oom_kill.c revision 4a3ede107e422a0c53d28024b0aa902ca22a8768
1/*
2 *  linux/mm/oom_kill.c
3 *
4 *  Copyright (C)  1998,2000  Rik van Riel
5 *	Thanks go out to Claus Fischer for some serious inspiration and
6 *	for goading me into coding this file...
7 *
8 *  The routines in this file are used to kill a process when
9 *  we're seriously out of memory. This gets called from __alloc_pages()
10 *  in mm/page_alloc.c when we really run out of memory.
11 *
12 *  Since we won't call these routines often (on a well-configured
13 *  machine) this file will double as a 'coding guide' and a signpost
14 *  for newbie kernel hackers. It features several pointers to major
15 *  kernel subsystems and hints as to where to find out what things do.
16 */
17
18#include <linux/mm.h>
19#include <linux/sched.h>
20#include <linux/swap.h>
21#include <linux/timex.h>
22#include <linux/jiffies.h>
23#include <linux/cpuset.h>
24#include <linux/module.h>
25#include <linux/notifier.h>
26
27int sysctl_panic_on_oom;
28/* #define DEBUG */
29
30/**
31 * badness - calculate a numeric value for how bad this task has been
32 * @p: task struct of which task we should calculate
33 * @uptime: current uptime in seconds
34 *
35 * The formula used is relatively simple and documented inline in the
36 * function. The main rationale is that we want to select a good task
37 * to kill when we run out of memory.
38 *
39 * Good in this context means that:
40 * 1) we lose the minimum amount of work done
41 * 2) we recover a large amount of memory
42 * 3) we don't kill anything innocent of eating tons of memory
43 * 4) we want to kill the minimum amount of processes (one)
44 * 5) we try to kill the process the user expects us to kill, this
45 *    algorithm has been meticulously tuned to meet the principle
46 *    of least surprise ... (be careful when you change it)
47 */
48
49unsigned long badness(struct task_struct *p, unsigned long uptime)
50{
51	unsigned long points, cpu_time, run_time, s;
52	struct mm_struct *mm;
53	struct task_struct *child;
54
55	task_lock(p);
56	mm = p->mm;
57	if (!mm) {
58		task_unlock(p);
59		return 0;
60	}
61
62	/*
63	 * The memory size of the process is the basis for the badness.
64	 */
65	points = mm->total_vm;
66
67	/*
68	 * After this unlock we can no longer dereference local variable `mm'
69	 */
70	task_unlock(p);
71
72	/*
73	 * Processes which fork a lot of child processes are likely
74	 * a good choice. We add half the vmsize of the children if they
75	 * have an own mm. This prevents forking servers to flood the
76	 * machine with an endless amount of children. In case a single
77	 * child is eating the vast majority of memory, adding only half
78	 * to the parents will make the child our kill candidate of choice.
79	 */
80	list_for_each_entry(child, &p->children, sibling) {
81		task_lock(child);
82		if (child->mm != mm && child->mm)
83			points += child->mm->total_vm/2 + 1;
84		task_unlock(child);
85	}
86
87	/*
88	 * CPU time is in tens of seconds and run time is in thousands
89         * of seconds. There is no particular reason for this other than
90         * that it turned out to work very well in practice.
91	 */
92	cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
93		>> (SHIFT_HZ + 3);
94
95	if (uptime >= p->start_time.tv_sec)
96		run_time = (uptime - p->start_time.tv_sec) >> 10;
97	else
98		run_time = 0;
99
100	s = int_sqrt(cpu_time);
101	if (s)
102		points /= s;
103	s = int_sqrt(int_sqrt(run_time));
104	if (s)
105		points /= s;
106
107	/*
108	 * Niced processes are most likely less important, so double
109	 * their badness points.
110	 */
111	if (task_nice(p) > 0)
112		points *= 2;
113
114	/*
115	 * Superuser processes are usually more important, so we make it
116	 * less likely that we kill those.
117	 */
118	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
119				p->uid == 0 || p->euid == 0)
120		points /= 4;
121
122	/*
123	 * We don't want to kill a process with direct hardware access.
124	 * Not only could that mess up the hardware, but usually users
125	 * tend to only have this flag set on applications they think
126	 * of as important.
127	 */
128	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
129		points /= 4;
130
131	/*
132	 * If p's nodes don't overlap ours, it may still help to kill p
133	 * because p may have allocated or otherwise mapped memory on
134	 * this node before. However it will be less likely.
135	 */
136	if (!cpuset_excl_nodes_overlap(p))
137		points /= 8;
138
139	/*
140	 * Adjust the score by oomkilladj.
141	 */
142	if (p->oomkilladj) {
143		if (p->oomkilladj > 0)
144			points <<= p->oomkilladj;
145		else
146			points >>= -(p->oomkilladj);
147	}
148
149#ifdef DEBUG
150	printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n",
151	p->pid, p->comm, points);
152#endif
153	return points;
154}
155
156/*
157 * Types of limitations to the nodes from which allocations may occur
158 */
159#define CONSTRAINT_NONE 1
160#define CONSTRAINT_MEMORY_POLICY 2
161#define CONSTRAINT_CPUSET 3
162
163/*
164 * Determine the type of allocation constraint.
165 */
166static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask)
167{
168#ifdef CONFIG_NUMA
169	struct zone **z;
170	nodemask_t nodes = node_online_map;
171
172	for (z = zonelist->zones; *z; z++)
173		if (cpuset_zone_allowed(*z, gfp_mask))
174			node_clear((*z)->zone_pgdat->node_id,
175					nodes);
176		else
177			return CONSTRAINT_CPUSET;
178
179	if (!nodes_empty(nodes))
180		return CONSTRAINT_MEMORY_POLICY;
181#endif
182
183	return CONSTRAINT_NONE;
184}
185
186/*
187 * Simple selection loop. We chose the process with the highest
188 * number of 'points'. We expect the caller will lock the tasklist.
189 *
190 * (not docbooked, we don't want this one cluttering up the manual)
191 */
192static struct task_struct *select_bad_process(unsigned long *ppoints)
193{
194	struct task_struct *g, *p;
195	struct task_struct *chosen = NULL;
196	struct timespec uptime;
197	*ppoints = 0;
198
199	do_posix_clock_monotonic_gettime(&uptime);
200	do_each_thread(g, p) {
201		unsigned long points;
202		int releasing;
203
204		/* skip the init task with pid == 1 */
205		if (p->pid == 1)
206			continue;
207
208		/*
209		 * This is in the process of releasing memory so wait for it
210		 * to finish before killing some other task by mistake.
211		 *
212		 * However, if p is the current task, we allow the 'kill' to
213		 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
214		 * which will allow it to gain access to memory reserves in
215		 * the process of exiting and releasing its resources.
216		 * Otherwise we could get an OOM deadlock.
217		 */
218		releasing = test_tsk_thread_flag(p, TIF_MEMDIE) ||
219						p->flags & PF_EXITING;
220		if (releasing) {
221			/* PF_DEAD tasks have already released their mm */
222			if (p->flags & PF_DEAD)
223				continue;
224			if (p->flags & PF_EXITING && p == current) {
225				chosen = p;
226				*ppoints = ULONG_MAX;
227				break;
228			}
229			return ERR_PTR(-1UL);
230		}
231		if (p->oomkilladj == OOM_DISABLE)
232			continue;
233		if (p->flags & PF_SWAPOFF)
234			return p;
235
236		points = badness(p, uptime.tv_sec);
237		if (points > *ppoints || !chosen) {
238			chosen = p;
239			*ppoints = points;
240		}
241	} while_each_thread(g, p);
242	return chosen;
243}
244
245/**
246 * We must be careful though to never send SIGKILL a process with
247 * CAP_SYS_RAW_IO set, send SIGTERM instead (but it's unlikely that
248 * we select a process with CAP_SYS_RAW_IO set).
249 */
250static void __oom_kill_task(struct task_struct *p, const char *message)
251{
252	if (p->pid == 1) {
253		WARN_ON(1);
254		printk(KERN_WARNING "tried to kill init!\n");
255		return;
256	}
257
258	task_lock(p);
259	if (!p->mm || p->mm == &init_mm) {
260		WARN_ON(1);
261		printk(KERN_WARNING "tried to kill an mm-less task!\n");
262		task_unlock(p);
263		return;
264	}
265	task_unlock(p);
266
267	if (message) {
268		printk(KERN_ERR "%s: Killed process %d (%s).\n",
269				message, p->pid, p->comm);
270	}
271
272	/*
273	 * We give our sacrificial lamb high priority and access to
274	 * all the memory it needs. That way it should be able to
275	 * exit() and clear out its resources quickly...
276	 */
277	p->time_slice = HZ;
278	set_tsk_thread_flag(p, TIF_MEMDIE);
279
280	force_sig(SIGKILL, p);
281}
282
283static int oom_kill_task(struct task_struct *p, const char *message)
284{
285	struct mm_struct *mm;
286	struct task_struct *g, *q;
287
288	mm = p->mm;
289
290	/* WARNING: mm may not be dereferenced since we did not obtain its
291	 * value from get_task_mm(p).  This is OK since all we need to do is
292	 * compare mm to q->mm below.
293	 *
294	 * Furthermore, even if mm contains a non-NULL value, p->mm may
295	 * change to NULL at any time since we do not hold task_lock(p).
296	 * However, this is of no concern to us.
297	 */
298
299	if (mm == NULL || mm == &init_mm)
300		return 1;
301
302	__oom_kill_task(p, message);
303	/*
304	 * kill all processes that share the ->mm (i.e. all threads),
305	 * but are in a different thread group
306	 */
307	do_each_thread(g, q)
308		if (q->mm == mm && q->tgid != p->tgid)
309			__oom_kill_task(q, message);
310	while_each_thread(g, q);
311
312	return 0;
313}
314
315static int oom_kill_process(struct task_struct *p, unsigned long points,
316		const char *message)
317{
318	struct task_struct *c;
319	struct list_head *tsk;
320
321	/*
322	 * If the task is already exiting, don't alarm the sysadmin or kill
323	 * its children or threads, just set TIF_MEMDIE so it can die quickly
324	 */
325	if (p->flags & PF_EXITING) {
326		__oom_kill_task(p, NULL);
327		return 0;
328	}
329
330	printk(KERN_ERR "Out of Memory: Kill process %d (%s) score %li"
331			" and children.\n", p->pid, p->comm, points);
332	/* Try to kill a child first */
333	list_for_each(tsk, &p->children) {
334		c = list_entry(tsk, struct task_struct, sibling);
335		if (c->mm == p->mm)
336			continue;
337		if (!oom_kill_task(c, message))
338			return 0;
339	}
340	return oom_kill_task(p, message);
341}
342
343static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
344
345int register_oom_notifier(struct notifier_block *nb)
346{
347	return blocking_notifier_chain_register(&oom_notify_list, nb);
348}
349EXPORT_SYMBOL_GPL(register_oom_notifier);
350
351int unregister_oom_notifier(struct notifier_block *nb)
352{
353	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
354}
355EXPORT_SYMBOL_GPL(unregister_oom_notifier);
356
357/**
358 * out_of_memory - kill the "best" process when we run out of memory
359 *
360 * If we run out of memory, we have the choice between either
361 * killing a random task (bad), letting the system crash (worse)
362 * OR try to be smart about which process to kill. Note that we
363 * don't have to be perfect here, we just have to be good.
364 */
365void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
366{
367	struct task_struct *p;
368	unsigned long points = 0;
369	unsigned long freed = 0;
370
371	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
372	if (freed > 0)
373		/* Got some memory back in the last second. */
374		return;
375
376	if (printk_ratelimit()) {
377		printk("oom-killer: gfp_mask=0x%x, order=%d\n",
378			gfp_mask, order);
379		dump_stack();
380		show_mem();
381	}
382
383	cpuset_lock();
384	read_lock(&tasklist_lock);
385
386	/*
387	 * Check if there were limitations on the allocation (only relevant for
388	 * NUMA) that may require different handling.
389	 */
390	switch (constrained_alloc(zonelist, gfp_mask)) {
391	case CONSTRAINT_MEMORY_POLICY:
392		oom_kill_process(current, points,
393				"No available memory (MPOL_BIND)");
394		break;
395
396	case CONSTRAINT_CPUSET:
397		oom_kill_process(current, points,
398				"No available memory in cpuset");
399		break;
400
401	case CONSTRAINT_NONE:
402		if (sysctl_panic_on_oom)
403			panic("out of memory. panic_on_oom is selected\n");
404retry:
405		/*
406		 * Rambo mode: Shoot down a process and hope it solves whatever
407		 * issues we may have.
408		 */
409		p = select_bad_process(&points);
410
411		if (PTR_ERR(p) == -1UL)
412			goto out;
413
414		/* Found nothing?!?! Either we hang forever, or we panic. */
415		if (!p) {
416			read_unlock(&tasklist_lock);
417			cpuset_unlock();
418			panic("Out of memory and no killable processes...\n");
419		}
420
421		if (oom_kill_process(p, points, "Out of memory"))
422			goto retry;
423
424		break;
425	}
426
427out:
428	read_unlock(&tasklist_lock);
429	cpuset_unlock();
430
431	/*
432	 * Give "p" a good chance of killing itself before we
433	 * retry to allocate memory unless "p" is current
434	 */
435	if (!test_thread_flag(TIF_MEMDIE))
436		schedule_timeout_uninterruptible(1);
437}
438