oom_kill.c revision 79b9ce311e192e9a31fd9f3cf1ee4a4edf9e2650
1/*
2 *  linux/mm/oom_kill.c
3 *
4 *  Copyright (C)  1998,2000  Rik van Riel
5 *	Thanks go out to Claus Fischer for some serious inspiration and
6 *	for goading me into coding this file...
7 *
8 *  The routines in this file are used to kill a process when
9 *  we're seriously out of memory. This gets called from kswapd()
10 *  in linux/mm/vmscan.c when we really run out of memory.
11 *
12 *  Since we won't call these routines often (on a well-configured
13 *  machine) this file will double as a 'coding guide' and a signpost
14 *  for newbie kernel hackers. It features several pointers to major
15 *  kernel subsystems and hints as to where to find out what things do.
16 */
17
18#include <linux/mm.h>
19#include <linux/sched.h>
20#include <linux/swap.h>
21#include <linux/timex.h>
22#include <linux/jiffies.h>
23
24/* #define DEBUG */
25
26/**
27 * oom_badness - calculate a numeric value for how bad this task has been
28 * @p: task struct of which task we should calculate
29 * @p: current uptime in seconds
30 *
31 * The formula used is relatively simple and documented inline in the
32 * function. The main rationale is that we want to select a good task
33 * to kill when we run out of memory.
34 *
35 * Good in this context means that:
36 * 1) we lose the minimum amount of work done
37 * 2) we recover a large amount of memory
38 * 3) we don't kill anything innocent of eating tons of memory
39 * 4) we want to kill the minimum amount of processes (one)
40 * 5) we try to kill the process the user expects us to kill, this
41 *    algorithm has been meticulously tuned to meet the principle
42 *    of least surprise ... (be careful when you change it)
43 */
44
45unsigned long badness(struct task_struct *p, unsigned long uptime)
46{
47	unsigned long points, cpu_time, run_time, s;
48	struct list_head *tsk;
49
50	if (!p->mm)
51		return 0;
52
53	/*
54	 * The memory size of the process is the basis for the badness.
55	 */
56	points = p->mm->total_vm;
57
58	/*
59	 * Processes which fork a lot of child processes are likely
60	 * a good choice. We add the vmsize of the childs if they
61	 * have an own mm. This prevents forking servers to flood the
62	 * machine with an endless amount of childs
63	 */
64	list_for_each(tsk, &p->children) {
65		struct task_struct *chld;
66		chld = list_entry(tsk, struct task_struct, sibling);
67		if (chld->mm != p->mm && chld->mm)
68			points += chld->mm->total_vm;
69	}
70
71	/*
72	 * CPU time is in tens of seconds and run time is in thousands
73         * of seconds. There is no particular reason for this other than
74         * that it turned out to work very well in practice.
75	 */
76	cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
77		>> (SHIFT_HZ + 3);
78
79	if (uptime >= p->start_time.tv_sec)
80		run_time = (uptime - p->start_time.tv_sec) >> 10;
81	else
82		run_time = 0;
83
84	s = int_sqrt(cpu_time);
85	if (s)
86		points /= s;
87	s = int_sqrt(int_sqrt(run_time));
88	if (s)
89		points /= s;
90
91	/*
92	 * Niced processes are most likely less important, so double
93	 * their badness points.
94	 */
95	if (task_nice(p) > 0)
96		points *= 2;
97
98	/*
99	 * Superuser processes are usually more important, so we make it
100	 * less likely that we kill those.
101	 */
102	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
103				p->uid == 0 || p->euid == 0)
104		points /= 4;
105
106	/*
107	 * We don't want to kill a process with direct hardware access.
108	 * Not only could that mess up the hardware, but usually users
109	 * tend to only have this flag set on applications they think
110	 * of as important.
111	 */
112	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
113		points /= 4;
114
115	/*
116	 * Adjust the score by oomkilladj.
117	 */
118	if (p->oomkilladj) {
119		if (p->oomkilladj > 0)
120			points <<= p->oomkilladj;
121		else
122			points >>= -(p->oomkilladj);
123	}
124
125#ifdef DEBUG
126	printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n",
127	p->pid, p->comm, points);
128#endif
129	return points;
130}
131
132/*
133 * Simple selection loop. We chose the process with the highest
134 * number of 'points'. We expect the caller will lock the tasklist.
135 *
136 * (not docbooked, we don't want this one cluttering up the manual)
137 */
138static struct task_struct * select_bad_process(void)
139{
140	unsigned long maxpoints = 0;
141	struct task_struct *g, *p;
142	struct task_struct *chosen = NULL;
143	struct timespec uptime;
144
145	do_posix_clock_monotonic_gettime(&uptime);
146	do_each_thread(g, p)
147		/* skip the init task with pid == 1 */
148		if (p->pid > 1 && p->oomkilladj != OOM_DISABLE) {
149			unsigned long points;
150
151			/*
152			 * This is in the process of releasing memory so wait it
153			 * to finish before killing some other task by mistake.
154			 */
155			if ((unlikely(test_tsk_thread_flag(p, TIF_MEMDIE)) || (p->flags & PF_EXITING)) &&
156			    !(p->flags & PF_DEAD))
157				return ERR_PTR(-1UL);
158			if (p->flags & PF_SWAPOFF)
159				return p;
160
161			points = badness(p, uptime.tv_sec);
162			if (points > maxpoints || !chosen) {
163				chosen = p;
164				maxpoints = points;
165			}
166		}
167	while_each_thread(g, p);
168	return chosen;
169}
170
171/**
172 * We must be careful though to never send SIGKILL a process with
173 * CAP_SYS_RAW_IO set, send SIGTERM instead (but it's unlikely that
174 * we select a process with CAP_SYS_RAW_IO set).
175 */
176static void __oom_kill_task(task_t *p)
177{
178	if (p->pid == 1) {
179		WARN_ON(1);
180		printk(KERN_WARNING "tried to kill init!\n");
181		return;
182	}
183
184	task_lock(p);
185	if (!p->mm || p->mm == &init_mm) {
186		WARN_ON(1);
187		printk(KERN_WARNING "tried to kill an mm-less task!\n");
188		task_unlock(p);
189		return;
190	}
191	task_unlock(p);
192	printk(KERN_ERR "Out of Memory: Killed process %d (%s).\n", p->pid, p->comm);
193
194	/*
195	 * We give our sacrificial lamb high priority and access to
196	 * all the memory it needs. That way it should be able to
197	 * exit() and clear out its resources quickly...
198	 */
199	p->time_slice = HZ;
200	set_tsk_thread_flag(p, TIF_MEMDIE);
201
202	force_sig(SIGKILL, p);
203}
204
205static struct mm_struct *oom_kill_task(task_t *p)
206{
207	struct mm_struct *mm = get_task_mm(p);
208	task_t * g, * q;
209
210	if (!mm)
211		return NULL;
212	if (mm == &init_mm) {
213		mmput(mm);
214		return NULL;
215	}
216
217	__oom_kill_task(p);
218	/*
219	 * kill all processes that share the ->mm (i.e. all threads),
220	 * but are in a different thread group
221	 */
222	do_each_thread(g, q)
223		if (q->mm == mm && q->tgid != p->tgid)
224			__oom_kill_task(q);
225	while_each_thread(g, q);
226
227	return mm;
228}
229
230static struct mm_struct *oom_kill_process(struct task_struct *p)
231{
232 	struct mm_struct *mm;
233	struct task_struct *c;
234	struct list_head *tsk;
235
236	/* Try to kill a child first */
237	list_for_each(tsk, &p->children) {
238		c = list_entry(tsk, struct task_struct, sibling);
239		if (c->mm == p->mm)
240			continue;
241		mm = oom_kill_task(c);
242		if (mm)
243			return mm;
244	}
245	return oom_kill_task(p);
246}
247
248/**
249 * oom_kill - kill the "best" process when we run out of memory
250 *
251 * If we run out of memory, we have the choice between either
252 * killing a random task (bad), letting the system crash (worse)
253 * OR try to be smart about which process to kill. Note that we
254 * don't have to be perfect here, we just have to be good.
255 */
256void out_of_memory(unsigned int __nocast gfp_mask, int order)
257{
258	struct mm_struct *mm = NULL;
259	task_t * p;
260
261	printk("oom-killer: gfp_mask=0x%x, order=%d\n", gfp_mask, order);
262	/* print memory stats */
263	show_mem();
264
265	read_lock(&tasklist_lock);
266retry:
267	p = select_bad_process();
268
269	if (PTR_ERR(p) == -1UL)
270		goto out;
271
272	/* Found nothing?!?! Either we hang forever, or we panic. */
273	if (!p) {
274		read_unlock(&tasklist_lock);
275		panic("Out of memory and no killable processes...\n");
276	}
277
278	mm = oom_kill_process(p);
279	if (!mm)
280		goto retry;
281
282 out:
283	read_unlock(&tasklist_lock);
284	if (mm)
285		mmput(mm);
286
287	/*
288	 * Give "p" a good chance of killing itself before we
289	 * retry to allocate memory.
290	 */
291	__set_current_state(TASK_INTERRUPTIBLE);
292	schedule_timeout(1);
293}
294