oom_kill.c revision f2a2a7108aa0039ba7a5fe7a0d2ecef2219a7584
1/*
2 *  linux/mm/oom_kill.c
3 *
4 *  Copyright (C)  1998,2000  Rik van Riel
5 *	Thanks go out to Claus Fischer for some serious inspiration and
6 *	for goading me into coding this file...
7 *
8 *  The routines in this file are used to kill a process when
9 *  we're seriously out of memory. This gets called from __alloc_pages()
10 *  in mm/page_alloc.c when we really run out of memory.
11 *
12 *  Since we won't call these routines often (on a well-configured
13 *  machine) this file will double as a 'coding guide' and a signpost
14 *  for newbie kernel hackers. It features several pointers to major
15 *  kernel subsystems and hints as to where to find out what things do.
16 */
17
18#include <linux/oom.h>
19#include <linux/mm.h>
20#include <linux/sched.h>
21#include <linux/swap.h>
22#include <linux/timex.h>
23#include <linux/jiffies.h>
24#include <linux/cpuset.h>
25#include <linux/module.h>
26#include <linux/notifier.h>
27
28int sysctl_panic_on_oom;
29/* #define DEBUG */
30
31/**
32 * badness - calculate a numeric value for how bad this task has been
33 * @p: task struct of which task we should calculate
34 * @uptime: current uptime in seconds
35 *
36 * The formula used is relatively simple and documented inline in the
37 * function. The main rationale is that we want to select a good task
38 * to kill when we run out of memory.
39 *
40 * Good in this context means that:
41 * 1) we lose the minimum amount of work done
42 * 2) we recover a large amount of memory
43 * 3) we don't kill anything innocent of eating tons of memory
44 * 4) we want to kill the minimum amount of processes (one)
45 * 5) we try to kill the process the user expects us to kill, this
46 *    algorithm has been meticulously tuned to meet the principle
47 *    of least surprise ... (be careful when you change it)
48 */
49
50unsigned long badness(struct task_struct *p, unsigned long uptime)
51{
52	unsigned long points, cpu_time, run_time, s;
53	struct mm_struct *mm;
54	struct task_struct *child;
55
56	task_lock(p);
57	mm = p->mm;
58	if (!mm) {
59		task_unlock(p);
60		return 0;
61	}
62
63	/*
64	 * swapoff can easily use up all memory, so kill those first.
65	 */
66	if (p->flags & PF_SWAPOFF)
67		return ULONG_MAX;
68
69	/*
70	 * The memory size of the process is the basis for the badness.
71	 */
72	points = mm->total_vm;
73
74	/*
75	 * After this unlock we can no longer dereference local variable `mm'
76	 */
77	task_unlock(p);
78
79	/*
80	 * Processes which fork a lot of child processes are likely
81	 * a good choice. We add half the vmsize of the children if they
82	 * have an own mm. This prevents forking servers to flood the
83	 * machine with an endless amount of children. In case a single
84	 * child is eating the vast majority of memory, adding only half
85	 * to the parents will make the child our kill candidate of choice.
86	 */
87	list_for_each_entry(child, &p->children, sibling) {
88		task_lock(child);
89		if (child->mm != mm && child->mm)
90			points += child->mm->total_vm/2 + 1;
91		task_unlock(child);
92	}
93
94	/*
95	 * CPU time is in tens of seconds and run time is in thousands
96         * of seconds. There is no particular reason for this other than
97         * that it turned out to work very well in practice.
98	 */
99	cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
100		>> (SHIFT_HZ + 3);
101
102	if (uptime >= p->start_time.tv_sec)
103		run_time = (uptime - p->start_time.tv_sec) >> 10;
104	else
105		run_time = 0;
106
107	s = int_sqrt(cpu_time);
108	if (s)
109		points /= s;
110	s = int_sqrt(int_sqrt(run_time));
111	if (s)
112		points /= s;
113
114	/*
115	 * Niced processes are most likely less important, so double
116	 * their badness points.
117	 */
118	if (task_nice(p) > 0)
119		points *= 2;
120
121	/*
122	 * Superuser processes are usually more important, so we make it
123	 * less likely that we kill those.
124	 */
125	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
126				p->uid == 0 || p->euid == 0)
127		points /= 4;
128
129	/*
130	 * We don't want to kill a process with direct hardware access.
131	 * Not only could that mess up the hardware, but usually users
132	 * tend to only have this flag set on applications they think
133	 * of as important.
134	 */
135	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
136		points /= 4;
137
138	/*
139	 * If p's nodes don't overlap ours, it may still help to kill p
140	 * because p may have allocated or otherwise mapped memory on
141	 * this node before. However it will be less likely.
142	 */
143	if (!cpuset_excl_nodes_overlap(p))
144		points /= 8;
145
146	/*
147	 * Adjust the score by oomkilladj.
148	 */
149	if (p->oomkilladj) {
150		if (p->oomkilladj > 0)
151			points <<= p->oomkilladj;
152		else
153			points >>= -(p->oomkilladj);
154	}
155
156#ifdef DEBUG
157	printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n",
158	p->pid, p->comm, points);
159#endif
160	return points;
161}
162
163/*
164 * Types of limitations to the nodes from which allocations may occur
165 */
166#define CONSTRAINT_NONE 1
167#define CONSTRAINT_MEMORY_POLICY 2
168#define CONSTRAINT_CPUSET 3
169
170/*
171 * Determine the type of allocation constraint.
172 */
173static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask)
174{
175#ifdef CONFIG_NUMA
176	struct zone **z;
177	nodemask_t nodes = node_online_map;
178
179	for (z = zonelist->zones; *z; z++)
180		if (cpuset_zone_allowed(*z, gfp_mask))
181			node_clear(zone_to_nid(*z), nodes);
182		else
183			return CONSTRAINT_CPUSET;
184
185	if (!nodes_empty(nodes))
186		return CONSTRAINT_MEMORY_POLICY;
187#endif
188
189	return CONSTRAINT_NONE;
190}
191
192/*
193 * Simple selection loop. We chose the process with the highest
194 * number of 'points'. We expect the caller will lock the tasklist.
195 *
196 * (not docbooked, we don't want this one cluttering up the manual)
197 */
198static struct task_struct *select_bad_process(unsigned long *ppoints)
199{
200	struct task_struct *g, *p;
201	struct task_struct *chosen = NULL;
202	struct timespec uptime;
203	*ppoints = 0;
204
205	do_posix_clock_monotonic_gettime(&uptime);
206	do_each_thread(g, p) {
207		unsigned long points;
208
209		/*
210		 * skip kernel threads and tasks which have already released
211		 * their mm.
212		 */
213		if (!p->mm)
214			continue;
215		/* skip the init task */
216		if (is_init(p))
217			continue;
218
219		/*
220		 * This task already has access to memory reserves and is
221		 * being killed. Don't allow any other task access to the
222		 * memory reserve.
223		 *
224		 * Note: this may have a chance of deadlock if it gets
225		 * blocked waiting for another task which itself is waiting
226		 * for memory. Is there a better alternative?
227		 */
228		if (test_tsk_thread_flag(p, TIF_MEMDIE))
229			return ERR_PTR(-1UL);
230
231		/*
232		 * This is in the process of releasing memory so wait for it
233		 * to finish before killing some other task by mistake.
234		 *
235		 * However, if p is the current task, we allow the 'kill' to
236		 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
237		 * which will allow it to gain access to memory reserves in
238		 * the process of exiting and releasing its resources.
239		 * Otherwise we could get an easy OOM deadlock.
240		 */
241		if (p->flags & PF_EXITING) {
242			if (p != current)
243				return ERR_PTR(-1UL);
244
245			chosen = p;
246			*ppoints = ULONG_MAX;
247		}
248
249		if (p->oomkilladj == OOM_DISABLE)
250			continue;
251
252		points = badness(p, uptime.tv_sec);
253		if (points > *ppoints || !chosen) {
254			chosen = p;
255			*ppoints = points;
256		}
257	} while_each_thread(g, p);
258
259	return chosen;
260}
261
262/**
263 * Send SIGKILL to the selected  process irrespective of  CAP_SYS_RAW_IO
264 * flag though it's unlikely that  we select a process with CAP_SYS_RAW_IO
265 * set.
266 */
267static void __oom_kill_task(struct task_struct *p, int verbose)
268{
269	if (is_init(p)) {
270		WARN_ON(1);
271		printk(KERN_WARNING "tried to kill init!\n");
272		return;
273	}
274
275	if (!p->mm) {
276		WARN_ON(1);
277		printk(KERN_WARNING "tried to kill an mm-less task!\n");
278		return;
279	}
280
281	if (verbose)
282		printk(KERN_ERR "Killed process %d (%s)\n", p->pid, p->comm);
283
284	/*
285	 * We give our sacrificial lamb high priority and access to
286	 * all the memory it needs. That way it should be able to
287	 * exit() and clear out its resources quickly...
288	 */
289	p->time_slice = HZ;
290	set_tsk_thread_flag(p, TIF_MEMDIE);
291
292	force_sig(SIGKILL, p);
293}
294
295static int oom_kill_task(struct task_struct *p)
296{
297	struct mm_struct *mm;
298	struct task_struct *g, *q;
299
300	mm = p->mm;
301
302	/* WARNING: mm may not be dereferenced since we did not obtain its
303	 * value from get_task_mm(p).  This is OK since all we need to do is
304	 * compare mm to q->mm below.
305	 *
306	 * Furthermore, even if mm contains a non-NULL value, p->mm may
307	 * change to NULL at any time since we do not hold task_lock(p).
308	 * However, this is of no concern to us.
309	 */
310
311	if (mm == NULL)
312		return 1;
313
314	/*
315	 * Don't kill the process if any threads are set to OOM_DISABLE
316	 */
317	do_each_thread(g, q) {
318		if (q->mm == mm && p->oomkilladj == OOM_DISABLE)
319			return 1;
320	} while_each_thread(g, q);
321
322	__oom_kill_task(p, 1);
323
324	/*
325	 * kill all processes that share the ->mm (i.e. all threads),
326	 * but are in a different thread group. Don't let them have access
327	 * to memory reserves though, otherwise we might deplete all memory.
328	 */
329	do_each_thread(g, q) {
330		if (q->mm == mm && q->tgid != p->tgid)
331			force_sig(SIGKILL, p);
332	} while_each_thread(g, q);
333
334	return 0;
335}
336
337static int oom_kill_process(struct task_struct *p, unsigned long points,
338		const char *message)
339{
340	struct task_struct *c;
341	struct list_head *tsk;
342
343	/*
344	 * If the task is already exiting, don't alarm the sysadmin or kill
345	 * its children or threads, just set TIF_MEMDIE so it can die quickly
346	 */
347	if (p->flags & PF_EXITING) {
348		__oom_kill_task(p, 0);
349		return 0;
350	}
351
352	printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
353					message, p->pid, p->comm, points);
354
355	/* Try to kill a child first */
356	list_for_each(tsk, &p->children) {
357		c = list_entry(tsk, struct task_struct, sibling);
358		if (c->mm == p->mm)
359			continue;
360		if (!oom_kill_task(c))
361			return 0;
362	}
363	return oom_kill_task(p);
364}
365
366static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
367
368int register_oom_notifier(struct notifier_block *nb)
369{
370	return blocking_notifier_chain_register(&oom_notify_list, nb);
371}
372EXPORT_SYMBOL_GPL(register_oom_notifier);
373
374int unregister_oom_notifier(struct notifier_block *nb)
375{
376	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
377}
378EXPORT_SYMBOL_GPL(unregister_oom_notifier);
379
380/**
381 * out_of_memory - kill the "best" process when we run out of memory
382 *
383 * If we run out of memory, we have the choice between either
384 * killing a random task (bad), letting the system crash (worse)
385 * OR try to be smart about which process to kill. Note that we
386 * don't have to be perfect here, we just have to be good.
387 */
388void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
389{
390	struct task_struct *p;
391	unsigned long points = 0;
392	unsigned long freed = 0;
393
394	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
395	if (freed > 0)
396		/* Got some memory back in the last second. */
397		return;
398
399	if (printk_ratelimit()) {
400		printk(KERN_WARNING "%s invoked oom-killer: "
401			"gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
402			current->comm, gfp_mask, order, current->oomkilladj);
403		dump_stack();
404		show_mem();
405	}
406
407	cpuset_lock();
408	read_lock(&tasklist_lock);
409
410	/*
411	 * Check if there were limitations on the allocation (only relevant for
412	 * NUMA) that may require different handling.
413	 */
414	switch (constrained_alloc(zonelist, gfp_mask)) {
415	case CONSTRAINT_MEMORY_POLICY:
416		oom_kill_process(current, points,
417				"No available memory (MPOL_BIND)");
418		break;
419
420	case CONSTRAINT_CPUSET:
421		oom_kill_process(current, points,
422				"No available memory in cpuset");
423		break;
424
425	case CONSTRAINT_NONE:
426		if (sysctl_panic_on_oom)
427			panic("out of memory. panic_on_oom is selected\n");
428retry:
429		/*
430		 * Rambo mode: Shoot down a process and hope it solves whatever
431		 * issues we may have.
432		 */
433		p = select_bad_process(&points);
434
435		if (PTR_ERR(p) == -1UL)
436			goto out;
437
438		/* Found nothing?!?! Either we hang forever, or we panic. */
439		if (!p) {
440			read_unlock(&tasklist_lock);
441			cpuset_unlock();
442			panic("Out of memory and no killable processes...\n");
443		}
444
445		if (oom_kill_process(p, points, "Out of memory"))
446			goto retry;
447
448		break;
449	}
450
451out:
452	read_unlock(&tasklist_lock);
453	cpuset_unlock();
454
455	/*
456	 * Give "p" a good chance of killing itself before we
457	 * retry to allocate memory unless "p" is current
458	 */
459	if (!test_thread_flag(TIF_MEMDIE))
460		schedule_timeout_uninterruptible(1);
461}
462