oom_kill.c revision 7887a3da753e1ba8244556cc9a2b38c815bfe256
1/*
2 *  linux/mm/oom_kill.c
3 *
4 *  Copyright (C)  1998,2000  Rik van Riel
5 *	Thanks go out to Claus Fischer for some serious inspiration and
6 *	for goading me into coding this file...
7 *
8 *  The routines in this file are used to kill a process when
9 *  we're seriously out of memory. This gets called from __alloc_pages()
10 *  in mm/page_alloc.c when we really run out of memory.
11 *
12 *  Since we won't call these routines often (on a well-configured
13 *  machine) this file will double as a 'coding guide' and a signpost
14 *  for newbie kernel hackers. It features several pointers to major
15 *  kernel subsystems and hints as to where to find out what things do.
16 */
17
18#include <linux/mm.h>
19#include <linux/sched.h>
20#include <linux/swap.h>
21#include <linux/timex.h>
22#include <linux/jiffies.h>
23#include <linux/cpuset.h>
24#include <linux/module.h>
25#include <linux/notifier.h>
26
27int sysctl_panic_on_oom;
28/* #define DEBUG */
29
30/**
31 * badness - calculate a numeric value for how bad this task has been
32 * @p: task struct of which task we should calculate
33 * @uptime: current uptime in seconds
34 *
35 * The formula used is relatively simple and documented inline in the
36 * function. The main rationale is that we want to select a good task
37 * to kill when we run out of memory.
38 *
39 * Good in this context means that:
40 * 1) we lose the minimum amount of work done
41 * 2) we recover a large amount of memory
42 * 3) we don't kill anything innocent of eating tons of memory
43 * 4) we want to kill the minimum amount of processes (one)
44 * 5) we try to kill the process the user expects us to kill, this
45 *    algorithm has been meticulously tuned to meet the principle
46 *    of least surprise ... (be careful when you change it)
47 */
48
49unsigned long badness(struct task_struct *p, unsigned long uptime)
50{
51	unsigned long points, cpu_time, run_time, s;
52	struct mm_struct *mm;
53	struct task_struct *child;
54
55	task_lock(p);
56	mm = p->mm;
57	if (!mm) {
58		task_unlock(p);
59		return 0;
60	}
61
62	/*
63	 * The memory size of the process is the basis for the badness.
64	 */
65	points = mm->total_vm;
66
67	/*
68	 * After this unlock we can no longer dereference local variable `mm'
69	 */
70	task_unlock(p);
71
72	/*
73	 * Processes which fork a lot of child processes are likely
74	 * a good choice. We add half the vmsize of the children if they
75	 * have an own mm. This prevents forking servers to flood the
76	 * machine with an endless amount of children. In case a single
77	 * child is eating the vast majority of memory, adding only half
78	 * to the parents will make the child our kill candidate of choice.
79	 */
80	list_for_each_entry(child, &p->children, sibling) {
81		task_lock(child);
82		if (child->mm != mm && child->mm)
83			points += child->mm->total_vm/2 + 1;
84		task_unlock(child);
85	}
86
87	/*
88	 * CPU time is in tens of seconds and run time is in thousands
89         * of seconds. There is no particular reason for this other than
90         * that it turned out to work very well in practice.
91	 */
92	cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
93		>> (SHIFT_HZ + 3);
94
95	if (uptime >= p->start_time.tv_sec)
96		run_time = (uptime - p->start_time.tv_sec) >> 10;
97	else
98		run_time = 0;
99
100	s = int_sqrt(cpu_time);
101	if (s)
102		points /= s;
103	s = int_sqrt(int_sqrt(run_time));
104	if (s)
105		points /= s;
106
107	/*
108	 * Niced processes are most likely less important, so double
109	 * their badness points.
110	 */
111	if (task_nice(p) > 0)
112		points *= 2;
113
114	/*
115	 * Superuser processes are usually more important, so we make it
116	 * less likely that we kill those.
117	 */
118	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
119				p->uid == 0 || p->euid == 0)
120		points /= 4;
121
122	/*
123	 * We don't want to kill a process with direct hardware access.
124	 * Not only could that mess up the hardware, but usually users
125	 * tend to only have this flag set on applications they think
126	 * of as important.
127	 */
128	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
129		points /= 4;
130
131	/*
132	 * If p's nodes don't overlap ours, it may still help to kill p
133	 * because p may have allocated or otherwise mapped memory on
134	 * this node before. However it will be less likely.
135	 */
136	if (!cpuset_excl_nodes_overlap(p))
137		points /= 8;
138
139	/*
140	 * Adjust the score by oomkilladj.
141	 */
142	if (p->oomkilladj) {
143		if (p->oomkilladj > 0)
144			points <<= p->oomkilladj;
145		else
146			points >>= -(p->oomkilladj);
147	}
148
149#ifdef DEBUG
150	printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n",
151	p->pid, p->comm, points);
152#endif
153	return points;
154}
155
156/*
157 * Types of limitations to the nodes from which allocations may occur
158 */
159#define CONSTRAINT_NONE 1
160#define CONSTRAINT_MEMORY_POLICY 2
161#define CONSTRAINT_CPUSET 3
162
163/*
164 * Determine the type of allocation constraint.
165 */
166static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask)
167{
168#ifdef CONFIG_NUMA
169	struct zone **z;
170	nodemask_t nodes = node_online_map;
171
172	for (z = zonelist->zones; *z; z++)
173		if (cpuset_zone_allowed(*z, gfp_mask))
174			node_clear((*z)->zone_pgdat->node_id,
175					nodes);
176		else
177			return CONSTRAINT_CPUSET;
178
179	if (!nodes_empty(nodes))
180		return CONSTRAINT_MEMORY_POLICY;
181#endif
182
183	return CONSTRAINT_NONE;
184}
185
186/*
187 * Simple selection loop. We chose the process with the highest
188 * number of 'points'. We expect the caller will lock the tasklist.
189 *
190 * (not docbooked, we don't want this one cluttering up the manual)
191 */
192static struct task_struct *select_bad_process(unsigned long *ppoints)
193{
194	struct task_struct *g, *p;
195	struct task_struct *chosen = NULL;
196	struct timespec uptime;
197	*ppoints = 0;
198
199	do_posix_clock_monotonic_gettime(&uptime);
200	do_each_thread(g, p) {
201		unsigned long points;
202		int releasing;
203
204		/* skip the init task with pid == 1 */
205		if (p->pid == 1)
206			continue;
207		if (p->oomkilladj == OOM_DISABLE)
208			continue;
209
210		/*
211		 * This is in the process of releasing memory so wait for it
212		 * to finish before killing some other task by mistake.
213		 */
214		releasing = test_tsk_thread_flag(p, TIF_MEMDIE) ||
215						p->flags & PF_EXITING;
216		if (releasing && !(p->flags & PF_DEAD))
217			return ERR_PTR(-1UL);
218		if (p->flags & PF_SWAPOFF)
219			return p;
220
221		points = badness(p, uptime.tv_sec);
222		if (points > *ppoints || !chosen) {
223			chosen = p;
224			*ppoints = points;
225		}
226	} while_each_thread(g, p);
227	return chosen;
228}
229
230/**
231 * We must be careful though to never send SIGKILL a process with
232 * CAP_SYS_RAW_IO set, send SIGTERM instead (but it's unlikely that
233 * we select a process with CAP_SYS_RAW_IO set).
234 */
235static void __oom_kill_task(struct task_struct *p, const char *message)
236{
237	if (p->pid == 1) {
238		WARN_ON(1);
239		printk(KERN_WARNING "tried to kill init!\n");
240		return;
241	}
242
243	task_lock(p);
244	if (!p->mm || p->mm == &init_mm) {
245		WARN_ON(1);
246		printk(KERN_WARNING "tried to kill an mm-less task!\n");
247		task_unlock(p);
248		return;
249	}
250	task_unlock(p);
251	printk(KERN_ERR "%s: Killed process %d (%s).\n",
252				message, p->pid, p->comm);
253
254	/*
255	 * We give our sacrificial lamb high priority and access to
256	 * all the memory it needs. That way it should be able to
257	 * exit() and clear out its resources quickly...
258	 */
259	p->time_slice = HZ;
260	set_tsk_thread_flag(p, TIF_MEMDIE);
261
262	force_sig(SIGKILL, p);
263}
264
265static int oom_kill_task(struct task_struct *p, const char *message)
266{
267	struct mm_struct *mm;
268	struct task_struct *g, *q;
269
270	mm = p->mm;
271
272	/* WARNING: mm may not be dereferenced since we did not obtain its
273	 * value from get_task_mm(p).  This is OK since all we need to do is
274	 * compare mm to q->mm below.
275	 *
276	 * Furthermore, even if mm contains a non-NULL value, p->mm may
277	 * change to NULL at any time since we do not hold task_lock(p).
278	 * However, this is of no concern to us.
279	 */
280
281	if (mm == NULL || mm == &init_mm)
282		return 1;
283
284	__oom_kill_task(p, message);
285	/*
286	 * kill all processes that share the ->mm (i.e. all threads),
287	 * but are in a different thread group
288	 */
289	do_each_thread(g, q)
290		if (q->mm == mm && q->tgid != p->tgid)
291			__oom_kill_task(q, message);
292	while_each_thread(g, q);
293
294	return 0;
295}
296
297static int oom_kill_process(struct task_struct *p, unsigned long points,
298		const char *message)
299{
300	struct task_struct *c;
301	struct list_head *tsk;
302
303	printk(KERN_ERR "Out of Memory: Kill process %d (%s) score %li and "
304		"children.\n", p->pid, p->comm, points);
305	/* Try to kill a child first */
306	list_for_each(tsk, &p->children) {
307		c = list_entry(tsk, struct task_struct, sibling);
308		if (c->mm == p->mm)
309			continue;
310		if (!oom_kill_task(c, message))
311			return 0;
312	}
313	return oom_kill_task(p, message);
314}
315
316static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
317
318int register_oom_notifier(struct notifier_block *nb)
319{
320	return blocking_notifier_chain_register(&oom_notify_list, nb);
321}
322EXPORT_SYMBOL_GPL(register_oom_notifier);
323
324int unregister_oom_notifier(struct notifier_block *nb)
325{
326	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
327}
328EXPORT_SYMBOL_GPL(unregister_oom_notifier);
329
330/**
331 * out_of_memory - kill the "best" process when we run out of memory
332 *
333 * If we run out of memory, we have the choice between either
334 * killing a random task (bad), letting the system crash (worse)
335 * OR try to be smart about which process to kill. Note that we
336 * don't have to be perfect here, we just have to be good.
337 */
338void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
339{
340	struct task_struct *p;
341	unsigned long points = 0;
342	unsigned long freed = 0;
343
344	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
345	if (freed > 0)
346		/* Got some memory back in the last second. */
347		return;
348
349	if (printk_ratelimit()) {
350		printk("oom-killer: gfp_mask=0x%x, order=%d\n",
351			gfp_mask, order);
352		dump_stack();
353		show_mem();
354	}
355
356	cpuset_lock();
357	read_lock(&tasklist_lock);
358
359	/*
360	 * Check if there were limitations on the allocation (only relevant for
361	 * NUMA) that may require different handling.
362	 */
363	switch (constrained_alloc(zonelist, gfp_mask)) {
364	case CONSTRAINT_MEMORY_POLICY:
365		oom_kill_process(current, points,
366				"No available memory (MPOL_BIND)");
367		break;
368
369	case CONSTRAINT_CPUSET:
370		oom_kill_process(current, points,
371				"No available memory in cpuset");
372		break;
373
374	case CONSTRAINT_NONE:
375		if (sysctl_panic_on_oom)
376			panic("out of memory. panic_on_oom is selected\n");
377retry:
378		/*
379		 * Rambo mode: Shoot down a process and hope it solves whatever
380		 * issues we may have.
381		 */
382		p = select_bad_process(&points);
383
384		if (PTR_ERR(p) == -1UL)
385			goto out;
386
387		/* Found nothing?!?! Either we hang forever, or we panic. */
388		if (!p) {
389			read_unlock(&tasklist_lock);
390			cpuset_unlock();
391			panic("Out of memory and no killable processes...\n");
392		}
393
394		if (oom_kill_process(p, points, "Out of memory"))
395			goto retry;
396
397		break;
398	}
399
400out:
401	read_unlock(&tasklist_lock);
402	cpuset_unlock();
403
404	/*
405	 * Give "p" a good chance of killing itself before we
406	 * retry to allocate memory unless "p" is current
407	 */
408	if (!test_thread_flag(TIF_MEMDIE))
409		schedule_timeout_uninterruptible(1);
410}
411