oom_kill.c revision bbe373f2c60b2aa36c3231734a5afc5271a06718
1/*
2 *  linux/mm/oom_kill.c
3 *
4 *  Copyright (C)  1998,2000  Rik van Riel
5 *	Thanks go out to Claus Fischer for some serious inspiration and
6 *	for goading me into coding this file...
7 *
8 *  The routines in this file are used to kill a process when
9 *  we're seriously out of memory. This gets called from __alloc_pages()
10 *  in mm/page_alloc.c when we really run out of memory.
11 *
12 *  Since we won't call these routines often (on a well-configured
13 *  machine) this file will double as a 'coding guide' and a signpost
14 *  for newbie kernel hackers. It features several pointers to major
15 *  kernel subsystems and hints as to where to find out what things do.
16 */
17
18#include <linux/oom.h>
19#include <linux/mm.h>
20#include <linux/err.h>
21#include <linux/sched.h>
22#include <linux/swap.h>
23#include <linux/timex.h>
24#include <linux/jiffies.h>
25#include <linux/cpuset.h>
26#include <linux/module.h>
27#include <linux/notifier.h>
28
29int sysctl_panic_on_oom;
30int sysctl_oom_kill_allocating_task;
31static DEFINE_MUTEX(zone_scan_mutex);
32/* #define DEBUG */
33
34/**
35 * badness - calculate a numeric value for how bad this task has been
36 * @p: task struct of which task we should calculate
37 * @uptime: current uptime in seconds
38 *
39 * The formula used is relatively simple and documented inline in the
40 * function. The main rationale is that we want to select a good task
41 * to kill when we run out of memory.
42 *
43 * Good in this context means that:
44 * 1) we lose the minimum amount of work done
45 * 2) we recover a large amount of memory
46 * 3) we don't kill anything innocent of eating tons of memory
47 * 4) we want to kill the minimum amount of processes (one)
48 * 5) we try to kill the process the user expects us to kill, this
49 *    algorithm has been meticulously tuned to meet the principle
50 *    of least surprise ... (be careful when you change it)
51 */
52
53unsigned long badness(struct task_struct *p, unsigned long uptime)
54{
55	unsigned long points, cpu_time, run_time, s;
56	struct mm_struct *mm;
57	struct task_struct *child;
58
59	task_lock(p);
60	mm = p->mm;
61	if (!mm) {
62		task_unlock(p);
63		return 0;
64	}
65
66	/*
67	 * The memory size of the process is the basis for the badness.
68	 */
69	points = mm->total_vm;
70
71	/*
72	 * After this unlock we can no longer dereference local variable `mm'
73	 */
74	task_unlock(p);
75
76	/*
77	 * swapoff can easily use up all memory, so kill those first.
78	 */
79	if (p->flags & PF_SWAPOFF)
80		return ULONG_MAX;
81
82	/*
83	 * Processes which fork a lot of child processes are likely
84	 * a good choice. We add half the vmsize of the children if they
85	 * have an own mm. This prevents forking servers to flood the
86	 * machine with an endless amount of children. In case a single
87	 * child is eating the vast majority of memory, adding only half
88	 * to the parents will make the child our kill candidate of choice.
89	 */
90	list_for_each_entry(child, &p->children, sibling) {
91		task_lock(child);
92		if (child->mm != mm && child->mm)
93			points += child->mm->total_vm/2 + 1;
94		task_unlock(child);
95	}
96
97	/*
98	 * CPU time is in tens of seconds and run time is in thousands
99         * of seconds. There is no particular reason for this other than
100         * that it turned out to work very well in practice.
101	 */
102	cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
103		>> (SHIFT_HZ + 3);
104
105	if (uptime >= p->start_time.tv_sec)
106		run_time = (uptime - p->start_time.tv_sec) >> 10;
107	else
108		run_time = 0;
109
110	s = int_sqrt(cpu_time);
111	if (s)
112		points /= s;
113	s = int_sqrt(int_sqrt(run_time));
114	if (s)
115		points /= s;
116
117	/*
118	 * Niced processes are most likely less important, so double
119	 * their badness points.
120	 */
121	if (task_nice(p) > 0)
122		points *= 2;
123
124	/*
125	 * Superuser processes are usually more important, so we make it
126	 * less likely that we kill those.
127	 */
128	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
129				p->uid == 0 || p->euid == 0)
130		points /= 4;
131
132	/*
133	 * We don't want to kill a process with direct hardware access.
134	 * Not only could that mess up the hardware, but usually users
135	 * tend to only have this flag set on applications they think
136	 * of as important.
137	 */
138	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
139		points /= 4;
140
141	/*
142	 * If p's nodes don't overlap ours, it may still help to kill p
143	 * because p may have allocated or otherwise mapped memory on
144	 * this node before. However it will be less likely.
145	 */
146	if (!cpuset_mems_allowed_intersects(current, p))
147		points /= 8;
148
149	/*
150	 * Adjust the score by oomkilladj.
151	 */
152	if (p->oomkilladj) {
153		if (p->oomkilladj > 0) {
154			if (!points)
155				points = 1;
156			points <<= p->oomkilladj;
157		} else
158			points >>= -(p->oomkilladj);
159	}
160
161#ifdef DEBUG
162	printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
163	p->pid, p->comm, points);
164#endif
165	return points;
166}
167
168/*
169 * Determine the type of allocation constraint.
170 */
171static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
172						    gfp_t gfp_mask)
173{
174#ifdef CONFIG_NUMA
175	struct zone **z;
176	nodemask_t nodes = node_states[N_HIGH_MEMORY];
177
178	for (z = zonelist->zones; *z; z++)
179		if (cpuset_zone_allowed_softwall(*z, gfp_mask))
180			node_clear(zone_to_nid(*z), nodes);
181		else
182			return CONSTRAINT_CPUSET;
183
184	if (!nodes_empty(nodes))
185		return CONSTRAINT_MEMORY_POLICY;
186#endif
187
188	return CONSTRAINT_NONE;
189}
190
191/*
192 * Simple selection loop. We chose the process with the highest
193 * number of 'points'. We expect the caller will lock the tasklist.
194 *
195 * (not docbooked, we don't want this one cluttering up the manual)
196 */
197static struct task_struct *select_bad_process(unsigned long *ppoints)
198{
199	struct task_struct *g, *p;
200	struct task_struct *chosen = NULL;
201	struct timespec uptime;
202	*ppoints = 0;
203
204	do_posix_clock_monotonic_gettime(&uptime);
205	do_each_thread(g, p) {
206		unsigned long points;
207
208		/*
209		 * skip kernel threads and tasks which have already released
210		 * their mm.
211		 */
212		if (!p->mm)
213			continue;
214		/* skip the init task */
215		if (is_init(p))
216			continue;
217
218		/*
219		 * This task already has access to memory reserves and is
220		 * being killed. Don't allow any other task access to the
221		 * memory reserve.
222		 *
223		 * Note: this may have a chance of deadlock if it gets
224		 * blocked waiting for another task which itself is waiting
225		 * for memory. Is there a better alternative?
226		 */
227		if (test_tsk_thread_flag(p, TIF_MEMDIE))
228			return ERR_PTR(-1UL);
229
230		/*
231		 * This is in the process of releasing memory so wait for it
232		 * to finish before killing some other task by mistake.
233		 *
234		 * However, if p is the current task, we allow the 'kill' to
235		 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
236		 * which will allow it to gain access to memory reserves in
237		 * the process of exiting and releasing its resources.
238		 * Otherwise we could get an easy OOM deadlock.
239		 */
240		if (p->flags & PF_EXITING) {
241			if (p != current)
242				return ERR_PTR(-1UL);
243
244			chosen = p;
245			*ppoints = ULONG_MAX;
246		}
247
248		if (p->oomkilladj == OOM_DISABLE)
249			continue;
250
251		points = badness(p, uptime.tv_sec);
252		if (points > *ppoints || !chosen) {
253			chosen = p;
254			*ppoints = points;
255		}
256	} while_each_thread(g, p);
257
258	return chosen;
259}
260
261/**
262 * Send SIGKILL to the selected  process irrespective of  CAP_SYS_RAW_IO
263 * flag though it's unlikely that  we select a process with CAP_SYS_RAW_IO
264 * set.
265 */
266static void __oom_kill_task(struct task_struct *p, int verbose)
267{
268	if (is_init(p)) {
269		WARN_ON(1);
270		printk(KERN_WARNING "tried to kill init!\n");
271		return;
272	}
273
274	if (!p->mm) {
275		WARN_ON(1);
276		printk(KERN_WARNING "tried to kill an mm-less task!\n");
277		return;
278	}
279
280	if (verbose)
281		printk(KERN_ERR "Killed process %d (%s)\n", p->pid, p->comm);
282
283	/*
284	 * We give our sacrificial lamb high priority and access to
285	 * all the memory it needs. That way it should be able to
286	 * exit() and clear out its resources quickly...
287	 */
288	p->time_slice = HZ;
289	set_tsk_thread_flag(p, TIF_MEMDIE);
290
291	force_sig(SIGKILL, p);
292}
293
294static int oom_kill_task(struct task_struct *p)
295{
296	struct mm_struct *mm;
297	struct task_struct *g, *q;
298
299	mm = p->mm;
300
301	/* WARNING: mm may not be dereferenced since we did not obtain its
302	 * value from get_task_mm(p).  This is OK since all we need to do is
303	 * compare mm to q->mm below.
304	 *
305	 * Furthermore, even if mm contains a non-NULL value, p->mm may
306	 * change to NULL at any time since we do not hold task_lock(p).
307	 * However, this is of no concern to us.
308	 */
309
310	if (mm == NULL)
311		return 1;
312
313	/*
314	 * Don't kill the process if any threads are set to OOM_DISABLE
315	 */
316	do_each_thread(g, q) {
317		if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
318			return 1;
319	} while_each_thread(g, q);
320
321	__oom_kill_task(p, 1);
322
323	/*
324	 * kill all processes that share the ->mm (i.e. all threads),
325	 * but are in a different thread group. Don't let them have access
326	 * to memory reserves though, otherwise we might deplete all memory.
327	 */
328	do_each_thread(g, q) {
329		if (q->mm == mm && q->tgid != p->tgid)
330			force_sig(SIGKILL, q);
331	} while_each_thread(g, q);
332
333	return 0;
334}
335
336static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
337			    unsigned long points, const char *message)
338{
339	struct task_struct *c;
340	struct list_head *tsk;
341
342	if (printk_ratelimit()) {
343		printk(KERN_WARNING "%s invoked oom-killer: "
344			"gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
345			current->comm, gfp_mask, order, current->oomkilladj);
346		dump_stack();
347		show_mem();
348	}
349
350	/*
351	 * If the task is already exiting, don't alarm the sysadmin or kill
352	 * its children or threads, just set TIF_MEMDIE so it can die quickly
353	 */
354	if (p->flags & PF_EXITING) {
355		__oom_kill_task(p, 0);
356		return 0;
357	}
358
359	printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
360					message, p->pid, p->comm, points);
361
362	/* Try to kill a child first */
363	list_for_each(tsk, &p->children) {
364		c = list_entry(tsk, struct task_struct, sibling);
365		if (c->mm == p->mm)
366			continue;
367		if (!oom_kill_task(c))
368			return 0;
369	}
370	return oom_kill_task(p);
371}
372
373static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
374
375int register_oom_notifier(struct notifier_block *nb)
376{
377	return blocking_notifier_chain_register(&oom_notify_list, nb);
378}
379EXPORT_SYMBOL_GPL(register_oom_notifier);
380
381int unregister_oom_notifier(struct notifier_block *nb)
382{
383	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
384}
385EXPORT_SYMBOL_GPL(unregister_oom_notifier);
386
387/*
388 * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero
389 * if a parallel OOM killing is already taking place that includes a zone in
390 * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1.
391 */
392int try_set_zone_oom(struct zonelist *zonelist)
393{
394	struct zone **z;
395	int ret = 1;
396
397	z = zonelist->zones;
398
399	mutex_lock(&zone_scan_mutex);
400	do {
401		if (zone_is_oom_locked(*z)) {
402			ret = 0;
403			goto out;
404		}
405	} while (*(++z) != NULL);
406
407	/*
408	 * Lock each zone in the zonelist under zone_scan_mutex so a parallel
409	 * invocation of try_set_zone_oom() doesn't succeed when it shouldn't.
410	 */
411	z = zonelist->zones;
412	do {
413		zone_set_flag(*z, ZONE_OOM_LOCKED);
414	} while (*(++z) != NULL);
415out:
416	mutex_unlock(&zone_scan_mutex);
417	return ret;
418}
419
420/*
421 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
422 * allocation attempts with zonelists containing them may now recall the OOM
423 * killer, if necessary.
424 */
425void clear_zonelist_oom(struct zonelist *zonelist)
426{
427	struct zone **z;
428
429	z = zonelist->zones;
430
431	mutex_lock(&zone_scan_mutex);
432	do {
433		zone_clear_flag(*z, ZONE_OOM_LOCKED);
434	} while (*(++z) != NULL);
435	mutex_unlock(&zone_scan_mutex);
436}
437
438/**
439 * out_of_memory - kill the "best" process when we run out of memory
440 *
441 * If we run out of memory, we have the choice between either
442 * killing a random task (bad), letting the system crash (worse)
443 * OR try to be smart about which process to kill. Note that we
444 * don't have to be perfect here, we just have to be good.
445 */
446void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
447{
448	struct task_struct *p;
449	unsigned long points = 0;
450	unsigned long freed = 0;
451	enum oom_constraint constraint;
452
453	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
454	if (freed > 0)
455		/* Got some memory back in the last second. */
456		return;
457
458	if (sysctl_panic_on_oom == 2)
459		panic("out of memory. Compulsory panic_on_oom is selected.\n");
460
461	/*
462	 * Check if there were limitations on the allocation (only relevant for
463	 * NUMA) that may require different handling.
464	 */
465	constraint = constrained_alloc(zonelist, gfp_mask);
466	cpuset_lock();
467	read_lock(&tasklist_lock);
468
469	switch (constraint) {
470	case CONSTRAINT_MEMORY_POLICY:
471		oom_kill_process(current, gfp_mask, order, points,
472				"No available memory (MPOL_BIND)");
473		break;
474
475	case CONSTRAINT_NONE:
476		if (sysctl_panic_on_oom)
477			panic("out of memory. panic_on_oom is selected\n");
478		/* Fall-through */
479	case CONSTRAINT_CPUSET:
480		if (sysctl_oom_kill_allocating_task) {
481			oom_kill_process(current, gfp_mask, order, points,
482					"Out of memory (oom_kill_allocating_task)");
483			break;
484		}
485retry:
486		/*
487		 * Rambo mode: Shoot down a process and hope it solves whatever
488		 * issues we may have.
489		 */
490		p = select_bad_process(&points);
491
492		if (PTR_ERR(p) == -1UL)
493			goto out;
494
495		/* Found nothing?!?! Either we hang forever, or we panic. */
496		if (!p) {
497			read_unlock(&tasklist_lock);
498			cpuset_unlock();
499			panic("Out of memory and no killable processes...\n");
500		}
501
502		if (oom_kill_process(p, points, gfp_mask, order,
503				     "Out of memory"))
504			goto retry;
505
506		break;
507	}
508
509out:
510	read_unlock(&tasklist_lock);
511	cpuset_unlock();
512
513	/*
514	 * Give "p" a good chance of killing itself before we
515	 * retry to allocate memory unless "p" is current
516	 */
517	if (!test_thread_flag(TIF_MEMDIE))
518		schedule_timeout_uninterruptible(1);
519}
520