oom_kill.c revision 36c8b586896f60cb91a4fd526233190b34316baf
1/*
2 *  linux/mm/oom_kill.c
3 *
4 *  Copyright (C)  1998,2000  Rik van Riel
5 *	Thanks go out to Claus Fischer for some serious inspiration and
6 *	for goading me into coding this file...
7 *
8 *  The routines in this file are used to kill a process when
9 *  we're seriously out of memory. This gets called from __alloc_pages()
10 *  in mm/page_alloc.c when we really run out of memory.
11 *
12 *  Since we won't call these routines often (on a well-configured
13 *  machine) this file will double as a 'coding guide' and a signpost
14 *  for newbie kernel hackers. It features several pointers to major
15 *  kernel subsystems and hints as to where to find out what things do.
16 */
17
18#include <linux/mm.h>
19#include <linux/sched.h>
20#include <linux/swap.h>
21#include <linux/timex.h>
22#include <linux/jiffies.h>
23#include <linux/cpuset.h>
24
25int sysctl_panic_on_oom;
26/* #define DEBUG */
27
28/**
29 * badness - calculate a numeric value for how bad this task has been
30 * @p: task struct of which task we should calculate
31 * @uptime: current uptime in seconds
32 *
33 * The formula used is relatively simple and documented inline in the
34 * function. The main rationale is that we want to select a good task
35 * to kill when we run out of memory.
36 *
37 * Good in this context means that:
38 * 1) we lose the minimum amount of work done
39 * 2) we recover a large amount of memory
40 * 3) we don't kill anything innocent of eating tons of memory
41 * 4) we want to kill the minimum amount of processes (one)
42 * 5) we try to kill the process the user expects us to kill, this
43 *    algorithm has been meticulously tuned to meet the principle
44 *    of least surprise ... (be careful when you change it)
45 */
46
47unsigned long badness(struct task_struct *p, unsigned long uptime)
48{
49	unsigned long points, cpu_time, run_time, s;
50	struct mm_struct *mm;
51	struct task_struct *child;
52
53	task_lock(p);
54	mm = p->mm;
55	if (!mm) {
56		task_unlock(p);
57		return 0;
58	}
59
60	/*
61	 * The memory size of the process is the basis for the badness.
62	 */
63	points = mm->total_vm;
64
65	/*
66	 * After this unlock we can no longer dereference local variable `mm'
67	 */
68	task_unlock(p);
69
70	/*
71	 * Processes which fork a lot of child processes are likely
72	 * a good choice. We add half the vmsize of the children if they
73	 * have an own mm. This prevents forking servers to flood the
74	 * machine with an endless amount of children. In case a single
75	 * child is eating the vast majority of memory, adding only half
76	 * to the parents will make the child our kill candidate of choice.
77	 */
78	list_for_each_entry(child, &p->children, sibling) {
79		task_lock(child);
80		if (child->mm != mm && child->mm)
81			points += child->mm->total_vm/2 + 1;
82		task_unlock(child);
83	}
84
85	/*
86	 * CPU time is in tens of seconds and run time is in thousands
87         * of seconds. There is no particular reason for this other than
88         * that it turned out to work very well in practice.
89	 */
90	cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
91		>> (SHIFT_HZ + 3);
92
93	if (uptime >= p->start_time.tv_sec)
94		run_time = (uptime - p->start_time.tv_sec) >> 10;
95	else
96		run_time = 0;
97
98	s = int_sqrt(cpu_time);
99	if (s)
100		points /= s;
101	s = int_sqrt(int_sqrt(run_time));
102	if (s)
103		points /= s;
104
105	/*
106	 * Niced processes are most likely less important, so double
107	 * their badness points.
108	 */
109	if (task_nice(p) > 0)
110		points *= 2;
111
112	/*
113	 * Superuser processes are usually more important, so we make it
114	 * less likely that we kill those.
115	 */
116	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
117				p->uid == 0 || p->euid == 0)
118		points /= 4;
119
120	/*
121	 * We don't want to kill a process with direct hardware access.
122	 * Not only could that mess up the hardware, but usually users
123	 * tend to only have this flag set on applications they think
124	 * of as important.
125	 */
126	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
127		points /= 4;
128
129	/*
130	 * Adjust the score by oomkilladj.
131	 */
132	if (p->oomkilladj) {
133		if (p->oomkilladj > 0)
134			points <<= p->oomkilladj;
135		else
136			points >>= -(p->oomkilladj);
137	}
138
139#ifdef DEBUG
140	printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n",
141	p->pid, p->comm, points);
142#endif
143	return points;
144}
145
146/*
147 * Types of limitations to the nodes from which allocations may occur
148 */
149#define CONSTRAINT_NONE 1
150#define CONSTRAINT_MEMORY_POLICY 2
151#define CONSTRAINT_CPUSET 3
152
153/*
154 * Determine the type of allocation constraint.
155 */
156static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask)
157{
158#ifdef CONFIG_NUMA
159	struct zone **z;
160	nodemask_t nodes = node_online_map;
161
162	for (z = zonelist->zones; *z; z++)
163		if (cpuset_zone_allowed(*z, gfp_mask))
164			node_clear((*z)->zone_pgdat->node_id,
165					nodes);
166		else
167			return CONSTRAINT_CPUSET;
168
169	if (!nodes_empty(nodes))
170		return CONSTRAINT_MEMORY_POLICY;
171#endif
172
173	return CONSTRAINT_NONE;
174}
175
176/*
177 * Simple selection loop. We chose the process with the highest
178 * number of 'points'. We expect the caller will lock the tasklist.
179 *
180 * (not docbooked, we don't want this one cluttering up the manual)
181 */
182static struct task_struct *select_bad_process(unsigned long *ppoints)
183{
184	struct task_struct *g, *p;
185	struct task_struct *chosen = NULL;
186	struct timespec uptime;
187	*ppoints = 0;
188
189	do_posix_clock_monotonic_gettime(&uptime);
190	do_each_thread(g, p) {
191		unsigned long points;
192		int releasing;
193
194		/* skip the init task with pid == 1 */
195		if (p->pid == 1)
196			continue;
197		if (p->oomkilladj == OOM_DISABLE)
198			continue;
199		/* If p's nodes don't overlap ours, it won't help to kill p. */
200		if (!cpuset_excl_nodes_overlap(p))
201			continue;
202
203		/*
204		 * This is in the process of releasing memory so wait for it
205		 * to finish before killing some other task by mistake.
206		 */
207		releasing = test_tsk_thread_flag(p, TIF_MEMDIE) ||
208						p->flags & PF_EXITING;
209		if (releasing && !(p->flags & PF_DEAD))
210			return ERR_PTR(-1UL);
211		if (p->flags & PF_SWAPOFF)
212			return p;
213
214		points = badness(p, uptime.tv_sec);
215		if (points > *ppoints || !chosen) {
216			chosen = p;
217			*ppoints = points;
218		}
219	} while_each_thread(g, p);
220	return chosen;
221}
222
223/**
224 * We must be careful though to never send SIGKILL a process with
225 * CAP_SYS_RAW_IO set, send SIGTERM instead (but it's unlikely that
226 * we select a process with CAP_SYS_RAW_IO set).
227 */
228static void __oom_kill_task(struct task_struct *p, const char *message)
229{
230	if (p->pid == 1) {
231		WARN_ON(1);
232		printk(KERN_WARNING "tried to kill init!\n");
233		return;
234	}
235
236	task_lock(p);
237	if (!p->mm || p->mm == &init_mm) {
238		WARN_ON(1);
239		printk(KERN_WARNING "tried to kill an mm-less task!\n");
240		task_unlock(p);
241		return;
242	}
243	task_unlock(p);
244	printk(KERN_ERR "%s: Killed process %d (%s).\n",
245				message, p->pid, p->comm);
246
247	/*
248	 * We give our sacrificial lamb high priority and access to
249	 * all the memory it needs. That way it should be able to
250	 * exit() and clear out its resources quickly...
251	 */
252	p->time_slice = HZ;
253	set_tsk_thread_flag(p, TIF_MEMDIE);
254
255	force_sig(SIGKILL, p);
256}
257
258static int oom_kill_task(struct task_struct *p, const char *message)
259{
260	struct mm_struct *mm;
261	struct task_struct *g, *q;
262
263	mm = p->mm;
264
265	/* WARNING: mm may not be dereferenced since we did not obtain its
266	 * value from get_task_mm(p).  This is OK since all we need to do is
267	 * compare mm to q->mm below.
268	 *
269	 * Furthermore, even if mm contains a non-NULL value, p->mm may
270	 * change to NULL at any time since we do not hold task_lock(p).
271	 * However, this is of no concern to us.
272	 */
273
274	if (mm == NULL || mm == &init_mm)
275		return 1;
276
277	__oom_kill_task(p, message);
278	/*
279	 * kill all processes that share the ->mm (i.e. all threads),
280	 * but are in a different thread group
281	 */
282	do_each_thread(g, q)
283		if (q->mm == mm && q->tgid != p->tgid)
284			__oom_kill_task(q, message);
285	while_each_thread(g, q);
286
287	return 0;
288}
289
290static int oom_kill_process(struct task_struct *p, unsigned long points,
291		const char *message)
292{
293	struct task_struct *c;
294	struct list_head *tsk;
295
296	printk(KERN_ERR "Out of Memory: Kill process %d (%s) score %li and "
297		"children.\n", p->pid, p->comm, points);
298	/* Try to kill a child first */
299	list_for_each(tsk, &p->children) {
300		c = list_entry(tsk, struct task_struct, sibling);
301		if (c->mm == p->mm)
302			continue;
303		if (!oom_kill_task(c, message))
304			return 0;
305	}
306	return oom_kill_task(p, message);
307}
308
309/**
310 * out_of_memory - kill the "best" process when we run out of memory
311 *
312 * If we run out of memory, we have the choice between either
313 * killing a random task (bad), letting the system crash (worse)
314 * OR try to be smart about which process to kill. Note that we
315 * don't have to be perfect here, we just have to be good.
316 */
317void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
318{
319	struct task_struct *p;
320	unsigned long points = 0;
321
322	if (printk_ratelimit()) {
323		printk("oom-killer: gfp_mask=0x%x, order=%d\n",
324			gfp_mask, order);
325		dump_stack();
326		show_mem();
327	}
328
329	cpuset_lock();
330	read_lock(&tasklist_lock);
331
332	/*
333	 * Check if there were limitations on the allocation (only relevant for
334	 * NUMA) that may require different handling.
335	 */
336	switch (constrained_alloc(zonelist, gfp_mask)) {
337	case CONSTRAINT_MEMORY_POLICY:
338		oom_kill_process(current, points,
339				"No available memory (MPOL_BIND)");
340		break;
341
342	case CONSTRAINT_CPUSET:
343		oom_kill_process(current, points,
344				"No available memory in cpuset");
345		break;
346
347	case CONSTRAINT_NONE:
348		if (sysctl_panic_on_oom)
349			panic("out of memory. panic_on_oom is selected\n");
350retry:
351		/*
352		 * Rambo mode: Shoot down a process and hope it solves whatever
353		 * issues we may have.
354		 */
355		p = select_bad_process(&points);
356
357		if (PTR_ERR(p) == -1UL)
358			goto out;
359
360		/* Found nothing?!?! Either we hang forever, or we panic. */
361		if (!p) {
362			read_unlock(&tasklist_lock);
363			cpuset_unlock();
364			panic("Out of memory and no killable processes...\n");
365		}
366
367		if (oom_kill_process(p, points, "Out of memory"))
368			goto retry;
369
370		break;
371	}
372
373out:
374	read_unlock(&tasklist_lock);
375	cpuset_unlock();
376
377	/*
378	 * Give "p" a good chance of killing itself before we
379	 * retry to allocate memory unless "p" is current
380	 */
381	if (!test_thread_flag(TIF_MEMDIE))
382		schedule_timeout_uninterruptible(1);
383}
384