oom_kill.c revision b72f160443cb78b2f8addae6e331d2adaa70f869
1/*
2 *  linux/mm/oom_kill.c
3 *
4 *  Copyright (C)  1998,2000  Rik van Riel
5 *	Thanks go out to Claus Fischer for some serious inspiration and
6 *	for goading me into coding this file...
7 *
8 *  The routines in this file are used to kill a process when
9 *  we're seriously out of memory. This gets called from __alloc_pages()
10 *  in mm/page_alloc.c when we really run out of memory.
11 *
12 *  Since we won't call these routines often (on a well-configured
13 *  machine) this file will double as a 'coding guide' and a signpost
14 *  for newbie kernel hackers. It features several pointers to major
15 *  kernel subsystems and hints as to where to find out what things do.
16 */
17
18#include <linux/mm.h>
19#include <linux/sched.h>
20#include <linux/swap.h>
21#include <linux/timex.h>
22#include <linux/jiffies.h>
23#include <linux/cpuset.h>
24#include <linux/module.h>
25#include <linux/notifier.h>
26
27int sysctl_panic_on_oom;
28/* #define DEBUG */
29
30/**
31 * badness - calculate a numeric value for how bad this task has been
32 * @p: task struct of which task we should calculate
33 * @uptime: current uptime in seconds
34 *
35 * The formula used is relatively simple and documented inline in the
36 * function. The main rationale is that we want to select a good task
37 * to kill when we run out of memory.
38 *
39 * Good in this context means that:
40 * 1) we lose the minimum amount of work done
41 * 2) we recover a large amount of memory
42 * 3) we don't kill anything innocent of eating tons of memory
43 * 4) we want to kill the minimum amount of processes (one)
44 * 5) we try to kill the process the user expects us to kill, this
45 *    algorithm has been meticulously tuned to meet the principle
46 *    of least surprise ... (be careful when you change it)
47 */
48
49unsigned long badness(struct task_struct *p, unsigned long uptime)
50{
51	unsigned long points, cpu_time, run_time, s;
52	struct mm_struct *mm;
53	struct task_struct *child;
54
55	task_lock(p);
56	mm = p->mm;
57	if (!mm) {
58		task_unlock(p);
59		return 0;
60	}
61
62	/*
63	 * swapoff can easily use up all memory, so kill those first.
64	 */
65	if (p->flags & PF_SWAPOFF)
66		return ULONG_MAX;
67
68	/*
69	 * The memory size of the process is the basis for the badness.
70	 */
71	points = mm->total_vm;
72
73	/*
74	 * After this unlock we can no longer dereference local variable `mm'
75	 */
76	task_unlock(p);
77
78	/*
79	 * Processes which fork a lot of child processes are likely
80	 * a good choice. We add half the vmsize of the children if they
81	 * have an own mm. This prevents forking servers to flood the
82	 * machine with an endless amount of children. In case a single
83	 * child is eating the vast majority of memory, adding only half
84	 * to the parents will make the child our kill candidate of choice.
85	 */
86	list_for_each_entry(child, &p->children, sibling) {
87		task_lock(child);
88		if (child->mm != mm && child->mm)
89			points += child->mm->total_vm/2 + 1;
90		task_unlock(child);
91	}
92
93	/*
94	 * CPU time is in tens of seconds and run time is in thousands
95         * of seconds. There is no particular reason for this other than
96         * that it turned out to work very well in practice.
97	 */
98	cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
99		>> (SHIFT_HZ + 3);
100
101	if (uptime >= p->start_time.tv_sec)
102		run_time = (uptime - p->start_time.tv_sec) >> 10;
103	else
104		run_time = 0;
105
106	s = int_sqrt(cpu_time);
107	if (s)
108		points /= s;
109	s = int_sqrt(int_sqrt(run_time));
110	if (s)
111		points /= s;
112
113	/*
114	 * Niced processes are most likely less important, so double
115	 * their badness points.
116	 */
117	if (task_nice(p) > 0)
118		points *= 2;
119
120	/*
121	 * Superuser processes are usually more important, so we make it
122	 * less likely that we kill those.
123	 */
124	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
125				p->uid == 0 || p->euid == 0)
126		points /= 4;
127
128	/*
129	 * We don't want to kill a process with direct hardware access.
130	 * Not only could that mess up the hardware, but usually users
131	 * tend to only have this flag set on applications they think
132	 * of as important.
133	 */
134	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
135		points /= 4;
136
137	/*
138	 * If p's nodes don't overlap ours, it may still help to kill p
139	 * because p may have allocated or otherwise mapped memory on
140	 * this node before. However it will be less likely.
141	 */
142	if (!cpuset_excl_nodes_overlap(p))
143		points /= 8;
144
145	/*
146	 * Adjust the score by oomkilladj.
147	 */
148	if (p->oomkilladj) {
149		if (p->oomkilladj > 0)
150			points <<= p->oomkilladj;
151		else
152			points >>= -(p->oomkilladj);
153	}
154
155#ifdef DEBUG
156	printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n",
157	p->pid, p->comm, points);
158#endif
159	return points;
160}
161
162/*
163 * Types of limitations to the nodes from which allocations may occur
164 */
165#define CONSTRAINT_NONE 1
166#define CONSTRAINT_MEMORY_POLICY 2
167#define CONSTRAINT_CPUSET 3
168
169/*
170 * Determine the type of allocation constraint.
171 */
172static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask)
173{
174#ifdef CONFIG_NUMA
175	struct zone **z;
176	nodemask_t nodes = node_online_map;
177
178	for (z = zonelist->zones; *z; z++)
179		if (cpuset_zone_allowed(*z, gfp_mask))
180			node_clear((*z)->zone_pgdat->node_id,
181					nodes);
182		else
183			return CONSTRAINT_CPUSET;
184
185	if (!nodes_empty(nodes))
186		return CONSTRAINT_MEMORY_POLICY;
187#endif
188
189	return CONSTRAINT_NONE;
190}
191
192/*
193 * Simple selection loop. We chose the process with the highest
194 * number of 'points'. We expect the caller will lock the tasklist.
195 *
196 * (not docbooked, we don't want this one cluttering up the manual)
197 */
198static struct task_struct *select_bad_process(unsigned long *ppoints)
199{
200	struct task_struct *g, *p;
201	struct task_struct *chosen = NULL;
202	struct timespec uptime;
203	*ppoints = 0;
204
205	do_posix_clock_monotonic_gettime(&uptime);
206	do_each_thread(g, p) {
207		unsigned long points;
208		int releasing;
209
210		/* skip kernel threads */
211		if (!p->mm)
212			continue;
213		/* skip the init task with pid == 1 */
214		if (p->pid == 1)
215			continue;
216
217		/*
218		 * This is in the process of releasing memory so wait for it
219		 * to finish before killing some other task by mistake.
220		 *
221		 * However, if p is the current task, we allow the 'kill' to
222		 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
223		 * which will allow it to gain access to memory reserves in
224		 * the process of exiting and releasing its resources.
225		 * Otherwise we could get an OOM deadlock.
226		 */
227		releasing = test_tsk_thread_flag(p, TIF_MEMDIE) ||
228						p->flags & PF_EXITING;
229		if (releasing) {
230			/* PF_DEAD tasks have already released their mm */
231			if (p->flags & PF_DEAD)
232				continue;
233			if (p->flags & PF_EXITING && p == current) {
234				chosen = p;
235				*ppoints = ULONG_MAX;
236				break;
237			}
238			return ERR_PTR(-1UL);
239		}
240		if (p->oomkilladj == OOM_DISABLE)
241			continue;
242
243		points = badness(p, uptime.tv_sec);
244		if (points > *ppoints || !chosen) {
245			chosen = p;
246			*ppoints = points;
247		}
248	} while_each_thread(g, p);
249	return chosen;
250}
251
252/**
253 * We must be careful though to never send SIGKILL a process with
254 * CAP_SYS_RAW_IO set, send SIGTERM instead (but it's unlikely that
255 * we select a process with CAP_SYS_RAW_IO set).
256 */
257static void __oom_kill_task(struct task_struct *p, const char *message)
258{
259	if (p->pid == 1) {
260		WARN_ON(1);
261		printk(KERN_WARNING "tried to kill init!\n");
262		return;
263	}
264
265	task_lock(p);
266	if (!p->mm || p->mm == &init_mm) {
267		WARN_ON(1);
268		printk(KERN_WARNING "tried to kill an mm-less task!\n");
269		task_unlock(p);
270		return;
271	}
272	task_unlock(p);
273
274	if (message) {
275		printk(KERN_ERR "%s: Killed process %d (%s).\n",
276				message, p->pid, p->comm);
277	}
278
279	/*
280	 * We give our sacrificial lamb high priority and access to
281	 * all the memory it needs. That way it should be able to
282	 * exit() and clear out its resources quickly...
283	 */
284	p->time_slice = HZ;
285	set_tsk_thread_flag(p, TIF_MEMDIE);
286
287	force_sig(SIGKILL, p);
288}
289
290static int oom_kill_task(struct task_struct *p, const char *message)
291{
292	struct mm_struct *mm;
293	struct task_struct *g, *q;
294
295	mm = p->mm;
296
297	/* WARNING: mm may not be dereferenced since we did not obtain its
298	 * value from get_task_mm(p).  This is OK since all we need to do is
299	 * compare mm to q->mm below.
300	 *
301	 * Furthermore, even if mm contains a non-NULL value, p->mm may
302	 * change to NULL at any time since we do not hold task_lock(p).
303	 * However, this is of no concern to us.
304	 */
305
306	if (mm == NULL || mm == &init_mm)
307		return 1;
308
309	__oom_kill_task(p, message);
310	/*
311	 * kill all processes that share the ->mm (i.e. all threads),
312	 * but are in a different thread group
313	 */
314	do_each_thread(g, q)
315		if (q->mm == mm && q->tgid != p->tgid)
316			__oom_kill_task(q, message);
317	while_each_thread(g, q);
318
319	return 0;
320}
321
322static int oom_kill_process(struct task_struct *p, unsigned long points,
323		const char *message)
324{
325	struct task_struct *c;
326	struct list_head *tsk;
327
328	/*
329	 * If the task is already exiting, don't alarm the sysadmin or kill
330	 * its children or threads, just set TIF_MEMDIE so it can die quickly
331	 */
332	if (p->flags & PF_EXITING) {
333		__oom_kill_task(p, NULL);
334		return 0;
335	}
336
337	printk(KERN_ERR "Out of Memory: Kill process %d (%s) score %li"
338			" and children.\n", p->pid, p->comm, points);
339	/* Try to kill a child first */
340	list_for_each(tsk, &p->children) {
341		c = list_entry(tsk, struct task_struct, sibling);
342		if (c->mm == p->mm)
343			continue;
344		if (!oom_kill_task(c, message))
345			return 0;
346	}
347	return oom_kill_task(p, message);
348}
349
350static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
351
352int register_oom_notifier(struct notifier_block *nb)
353{
354	return blocking_notifier_chain_register(&oom_notify_list, nb);
355}
356EXPORT_SYMBOL_GPL(register_oom_notifier);
357
358int unregister_oom_notifier(struct notifier_block *nb)
359{
360	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
361}
362EXPORT_SYMBOL_GPL(unregister_oom_notifier);
363
364/**
365 * out_of_memory - kill the "best" process when we run out of memory
366 *
367 * If we run out of memory, we have the choice between either
368 * killing a random task (bad), letting the system crash (worse)
369 * OR try to be smart about which process to kill. Note that we
370 * don't have to be perfect here, we just have to be good.
371 */
372void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
373{
374	struct task_struct *p;
375	unsigned long points = 0;
376	unsigned long freed = 0;
377
378	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
379	if (freed > 0)
380		/* Got some memory back in the last second. */
381		return;
382
383	if (printk_ratelimit()) {
384		printk(KERN_WARNING "%s invoked oom-killer: "
385			"gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
386			current->comm, gfp_mask, order, current->oomkilladj);
387		dump_stack();
388		show_mem();
389	}
390
391	cpuset_lock();
392	read_lock(&tasklist_lock);
393
394	/*
395	 * Check if there were limitations on the allocation (only relevant for
396	 * NUMA) that may require different handling.
397	 */
398	switch (constrained_alloc(zonelist, gfp_mask)) {
399	case CONSTRAINT_MEMORY_POLICY:
400		oom_kill_process(current, points,
401				"No available memory (MPOL_BIND)");
402		break;
403
404	case CONSTRAINT_CPUSET:
405		oom_kill_process(current, points,
406				"No available memory in cpuset");
407		break;
408
409	case CONSTRAINT_NONE:
410		if (sysctl_panic_on_oom)
411			panic("out of memory. panic_on_oom is selected\n");
412retry:
413		/*
414		 * Rambo mode: Shoot down a process and hope it solves whatever
415		 * issues we may have.
416		 */
417		p = select_bad_process(&points);
418
419		if (PTR_ERR(p) == -1UL)
420			goto out;
421
422		/* Found nothing?!?! Either we hang forever, or we panic. */
423		if (!p) {
424			read_unlock(&tasklist_lock);
425			cpuset_unlock();
426			panic("Out of memory and no killable processes...\n");
427		}
428
429		if (oom_kill_process(p, points, "Out of memory"))
430			goto retry;
431
432		break;
433	}
434
435out:
436	read_unlock(&tasklist_lock);
437	cpuset_unlock();
438
439	/*
440	 * Give "p" a good chance of killing itself before we
441	 * retry to allocate memory unless "p" is current
442	 */
443	if (!test_thread_flag(TIF_MEMDIE))
444		schedule_timeout_uninterruptible(1);
445}
446