oom_kill.c revision a96cfd6e9176ad442233001b7d15e9ed42234320
1/*
2 *  linux/mm/oom_kill.c
3 *
4 *  Copyright (C)  1998,2000  Rik van Riel
5 *	Thanks go out to Claus Fischer for some serious inspiration and
6 *	for goading me into coding this file...
7 *
8 *  The routines in this file are used to kill a process when
9 *  we're seriously out of memory. This gets called from __alloc_pages()
10 *  in mm/page_alloc.c when we really run out of memory.
11 *
12 *  Since we won't call these routines often (on a well-configured
13 *  machine) this file will double as a 'coding guide' and a signpost
14 *  for newbie kernel hackers. It features several pointers to major
15 *  kernel subsystems and hints as to where to find out what things do.
16 */
17
18#include <linux/oom.h>
19#include <linux/mm.h>
20#include <linux/err.h>
21#include <linux/gfp.h>
22#include <linux/sched.h>
23#include <linux/swap.h>
24#include <linux/timex.h>
25#include <linux/jiffies.h>
26#include <linux/cpuset.h>
27#include <linux/module.h>
28#include <linux/notifier.h>
29#include <linux/memcontrol.h>
30#include <linux/mempolicy.h>
31#include <linux/security.h>
32
33int sysctl_panic_on_oom;
34int sysctl_oom_kill_allocating_task;
35int sysctl_oom_dump_tasks = 1;
36static DEFINE_SPINLOCK(zone_scan_lock);
37/* #define DEBUG */
38
39#ifdef CONFIG_NUMA
40/**
41 * has_intersects_mems_allowed() - check task eligiblity for kill
42 * @tsk: task struct of which task to consider
43 * @mask: nodemask passed to page allocator for mempolicy ooms
44 *
45 * Task eligibility is determined by whether or not a candidate task, @tsk,
46 * shares the same mempolicy nodes as current if it is bound by such a policy
47 * and whether or not it has the same set of allowed cpuset nodes.
48 */
49static bool has_intersects_mems_allowed(struct task_struct *tsk,
50					const nodemask_t *mask)
51{
52	struct task_struct *start = tsk;
53
54	do {
55		if (mask) {
56			/*
57			 * If this is a mempolicy constrained oom, tsk's
58			 * cpuset is irrelevant.  Only return true if its
59			 * mempolicy intersects current, otherwise it may be
60			 * needlessly killed.
61			 */
62			if (mempolicy_nodemask_intersects(tsk, mask))
63				return true;
64		} else {
65			/*
66			 * This is not a mempolicy constrained oom, so only
67			 * check the mems of tsk's cpuset.
68			 */
69			if (cpuset_mems_allowed_intersects(current, tsk))
70				return true;
71		}
72		tsk = next_thread(tsk);
73	} while (tsk != start);
74	return false;
75}
76#else
77static bool has_intersects_mems_allowed(struct task_struct *tsk,
78					const nodemask_t *mask)
79{
80	return true;
81}
82#endif /* CONFIG_NUMA */
83
84/*
85 * The process p may have detached its own ->mm while exiting or through
86 * use_mm(), but one or more of its subthreads may still have a valid
87 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
88 * task_lock() held.
89 */
90static struct task_struct *find_lock_task_mm(struct task_struct *p)
91{
92	struct task_struct *t = p;
93
94	do {
95		task_lock(t);
96		if (likely(t->mm))
97			return t;
98		task_unlock(t);
99	} while_each_thread(p, t);
100
101	return NULL;
102}
103
104/* return true if the task is not adequate as candidate victim task. */
105static bool oom_unkillable_task(struct task_struct *p, struct mem_cgroup *mem,
106			   const nodemask_t *nodemask)
107{
108	if (is_global_init(p))
109		return true;
110	if (p->flags & PF_KTHREAD)
111		return true;
112
113	/* When mem_cgroup_out_of_memory() and p is not member of the group */
114	if (mem && !task_in_mem_cgroup(p, mem))
115		return true;
116
117	/* p may not have freeable memory in nodemask */
118	if (!has_intersects_mems_allowed(p, nodemask))
119		return true;
120
121	return false;
122}
123
124/**
125 * badness - calculate a numeric value for how bad this task has been
126 * @p: task struct of which task we should calculate
127 * @uptime: current uptime in seconds
128 *
129 * The formula used is relatively simple and documented inline in the
130 * function. The main rationale is that we want to select a good task
131 * to kill when we run out of memory.
132 *
133 * Good in this context means that:
134 * 1) we lose the minimum amount of work done
135 * 2) we recover a large amount of memory
136 * 3) we don't kill anything innocent of eating tons of memory
137 * 4) we want to kill the minimum amount of processes (one)
138 * 5) we try to kill the process the user expects us to kill, this
139 *    algorithm has been meticulously tuned to meet the principle
140 *    of least surprise ... (be careful when you change it)
141 */
142unsigned long badness(struct task_struct *p, struct mem_cgroup *mem,
143		      const nodemask_t *nodemask, unsigned long uptime)
144{
145	unsigned long points, cpu_time, run_time;
146	struct task_struct *child;
147	struct task_struct *c, *t;
148	int oom_adj = p->signal->oom_adj;
149	struct task_cputime task_time;
150	unsigned long utime;
151	unsigned long stime;
152
153	if (oom_unkillable_task(p, mem, nodemask))
154		return 0;
155	if (oom_adj == OOM_DISABLE)
156		return 0;
157
158	p = find_lock_task_mm(p);
159	if (!p)
160		return 0;
161
162	/*
163	 * The memory size of the process is the basis for the badness.
164	 */
165	points = p->mm->total_vm;
166	task_unlock(p);
167
168	/*
169	 * swapoff can easily use up all memory, so kill those first.
170	 */
171	if (p->flags & PF_OOM_ORIGIN)
172		return ULONG_MAX;
173
174	/*
175	 * Processes which fork a lot of child processes are likely
176	 * a good choice. We add half the vmsize of the children if they
177	 * have an own mm. This prevents forking servers to flood the
178	 * machine with an endless amount of children. In case a single
179	 * child is eating the vast majority of memory, adding only half
180	 * to the parents will make the child our kill candidate of choice.
181	 */
182	t = p;
183	do {
184		list_for_each_entry(c, &t->children, sibling) {
185			child = find_lock_task_mm(c);
186			if (child) {
187				if (child->mm != p->mm)
188					points += child->mm->total_vm/2 + 1;
189				task_unlock(child);
190			}
191		}
192	} while_each_thread(p, t);
193
194	/*
195	 * CPU time is in tens of seconds and run time is in thousands
196         * of seconds. There is no particular reason for this other than
197         * that it turned out to work very well in practice.
198	 */
199	thread_group_cputime(p, &task_time);
200	utime = cputime_to_jiffies(task_time.utime);
201	stime = cputime_to_jiffies(task_time.stime);
202	cpu_time = (utime + stime) >> (SHIFT_HZ + 3);
203
204
205	if (uptime >= p->start_time.tv_sec)
206		run_time = (uptime - p->start_time.tv_sec) >> 10;
207	else
208		run_time = 0;
209
210	if (cpu_time)
211		points /= int_sqrt(cpu_time);
212	if (run_time)
213		points /= int_sqrt(int_sqrt(run_time));
214
215	/*
216	 * Niced processes are most likely less important, so double
217	 * their badness points.
218	 */
219	if (task_nice(p) > 0)
220		points *= 2;
221
222	/*
223	 * Superuser processes are usually more important, so we make it
224	 * less likely that we kill those.
225	 */
226	if (has_capability_noaudit(p, CAP_SYS_ADMIN) ||
227	    has_capability_noaudit(p, CAP_SYS_RESOURCE))
228		points /= 4;
229
230	/*
231	 * We don't want to kill a process with direct hardware access.
232	 * Not only could that mess up the hardware, but usually users
233	 * tend to only have this flag set on applications they think
234	 * of as important.
235	 */
236	if (has_capability_noaudit(p, CAP_SYS_RAWIO))
237		points /= 4;
238
239	/*
240	 * Adjust the score by oom_adj.
241	 */
242	if (oom_adj) {
243		if (oom_adj > 0) {
244			if (!points)
245				points = 1;
246			points <<= oom_adj;
247		} else
248			points >>= -(oom_adj);
249	}
250
251#ifdef DEBUG
252	printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
253	p->pid, p->comm, points);
254#endif
255	return points;
256}
257
258/*
259 * Determine the type of allocation constraint.
260 */
261#ifdef CONFIG_NUMA
262static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
263				    gfp_t gfp_mask, nodemask_t *nodemask)
264{
265	struct zone *zone;
266	struct zoneref *z;
267	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
268
269	/*
270	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
271	 * to kill current.We have to random task kill in this case.
272	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
273	 */
274	if (gfp_mask & __GFP_THISNODE)
275		return CONSTRAINT_NONE;
276
277	/*
278	 * The nodemask here is a nodemask passed to alloc_pages(). Now,
279	 * cpuset doesn't use this nodemask for its hardwall/softwall/hierarchy
280	 * feature. mempolicy is an only user of nodemask here.
281	 * check mempolicy's nodemask contains all N_HIGH_MEMORY
282	 */
283	if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask))
284		return CONSTRAINT_MEMORY_POLICY;
285
286	/* Check this allocation failure is caused by cpuset's wall function */
287	for_each_zone_zonelist_nodemask(zone, z, zonelist,
288			high_zoneidx, nodemask)
289		if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
290			return CONSTRAINT_CPUSET;
291
292	return CONSTRAINT_NONE;
293}
294#else
295static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
296				gfp_t gfp_mask, nodemask_t *nodemask)
297{
298	return CONSTRAINT_NONE;
299}
300#endif
301
302/*
303 * Simple selection loop. We chose the process with the highest
304 * number of 'points'. We expect the caller will lock the tasklist.
305 *
306 * (not docbooked, we don't want this one cluttering up the manual)
307 */
308static struct task_struct *select_bad_process(unsigned long *ppoints,
309		struct mem_cgroup *mem, const nodemask_t *nodemask)
310{
311	struct task_struct *p;
312	struct task_struct *chosen = NULL;
313	struct timespec uptime;
314	*ppoints = 0;
315
316	do_posix_clock_monotonic_gettime(&uptime);
317	for_each_process(p) {
318		unsigned long points;
319
320		if (oom_unkillable_task(p, mem, nodemask))
321			continue;
322
323		/*
324		 * This task already has access to memory reserves and is
325		 * being killed. Don't allow any other task access to the
326		 * memory reserve.
327		 *
328		 * Note: this may have a chance of deadlock if it gets
329		 * blocked waiting for another task which itself is waiting
330		 * for memory. Is there a better alternative?
331		 */
332		if (test_tsk_thread_flag(p, TIF_MEMDIE))
333			return ERR_PTR(-1UL);
334
335		/*
336		 * This is in the process of releasing memory so wait for it
337		 * to finish before killing some other task by mistake.
338		 *
339		 * However, if p is the current task, we allow the 'kill' to
340		 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
341		 * which will allow it to gain access to memory reserves in
342		 * the process of exiting and releasing its resources.
343		 * Otherwise we could get an easy OOM deadlock.
344		 */
345		if ((p->flags & PF_EXITING) && p->mm) {
346			if (p != current)
347				return ERR_PTR(-1UL);
348
349			chosen = p;
350			*ppoints = ULONG_MAX;
351		}
352
353		points = badness(p, mem, nodemask, uptime.tv_sec);
354		if (points > *ppoints || !chosen) {
355			chosen = p;
356			*ppoints = points;
357		}
358	}
359
360	return chosen;
361}
362
363/**
364 * dump_tasks - dump current memory state of all system tasks
365 * @mem: current's memory controller, if constrained
366 *
367 * Dumps the current memory state of all system tasks, excluding kernel threads.
368 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
369 * score, and name.
370 *
371 * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
372 * shown.
373 *
374 * Call with tasklist_lock read-locked.
375 */
376static void dump_tasks(const struct mem_cgroup *mem)
377{
378	struct task_struct *p;
379	struct task_struct *task;
380
381	printk(KERN_INFO "[ pid ]   uid  tgid total_vm      rss cpu oom_adj "
382	       "name\n");
383	for_each_process(p) {
384		if (p->flags & PF_KTHREAD)
385			continue;
386		if (mem && !task_in_mem_cgroup(p, mem))
387			continue;
388
389		task = find_lock_task_mm(p);
390		if (!task) {
391			/*
392			 * This is a kthread or all of p's threads have already
393			 * detached their mm's.  There's no need to report
394			 * them; they can't be oom killed anyway.
395			 */
396			continue;
397		}
398
399		printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3u     %3d %s\n",
400		       task->pid, __task_cred(task)->uid, task->tgid,
401		       task->mm->total_vm, get_mm_rss(task->mm),
402		       task_cpu(task), task->signal->oom_adj, task->comm);
403		task_unlock(task);
404	}
405}
406
407static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
408							struct mem_cgroup *mem)
409{
410	task_lock(current);
411	pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
412		"oom_adj=%d\n",
413		current->comm, gfp_mask, order, current->signal->oom_adj);
414	cpuset_print_task_mems_allowed(current);
415	task_unlock(current);
416	dump_stack();
417	mem_cgroup_print_oom_info(mem, p);
418	show_mem();
419	if (sysctl_oom_dump_tasks)
420		dump_tasks(mem);
421}
422
423#define K(x) ((x) << (PAGE_SHIFT-10))
424static int oom_kill_task(struct task_struct *p)
425{
426	p = find_lock_task_mm(p);
427	if (!p) {
428		task_unlock(p);
429		return 1;
430	}
431	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
432		task_pid_nr(p), p->comm, K(p->mm->total_vm),
433		K(get_mm_counter(p->mm, MM_ANONPAGES)),
434		K(get_mm_counter(p->mm, MM_FILEPAGES)));
435	task_unlock(p);
436
437	p->rt.time_slice = HZ;
438	set_tsk_thread_flag(p, TIF_MEMDIE);
439	force_sig(SIGKILL, p);
440	return 0;
441}
442#undef K
443
444static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
445			    unsigned long points, struct mem_cgroup *mem,
446			    nodemask_t *nodemask, const char *message)
447{
448	struct task_struct *victim = p;
449	struct task_struct *child;
450	struct task_struct *t = p;
451	unsigned long victim_points = 0;
452	struct timespec uptime;
453
454	if (printk_ratelimit())
455		dump_header(p, gfp_mask, order, mem);
456
457	/*
458	 * If the task is already exiting, don't alarm the sysadmin or kill
459	 * its children or threads, just set TIF_MEMDIE so it can die quickly
460	 */
461	if (p->flags & PF_EXITING) {
462		set_tsk_thread_flag(p, TIF_MEMDIE);
463		return 0;
464	}
465
466	task_lock(p);
467	pr_err("%s: Kill process %d (%s) score %lu or sacrifice child\n",
468		message, task_pid_nr(p), p->comm, points);
469	task_unlock(p);
470
471	/*
472	 * If any of p's children has a different mm and is eligible for kill,
473	 * the one with the highest badness() score is sacrificed for its
474	 * parent.  This attempts to lose the minimal amount of work done while
475	 * still freeing memory.
476	 */
477	do_posix_clock_monotonic_gettime(&uptime);
478	do {
479		list_for_each_entry(child, &t->children, sibling) {
480			unsigned long child_points;
481
482			if (child->mm == p->mm)
483				continue;
484
485			/* badness() returns 0 if the thread is unkillable */
486			child_points = badness(child, mem, nodemask,
487					       uptime.tv_sec);
488			if (child_points > victim_points) {
489				victim = child;
490				victim_points = child_points;
491			}
492		}
493	} while_each_thread(p, t);
494
495	return oom_kill_task(victim);
496}
497
498/*
499 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
500 */
501static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
502				int order)
503{
504	if (likely(!sysctl_panic_on_oom))
505		return;
506	if (sysctl_panic_on_oom != 2) {
507		/*
508		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
509		 * does not panic for cpuset, mempolicy, or memcg allocation
510		 * failures.
511		 */
512		if (constraint != CONSTRAINT_NONE)
513			return;
514	}
515	read_lock(&tasklist_lock);
516	dump_header(NULL, gfp_mask, order, NULL);
517	read_unlock(&tasklist_lock);
518	panic("Out of memory: %s panic_on_oom is enabled\n",
519		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
520}
521
522#ifdef CONFIG_CGROUP_MEM_RES_CTLR
523void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
524{
525	unsigned long points = 0;
526	struct task_struct *p;
527
528	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0);
529	read_lock(&tasklist_lock);
530retry:
531	p = select_bad_process(&points, mem, NULL);
532	if (!p || PTR_ERR(p) == -1UL)
533		goto out;
534
535	if (oom_kill_process(p, gfp_mask, 0, points, mem, NULL,
536				"Memory cgroup out of memory"))
537		goto retry;
538out:
539	read_unlock(&tasklist_lock);
540}
541#endif
542
543static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
544
545int register_oom_notifier(struct notifier_block *nb)
546{
547	return blocking_notifier_chain_register(&oom_notify_list, nb);
548}
549EXPORT_SYMBOL_GPL(register_oom_notifier);
550
551int unregister_oom_notifier(struct notifier_block *nb)
552{
553	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
554}
555EXPORT_SYMBOL_GPL(unregister_oom_notifier);
556
557/*
558 * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero
559 * if a parallel OOM killing is already taking place that includes a zone in
560 * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1.
561 */
562int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
563{
564	struct zoneref *z;
565	struct zone *zone;
566	int ret = 1;
567
568	spin_lock(&zone_scan_lock);
569	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
570		if (zone_is_oom_locked(zone)) {
571			ret = 0;
572			goto out;
573		}
574	}
575
576	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
577		/*
578		 * Lock each zone in the zonelist under zone_scan_lock so a
579		 * parallel invocation of try_set_zonelist_oom() doesn't succeed
580		 * when it shouldn't.
581		 */
582		zone_set_flag(zone, ZONE_OOM_LOCKED);
583	}
584
585out:
586	spin_unlock(&zone_scan_lock);
587	return ret;
588}
589
590/*
591 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
592 * allocation attempts with zonelists containing them may now recall the OOM
593 * killer, if necessary.
594 */
595void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
596{
597	struct zoneref *z;
598	struct zone *zone;
599
600	spin_lock(&zone_scan_lock);
601	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
602		zone_clear_flag(zone, ZONE_OOM_LOCKED);
603	}
604	spin_unlock(&zone_scan_lock);
605}
606
607/*
608 * Try to acquire the oom killer lock for all system zones.  Returns zero if a
609 * parallel oom killing is taking place, otherwise locks all zones and returns
610 * non-zero.
611 */
612static int try_set_system_oom(void)
613{
614	struct zone *zone;
615	int ret = 1;
616
617	spin_lock(&zone_scan_lock);
618	for_each_populated_zone(zone)
619		if (zone_is_oom_locked(zone)) {
620			ret = 0;
621			goto out;
622		}
623	for_each_populated_zone(zone)
624		zone_set_flag(zone, ZONE_OOM_LOCKED);
625out:
626	spin_unlock(&zone_scan_lock);
627	return ret;
628}
629
630/*
631 * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation
632 * attempts or page faults may now recall the oom killer, if necessary.
633 */
634static void clear_system_oom(void)
635{
636	struct zone *zone;
637
638	spin_lock(&zone_scan_lock);
639	for_each_populated_zone(zone)
640		zone_clear_flag(zone, ZONE_OOM_LOCKED);
641	spin_unlock(&zone_scan_lock);
642}
643
644/**
645 * out_of_memory - kill the "best" process when we run out of memory
646 * @zonelist: zonelist pointer
647 * @gfp_mask: memory allocation flags
648 * @order: amount of memory being requested as a power of 2
649 * @nodemask: nodemask passed to page allocator
650 *
651 * If we run out of memory, we have the choice between either
652 * killing a random task (bad), letting the system crash (worse)
653 * OR try to be smart about which process to kill. Note that we
654 * don't have to be perfect here, we just have to be good.
655 */
656void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
657		int order, nodemask_t *nodemask)
658{
659	struct task_struct *p;
660	unsigned long freed = 0;
661	unsigned long points;
662	enum oom_constraint constraint = CONSTRAINT_NONE;
663
664	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
665	if (freed > 0)
666		/* Got some memory back in the last second. */
667		return;
668
669	/*
670	 * If current has a pending SIGKILL, then automatically select it.  The
671	 * goal is to allow it to allocate so that it may quickly exit and free
672	 * its memory.
673	 */
674	if (fatal_signal_pending(current)) {
675		set_thread_flag(TIF_MEMDIE);
676		return;
677	}
678
679	/*
680	 * Check if there were limitations on the allocation (only relevant for
681	 * NUMA) that may require different handling.
682	 */
683	if (zonelist)
684		constraint = constrained_alloc(zonelist, gfp_mask, nodemask);
685	check_panic_on_oom(constraint, gfp_mask, order);
686
687	read_lock(&tasklist_lock);
688	if (sysctl_oom_kill_allocating_task &&
689	    !oom_unkillable_task(current, NULL, nodemask) &&
690	    (current->signal->oom_adj != OOM_DISABLE)) {
691		/*
692		 * oom_kill_process() needs tasklist_lock held.  If it returns
693		 * non-zero, current could not be killed so we must fallback to
694		 * the tasklist scan.
695		 */
696		if (!oom_kill_process(current, gfp_mask, order, 0, NULL,
697				nodemask,
698				"Out of memory (oom_kill_allocating_task)"))
699			return;
700	}
701
702retry:
703	p = select_bad_process(&points, NULL,
704			constraint == CONSTRAINT_MEMORY_POLICY ? nodemask :
705								 NULL);
706	if (PTR_ERR(p) == -1UL)
707		return;
708
709	/* Found nothing?!?! Either we hang forever, or we panic. */
710	if (!p) {
711		dump_header(NULL, gfp_mask, order, NULL);
712		read_unlock(&tasklist_lock);
713		panic("Out of memory and no killable processes...\n");
714	}
715
716	if (oom_kill_process(p, gfp_mask, order, points, NULL, nodemask,
717			     "Out of memory"))
718		goto retry;
719	read_unlock(&tasklist_lock);
720
721	/*
722	 * Give "p" a good chance of killing itself before we
723	 * retry to allocate memory unless "p" is current
724	 */
725	if (!test_thread_flag(TIF_MEMDIE))
726		schedule_timeout_uninterruptible(1);
727}
728
729/*
730 * The pagefault handler calls here because it is out of memory, so kill a
731 * memory-hogging task.  If a populated zone has ZONE_OOM_LOCKED set, a parallel
732 * oom killing is already in progress so do nothing.  If a task is found with
733 * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit.
734 */
735void pagefault_out_of_memory(void)
736{
737	if (try_set_system_oom()) {
738		out_of_memory(NULL, 0, 0, NULL);
739		clear_system_oom();
740	}
741	if (!test_thread_flag(TIF_MEMDIE))
742		schedule_timeout_uninterruptible(1);
743}
744