
1689			kleave(" = -EINVAL [unaligned split]");
1690			return -EINVAL;
1691		}
1692		if (start != vma->vm_start && end != vma->vm_end) {
1693			ret = split_vma(mm, vma, start, 1);
1694			if (ret < 0) {
1695				kleave(" = %d [split]", ret);
1696				return ret;
1697			}
1698		}
1699		return shrink_vma(mm, vma, start, end);
1700	}
1701
1702erase_whole_vma:
1703	delete_vma_from_mm(vma);
1704	delete_vma(mm, vma);
1705	kleave(" = 0");
1706	return 0;
1707}
1708EXPORT_SYMBOL(do_munmap);
1709
1710SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1711{
1712	int ret;
1713	struct mm_struct *mm = current->mm;
1714
1715	down_write(&mm->mmap_sem);
1716	ret = do_munmap(mm, addr, len);
1717	up_write(&mm->mmap_sem);
1718	return ret;
1719}
1720
1721/*
1722 * release all the mappings made in a process's VM space
1723 */
1724void exit_mmap(struct mm_struct *mm)
1725{
1726	struct vm_area_struct *vma;
1727
1728	if (!mm)
1729		return;
1730
1731	kenter("");
1732
1733	mm->total_vm = 0;
1734
1735	while ((vma = mm->mmap)) {
1736		mm->mmap = vma->vm_next;
1737		delete_vma_from_mm(vma);
1738		delete_vma(mm, vma);
1739		cond_resched();
1740	}
1741
1742	kleave("");
1743}
1744
1745unsigned long do_brk(unsigned long addr, unsigned long len)
1746{
1747	return -ENOMEM;
1748}
1749
1750/*
1751 * expand (or shrink) an existing mapping, potentially moving it at the same
1752 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1753 *
1754 * under NOMMU conditions, we only permit changing a mapping's size, and only
1755 * as long as it stays within the region allocated by do_mmap_private() and the
1756 * block is not shareable
1757 *
1758 * MREMAP_FIXED is not supported under NOMMU conditions
1759 */
1760unsigned long do_mremap(unsigned long addr,
1761			unsigned long old_len, unsigned long new_len,
1762			unsigned long flags, unsigned long new_addr)
1763{
1764	struct vm_area_struct *vma;
1765
1766	/* insanity checks first */
1767	if (old_len == 0 || new_len == 0)
1768		return (unsigned long) -EINVAL;
1769
1770	if (addr & ~PAGE_MASK)
1771		return -EINVAL;
1772
1773	if (flags & MREMAP_FIXED && new_addr != addr)
1774		return (unsigned long) -EINVAL;
1775
1776	vma = find_vma_exact(current->mm, addr, old_len);
1777	if (!vma)
1778		return (unsigned long) -EINVAL;
1779
1780	if (vma->vm_end != vma->vm_start + old_len)
1781		return (unsigned long) -EFAULT;
1782
1783	if (vma->vm_flags & VM_MAYSHARE)
1784		return (unsigned long) -EPERM;
1785
1786	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1787		return (unsigned long) -ENOMEM;
1788
1789	/* all checks complete - do it */
1790	vma->vm_end = vma->vm_start + new_len;
1791	return vma->vm_start;
1792}
1793EXPORT_SYMBOL(do_mremap);
1794
1795SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1796		unsigned long, new_len, unsigned long, flags,
1797		unsigned long, new_addr)
1798{
1799	unsigned long ret;
1800
1801	down_write(&current->mm->mmap_sem);
1802	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1803	up_write(&current->mm->mmap_sem);
1804	return ret;
1805}
1806
1807struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1808			unsigned int foll_flags)
1809{
1810	return NULL;
1811}
1812
1813int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1814		unsigned long to, unsigned long size, pgprot_t prot)
1815{
1816	vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1817	return 0;
1818}
1819EXPORT_SYMBOL(remap_pfn_range);
1820
1821int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1822			unsigned long pgoff)
1823{
1824	unsigned int size = vma->vm_end - vma->vm_start;
1825
1826	if (!(vma->vm_flags & VM_USERMAP))
1827		return -EINVAL;
1828
1829	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1830	vma->vm_end = vma->vm_start + size;
1831
1832	return 0;
1833}
1834EXPORT_SYMBOL(remap_vmalloc_range);
1835
1836unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1837	unsigned long len, unsigned long pgoff, unsigned long flags)
1838{
1839	return -ENOMEM;
1840}
1841
1842void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1843{
1844}
1845
1846void unmap_mapping_range(struct address_space *mapping,
1847			 loff_t const holebegin, loff_t const holelen,
1848			 int even_cows)
1849{
1850}
1851EXPORT_SYMBOL(unmap_mapping_range);
1852
1853/*
1854 * Check that a process has enough memory to allocate a new virtual
1855 * mapping. 0 means there is enough memory for the allocation to
1856 * succeed and -ENOMEM implies there is not.
1857 *
1858 * We currently support three overcommit policies, which are set via the
1859 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1860 *
1861 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1862 * Additional code 2002 Jul 20 by Robert Love.
1863 *
1864 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1865 *
1866 * Note this is a helper function intended to be used by LSMs which
1867 * wish to use this logic.
1868 */
1869int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1870{
1871	unsigned long free, allowed;
1872
1873	vm_acct_memory(pages);
1874
1875	/*
1876	 * Sometimes we want to use more memory than we have
1877	 */
1878	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1879		return 0;
1880
1881	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1882		unsigned long n;
1883
1884		free = global_page_state(NR_FILE_PAGES);
1885		free += nr_swap_pages;
1886
1887		/*
1888		 * Any slabs which are created with the
1889		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1890		 * which are reclaimable, under pressure.  The dentry
1891		 * cache and most inode caches should fall into this
1892		 */
1893		free += global_page_state(NR_SLAB_RECLAIMABLE);
1894
1895		/*
1896		 * Leave the last 3% for root
1897		 */
1898		if (!cap_sys_admin)
1899			free -= free / 32;
1900
1901		if (free > pages)
1902			return 0;
1903
1904		/*
1905		 * nr_free_pages() is very expensive on large systems,
1906		 * only call if we're about to fail.
1907		 */
1908		n = nr_free_pages();
1909
1910		/*
1911		 * Leave reserved pages. The pages are not for anonymous pages.
1912		 */
1913		if (n <= totalreserve_pages)
1914			goto error;
1915		else
1916			n -= totalreserve_pages;
1917
1918		/*
1919		 * Leave the last 3% for root
1920		 */
1921		if (!cap_sys_admin)
1922			n -= n / 32;
1923		free += n;
1924
1925		if (free > pages)
1926			return 0;
1927
1928		goto error;
1929	}
1930
1931	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1932	/*
1933	 * Leave the last 3% for root
1934	 */
1935	if (!cap_sys_admin)
1936		allowed -= allowed / 32;
1937	allowed += total_swap_pages;
1938
1939	/* Don't let a single process grow too big:
1940	   leave 3% of the size of this process for other processes */
1941	if (mm)
1942		allowed -= mm->total_vm / 32;
1943
1944	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1945		return 0;
1946
1947error:
1948	vm_unacct_memory(pages);
1949
1950	return -ENOMEM;
1951}
1952
1953int in_gate_area_no_mm(unsigned long addr)
1954{
1955	return 0;
1956}
1957
1958int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1959{
1960	BUG();
1961	return 0;
1962}
1963EXPORT_SYMBOL(filemap_fault);
1964
1965static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1966		unsigned long addr, void *buf, int len, int write)
1967{
1968	struct vm_area_struct *vma;
1969
1970	down_read(&mm->mmap_sem);
1971
1972	/* the access must start within one of the target process's mappings */
1973	vma = find_vma(mm, addr);
1974	if (vma) {
1975		/* don't overrun this mapping */
1976		if (addr + len >= vma->vm_end)
1977			len = vma->vm_end - addr;
1978
1979		/* only read or write mappings where it is permitted */
1980		if (write && vma->vm_flags & VM_MAYWRITE)
1981			copy_to_user_page(vma, NULL, addr,
1982					 (void *) addr, buf, len);
1983		else if (!write && vma->vm_flags & VM_MAYREAD)
1984			copy_from_user_page(vma, NULL, addr,
1985					    buf, (void *) addr, len);
1986		else
1987			len = 0;
1988	} else {
1989		len = 0;
1990	}
1991
1992	up_read(&mm->mmap_sem);
1993
1994	return len;
1995}
1996
1997/**
1998 * @access_remote_vm - access another process' address space
1999 * @mm:		the mm_struct of the target address space
2000 * @addr:	start address to access
2001 * @buf:	source or destination buffer
2002 * @len:	number of bytes to transfer
2003 * @write:	whether the access is a write
2004 *
2005 * The caller must hold a reference on @mm.
2006 */
2007int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2008		void *buf, int len, int write)
2009{
2010	return __access_remote_vm(NULL, mm, addr, buf, len, write);
2011}
2012
2013/*
2014 * Access another process' address space.
2015 * - source/target buffer must be kernel space
2016 */
2017int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2018{
2019	struct mm_struct *mm;
2020
2021	if (addr + len < addr)
2022		return 0;
2023
2024	mm = get_task_mm(tsk);
2025	if (!mm)
2026		return 0;
2027
2028	len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2029
2030	mmput(mm);
2031	return len;
2032}
2033
2034/**
2035 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2036 * @inode: The inode to check
2037 * @size: The current filesize of the inode
2038 * @newsize: The proposed filesize of the inode
2039 *
2040 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2041 * make sure that that any outstanding VMAs aren't broken and then shrink the
2042 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2043 * automatically grant mappings that are too large.
2044 */
2045int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2046				size_t newsize)
2047{
2048	struct vm_area_struct *vma;
2049	struct prio_tree_iter iter;
2050	struct vm_region *region;
2051	pgoff_t low, high;
2052	size_t r_size, r_top;
2053
2054	low = newsize >> PAGE_SHIFT;
2055	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2056
2057	down_write(&nommu_region_sem);
2058
2059	/* search for VMAs that fall within the dead zone */
2060	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2061			      low, high) {
2062		/* found one - only interested if it's shared out of the page
2063		 * cache */
2064		if (vma->vm_flags & VM_SHARED) {
2065			up_write(&nommu_region_sem);
2066			return -ETXTBSY; /* not quite true, but near enough */
2067		}
2068	}
2069
2070	/* reduce any regions that overlap the dead zone - if in existence,
2071	 * these will be pointed to by VMAs that don't overlap the dead zone
2072	 *
2073	 * we don't check for any regions that start beyond the EOF as there
2074	 * shouldn't be any
2075	 */
2076	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2077			      0, ULONG_MAX) {
2078		if (!(vma->vm_flags & VM_SHARED))
2079			continue;
2080
2081		region = vma->vm_region;
2082		r_size = region->vm_top - region->vm_start;
2083		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2084
2085		if (r_top > newsize) {
2086			region->vm_top -= r_top - newsize;
2087			if (region->vm_end > region->vm_top)
2088				region->vm_end = region->vm_top;
2089		}
2090	}
2091
2092	up_write(&nommu_region_sem);
2093	return 0;
2094}
2095