oom_kill.c revision 35ae834fa02ba89cfbd4a80892c0e458fd6d5c0b
1/*
2 *  linux/mm/oom_kill.c
3 *
4 *  Copyright (C)  1998,2000  Rik van Riel
5 *	Thanks go out to Claus Fischer for some serious inspiration and
6 *	for goading me into coding this file...
7 *
8 *  The routines in this file are used to kill a process when
9 *  we're seriously out of memory. This gets called from __alloc_pages()
10 *  in mm/page_alloc.c when we really run out of memory.
11 *
12 *  Since we won't call these routines often (on a well-configured
13 *  machine) this file will double as a 'coding guide' and a signpost
14 *  for newbie kernel hackers. It features several pointers to major
15 *  kernel subsystems and hints as to where to find out what things do.
16 */
17
18#include <linux/oom.h>
19#include <linux/mm.h>
20#include <linux/sched.h>
21#include <linux/swap.h>
22#include <linux/timex.h>
23#include <linux/jiffies.h>
24#include <linux/cpuset.h>
25#include <linux/module.h>
26#include <linux/notifier.h>
27
28int sysctl_panic_on_oom;
29/* #define DEBUG */
30
31/**
32 * badness - calculate a numeric value for how bad this task has been
33 * @p: task struct of which task we should calculate
34 * @uptime: current uptime in seconds
35 *
36 * The formula used is relatively simple and documented inline in the
37 * function. The main rationale is that we want to select a good task
38 * to kill when we run out of memory.
39 *
40 * Good in this context means that:
41 * 1) we lose the minimum amount of work done
42 * 2) we recover a large amount of memory
43 * 3) we don't kill anything innocent of eating tons of memory
44 * 4) we want to kill the minimum amount of processes (one)
45 * 5) we try to kill the process the user expects us to kill, this
46 *    algorithm has been meticulously tuned to meet the principle
47 *    of least surprise ... (be careful when you change it)
48 */
49
50unsigned long badness(struct task_struct *p, unsigned long uptime)
51{
52	unsigned long points, cpu_time, run_time, s;
53	struct mm_struct *mm;
54	struct task_struct *child;
55
56	task_lock(p);
57	mm = p->mm;
58	if (!mm) {
59		task_unlock(p);
60		return 0;
61	}
62
63	/*
64	 * The memory size of the process is the basis for the badness.
65	 */
66	points = mm->total_vm;
67
68	/*
69	 * After this unlock we can no longer dereference local variable `mm'
70	 */
71	task_unlock(p);
72
73	/*
74	 * swapoff can easily use up all memory, so kill those first.
75	 */
76	if (p->flags & PF_SWAPOFF)
77		return ULONG_MAX;
78
79	/*
80	 * Processes which fork a lot of child processes are likely
81	 * a good choice. We add half the vmsize of the children if they
82	 * have an own mm. This prevents forking servers to flood the
83	 * machine with an endless amount of children. In case a single
84	 * child is eating the vast majority of memory, adding only half
85	 * to the parents will make the child our kill candidate of choice.
86	 */
87	list_for_each_entry(child, &p->children, sibling) {
88		task_lock(child);
89		if (child->mm != mm && child->mm)
90			points += child->mm->total_vm/2 + 1;
91		task_unlock(child);
92	}
93
94	/*
95	 * CPU time is in tens of seconds and run time is in thousands
96         * of seconds. There is no particular reason for this other than
97         * that it turned out to work very well in practice.
98	 */
99	cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
100		>> (SHIFT_HZ + 3);
101
102	if (uptime >= p->start_time.tv_sec)
103		run_time = (uptime - p->start_time.tv_sec) >> 10;
104	else
105		run_time = 0;
106
107	s = int_sqrt(cpu_time);
108	if (s)
109		points /= s;
110	s = int_sqrt(int_sqrt(run_time));
111	if (s)
112		points /= s;
113
114	/*
115	 * Niced processes are most likely less important, so double
116	 * their badness points.
117	 */
118	if (task_nice(p) > 0)
119		points *= 2;
120
121	/*
122	 * Superuser processes are usually more important, so we make it
123	 * less likely that we kill those.
124	 */
125	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
126				p->uid == 0 || p->euid == 0)
127		points /= 4;
128
129	/*
130	 * We don't want to kill a process with direct hardware access.
131	 * Not only could that mess up the hardware, but usually users
132	 * tend to only have this flag set on applications they think
133	 * of as important.
134	 */
135	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
136		points /= 4;
137
138	/*
139	 * If p's nodes don't overlap ours, it may still help to kill p
140	 * because p may have allocated or otherwise mapped memory on
141	 * this node before. However it will be less likely.
142	 */
143	if (!cpuset_excl_nodes_overlap(p))
144		points /= 8;
145
146	/*
147	 * Adjust the score by oomkilladj.
148	 */
149	if (p->oomkilladj) {
150		if (p->oomkilladj > 0)
151			points <<= p->oomkilladj;
152		else
153			points >>= -(p->oomkilladj);
154	}
155
156#ifdef DEBUG
157	printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n",
158	p->pid, p->comm, points);
159#endif
160	return points;
161}
162
163/*
164 * Types of limitations to the nodes from which allocations may occur
165 */
166#define CONSTRAINT_NONE 1
167#define CONSTRAINT_MEMORY_POLICY 2
168#define CONSTRAINT_CPUSET 3
169
170/*
171 * Determine the type of allocation constraint.
172 */
173static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask)
174{
175#ifdef CONFIG_NUMA
176	struct zone **z;
177	nodemask_t nodes;
178	int node;
179	/* node has memory ? */
180	for_each_online_node(node)
181		if (NODE_DATA(node)->node_present_pages)
182			node_set(node, nodes);
183
184	for (z = zonelist->zones; *z; z++)
185		if (cpuset_zone_allowed_softwall(*z, gfp_mask))
186			node_clear(zone_to_nid(*z), nodes);
187		else
188			return CONSTRAINT_CPUSET;
189
190	if (!nodes_empty(nodes))
191		return CONSTRAINT_MEMORY_POLICY;
192#endif
193
194	return CONSTRAINT_NONE;
195}
196
197/*
198 * Simple selection loop. We chose the process with the highest
199 * number of 'points'. We expect the caller will lock the tasklist.
200 *
201 * (not docbooked, we don't want this one cluttering up the manual)
202 */
203static struct task_struct *select_bad_process(unsigned long *ppoints)
204{
205	struct task_struct *g, *p;
206	struct task_struct *chosen = NULL;
207	struct timespec uptime;
208	*ppoints = 0;
209
210	do_posix_clock_monotonic_gettime(&uptime);
211	do_each_thread(g, p) {
212		unsigned long points;
213
214		/*
215		 * skip kernel threads and tasks which have already released
216		 * their mm.
217		 */
218		if (!p->mm)
219			continue;
220		/* skip the init task */
221		if (is_init(p))
222			continue;
223
224		/*
225		 * This task already has access to memory reserves and is
226		 * being killed. Don't allow any other task access to the
227		 * memory reserve.
228		 *
229		 * Note: this may have a chance of deadlock if it gets
230		 * blocked waiting for another task which itself is waiting
231		 * for memory. Is there a better alternative?
232		 */
233		if (test_tsk_thread_flag(p, TIF_MEMDIE))
234			return ERR_PTR(-1UL);
235
236		/*
237		 * This is in the process of releasing memory so wait for it
238		 * to finish before killing some other task by mistake.
239		 *
240		 * However, if p is the current task, we allow the 'kill' to
241		 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
242		 * which will allow it to gain access to memory reserves in
243		 * the process of exiting and releasing its resources.
244		 * Otherwise we could get an easy OOM deadlock.
245		 */
246		if (p->flags & PF_EXITING) {
247			if (p != current)
248				return ERR_PTR(-1UL);
249
250			chosen = p;
251			*ppoints = ULONG_MAX;
252		}
253
254		if (p->oomkilladj == OOM_DISABLE)
255			continue;
256
257		points = badness(p, uptime.tv_sec);
258		if (points > *ppoints || !chosen) {
259			chosen = p;
260			*ppoints = points;
261		}
262	} while_each_thread(g, p);
263
264	return chosen;
265}
266
267/**
268 * Send SIGKILL to the selected  process irrespective of  CAP_SYS_RAW_IO
269 * flag though it's unlikely that  we select a process with CAP_SYS_RAW_IO
270 * set.
271 */
272static void __oom_kill_task(struct task_struct *p, int verbose)
273{
274	if (is_init(p)) {
275		WARN_ON(1);
276		printk(KERN_WARNING "tried to kill init!\n");
277		return;
278	}
279
280	if (!p->mm) {
281		WARN_ON(1);
282		printk(KERN_WARNING "tried to kill an mm-less task!\n");
283		return;
284	}
285
286	if (verbose)
287		printk(KERN_ERR "Killed process %d (%s)\n", p->pid, p->comm);
288
289	/*
290	 * We give our sacrificial lamb high priority and access to
291	 * all the memory it needs. That way it should be able to
292	 * exit() and clear out its resources quickly...
293	 */
294	p->time_slice = HZ;
295	set_tsk_thread_flag(p, TIF_MEMDIE);
296
297	force_sig(SIGKILL, p);
298}
299
300static int oom_kill_task(struct task_struct *p)
301{
302	struct mm_struct *mm;
303	struct task_struct *g, *q;
304
305	mm = p->mm;
306
307	/* WARNING: mm may not be dereferenced since we did not obtain its
308	 * value from get_task_mm(p).  This is OK since all we need to do is
309	 * compare mm to q->mm below.
310	 *
311	 * Furthermore, even if mm contains a non-NULL value, p->mm may
312	 * change to NULL at any time since we do not hold task_lock(p).
313	 * However, this is of no concern to us.
314	 */
315
316	if (mm == NULL)
317		return 1;
318
319	/*
320	 * Don't kill the process if any threads are set to OOM_DISABLE
321	 */
322	do_each_thread(g, q) {
323		if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
324			return 1;
325	} while_each_thread(g, q);
326
327	__oom_kill_task(p, 1);
328
329	/*
330	 * kill all processes that share the ->mm (i.e. all threads),
331	 * but are in a different thread group. Don't let them have access
332	 * to memory reserves though, otherwise we might deplete all memory.
333	 */
334	do_each_thread(g, q) {
335		if (q->mm == mm && q->tgid != p->tgid)
336			force_sig(SIGKILL, p);
337	} while_each_thread(g, q);
338
339	return 0;
340}
341
342static int oom_kill_process(struct task_struct *p, unsigned long points,
343		const char *message)
344{
345	struct task_struct *c;
346	struct list_head *tsk;
347
348	/*
349	 * If the task is already exiting, don't alarm the sysadmin or kill
350	 * its children or threads, just set TIF_MEMDIE so it can die quickly
351	 */
352	if (p->flags & PF_EXITING) {
353		__oom_kill_task(p, 0);
354		return 0;
355	}
356
357	printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
358					message, p->pid, p->comm, points);
359
360	/* Try to kill a child first */
361	list_for_each(tsk, &p->children) {
362		c = list_entry(tsk, struct task_struct, sibling);
363		if (c->mm == p->mm)
364			continue;
365		if (!oom_kill_task(c))
366			return 0;
367	}
368	return oom_kill_task(p);
369}
370
371static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
372
373int register_oom_notifier(struct notifier_block *nb)
374{
375	return blocking_notifier_chain_register(&oom_notify_list, nb);
376}
377EXPORT_SYMBOL_GPL(register_oom_notifier);
378
379int unregister_oom_notifier(struct notifier_block *nb)
380{
381	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
382}
383EXPORT_SYMBOL_GPL(unregister_oom_notifier);
384
385/**
386 * out_of_memory - kill the "best" process when we run out of memory
387 *
388 * If we run out of memory, we have the choice between either
389 * killing a random task (bad), letting the system crash (worse)
390 * OR try to be smart about which process to kill. Note that we
391 * don't have to be perfect here, we just have to be good.
392 */
393void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
394{
395	struct task_struct *p;
396	unsigned long points = 0;
397	unsigned long freed = 0;
398
399	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
400	if (freed > 0)
401		/* Got some memory back in the last second. */
402		return;
403
404	if (printk_ratelimit()) {
405		printk(KERN_WARNING "%s invoked oom-killer: "
406			"gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
407			current->comm, gfp_mask, order, current->oomkilladj);
408		dump_stack();
409		show_mem();
410	}
411
412	cpuset_lock();
413	read_lock(&tasklist_lock);
414
415	/*
416	 * Check if there were limitations on the allocation (only relevant for
417	 * NUMA) that may require different handling.
418	 */
419	switch (constrained_alloc(zonelist, gfp_mask)) {
420	case CONSTRAINT_MEMORY_POLICY:
421		oom_kill_process(current, points,
422				"No available memory (MPOL_BIND)");
423		break;
424
425	case CONSTRAINT_CPUSET:
426		oom_kill_process(current, points,
427				"No available memory in cpuset");
428		break;
429
430	case CONSTRAINT_NONE:
431		if (sysctl_panic_on_oom)
432			panic("out of memory. panic_on_oom is selected\n");
433retry:
434		/*
435		 * Rambo mode: Shoot down a process and hope it solves whatever
436		 * issues we may have.
437		 */
438		p = select_bad_process(&points);
439
440		if (PTR_ERR(p) == -1UL)
441			goto out;
442
443		/* Found nothing?!?! Either we hang forever, or we panic. */
444		if (!p) {
445			read_unlock(&tasklist_lock);
446			cpuset_unlock();
447			panic("Out of memory and no killable processes...\n");
448		}
449
450		if (oom_kill_process(p, points, "Out of memory"))
451			goto retry;
452
453		break;
454	}
455
456out:
457	read_unlock(&tasklist_lock);
458	cpuset_unlock();
459
460	/*
461	 * Give "p" a good chance of killing itself before we
462	 * retry to allocate memory unless "p" is current
463	 */
464	if (!test_thread_flag(TIF_MEMDIE))
465		schedule_timeout_uninterruptible(1);
466}
467