page-writeback.c revision 05fe478dd04e02fa230c305ab9b5616669821dd3
1/*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002	Andrew Morton
11 *		Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
25#include <linux/task_io_accounting_ops.h>
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
28#include <linux/rmap.h>
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
35#include <linux/buffer_head.h>
36#include <linux/pagevec.h>
37
38/*
39 * The maximum number of pages to writeout in a single bdflush/kupdate
40 * operation.  We do this so we don't hold I_SYNC against an inode for
41 * enormous amounts of time, which would block a userspace task which has
42 * been forced to throttle against that inode.  Also, the code reevaluates
43 * the dirty each time it has written this many pages.
44 */
45#define MAX_WRITEBACK_PAGES	1024
46
47/*
48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49 * will look to see if it needs to force writeback or throttling.
50 */
51static long ratelimit_pages = 32;
52
53/*
54 * When balance_dirty_pages decides that the caller needs to perform some
55 * non-background writeback, this is how many pages it will attempt to write.
56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57 * large amounts of I/O are submitted.
58 */
59static inline long sync_writeback_pages(void)
60{
61	return ratelimit_pages + ratelimit_pages / 2;
62}
63
64/* The following parameters are exported via /proc/sys/vm */
65
66/*
67 * Start background writeback (via pdflush) at this percentage
68 */
69int dirty_background_ratio = 5;
70
71/*
72 * free highmem will not be subtracted from the total free memory
73 * for calculating free ratios if vm_highmem_is_dirtyable is true
74 */
75int vm_highmem_is_dirtyable;
76
77/*
78 * The generator of dirty data starts writeback at this percentage
79 */
80int vm_dirty_ratio = 10;
81
82/*
83 * The interval between `kupdate'-style writebacks, in jiffies
84 */
85int dirty_writeback_interval = 5 * HZ;
86
87/*
88 * The longest number of jiffies for which data is allowed to remain dirty
89 */
90int dirty_expire_interval = 30 * HZ;
91
92/*
93 * Flag that makes the machine dump writes/reads and block dirtyings.
94 */
95int block_dump;
96
97/*
98 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
99 * a full sync is triggered after this time elapses without any disk activity.
100 */
101int laptop_mode;
102
103EXPORT_SYMBOL(laptop_mode);
104
105/* End of sysctl-exported parameters */
106
107
108static void background_writeout(unsigned long _min_pages);
109
110/*
111 * Scale the writeback cache size proportional to the relative writeout speeds.
112 *
113 * We do this by keeping a floating proportion between BDIs, based on page
114 * writeback completions [end_page_writeback()]. Those devices that write out
115 * pages fastest will get the larger share, while the slower will get a smaller
116 * share.
117 *
118 * We use page writeout completions because we are interested in getting rid of
119 * dirty pages. Having them written out is the primary goal.
120 *
121 * We introduce a concept of time, a period over which we measure these events,
122 * because demand can/will vary over time. The length of this period itself is
123 * measured in page writeback completions.
124 *
125 */
126static struct prop_descriptor vm_completions;
127static struct prop_descriptor vm_dirties;
128
129/*
130 * couple the period to the dirty_ratio:
131 *
132 *   period/2 ~ roundup_pow_of_two(dirty limit)
133 */
134static int calc_period_shift(void)
135{
136	unsigned long dirty_total;
137
138	dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
139	return 2 + ilog2(dirty_total - 1);
140}
141
142/*
143 * update the period when the dirty ratio changes.
144 */
145int dirty_ratio_handler(struct ctl_table *table, int write,
146		struct file *filp, void __user *buffer, size_t *lenp,
147		loff_t *ppos)
148{
149	int old_ratio = vm_dirty_ratio;
150	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
151	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
152		int shift = calc_period_shift();
153		prop_change_shift(&vm_completions, shift);
154		prop_change_shift(&vm_dirties, shift);
155	}
156	return ret;
157}
158
159/*
160 * Increment the BDI's writeout completion count and the global writeout
161 * completion count. Called from test_clear_page_writeback().
162 */
163static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
164{
165	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
166			      bdi->max_prop_frac);
167}
168
169void bdi_writeout_inc(struct backing_dev_info *bdi)
170{
171	unsigned long flags;
172
173	local_irq_save(flags);
174	__bdi_writeout_inc(bdi);
175	local_irq_restore(flags);
176}
177EXPORT_SYMBOL_GPL(bdi_writeout_inc);
178
179static inline void task_dirty_inc(struct task_struct *tsk)
180{
181	prop_inc_single(&vm_dirties, &tsk->dirties);
182}
183
184/*
185 * Obtain an accurate fraction of the BDI's portion.
186 */
187static void bdi_writeout_fraction(struct backing_dev_info *bdi,
188		long *numerator, long *denominator)
189{
190	if (bdi_cap_writeback_dirty(bdi)) {
191		prop_fraction_percpu(&vm_completions, &bdi->completions,
192				numerator, denominator);
193	} else {
194		*numerator = 0;
195		*denominator = 1;
196	}
197}
198
199/*
200 * Clip the earned share of dirty pages to that which is actually available.
201 * This avoids exceeding the total dirty_limit when the floating averages
202 * fluctuate too quickly.
203 */
204static void
205clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
206{
207	long avail_dirty;
208
209	avail_dirty = dirty -
210		(global_page_state(NR_FILE_DIRTY) +
211		 global_page_state(NR_WRITEBACK) +
212		 global_page_state(NR_UNSTABLE_NFS) +
213		 global_page_state(NR_WRITEBACK_TEMP));
214
215	if (avail_dirty < 0)
216		avail_dirty = 0;
217
218	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
219		bdi_stat(bdi, BDI_WRITEBACK);
220
221	*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
222}
223
224static inline void task_dirties_fraction(struct task_struct *tsk,
225		long *numerator, long *denominator)
226{
227	prop_fraction_single(&vm_dirties, &tsk->dirties,
228				numerator, denominator);
229}
230
231/*
232 * scale the dirty limit
233 *
234 * task specific dirty limit:
235 *
236 *   dirty -= (dirty/8) * p_{t}
237 */
238static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
239{
240	long numerator, denominator;
241	long dirty = *pdirty;
242	u64 inv = dirty >> 3;
243
244	task_dirties_fraction(tsk, &numerator, &denominator);
245	inv *= numerator;
246	do_div(inv, denominator);
247
248	dirty -= inv;
249	if (dirty < *pdirty/2)
250		dirty = *pdirty/2;
251
252	*pdirty = dirty;
253}
254
255/*
256 *
257 */
258static DEFINE_SPINLOCK(bdi_lock);
259static unsigned int bdi_min_ratio;
260
261int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
262{
263	int ret = 0;
264	unsigned long flags;
265
266	spin_lock_irqsave(&bdi_lock, flags);
267	if (min_ratio > bdi->max_ratio) {
268		ret = -EINVAL;
269	} else {
270		min_ratio -= bdi->min_ratio;
271		if (bdi_min_ratio + min_ratio < 100) {
272			bdi_min_ratio += min_ratio;
273			bdi->min_ratio += min_ratio;
274		} else {
275			ret = -EINVAL;
276		}
277	}
278	spin_unlock_irqrestore(&bdi_lock, flags);
279
280	return ret;
281}
282
283int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
284{
285	unsigned long flags;
286	int ret = 0;
287
288	if (max_ratio > 100)
289		return -EINVAL;
290
291	spin_lock_irqsave(&bdi_lock, flags);
292	if (bdi->min_ratio > max_ratio) {
293		ret = -EINVAL;
294	} else {
295		bdi->max_ratio = max_ratio;
296		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
297	}
298	spin_unlock_irqrestore(&bdi_lock, flags);
299
300	return ret;
301}
302EXPORT_SYMBOL(bdi_set_max_ratio);
303
304/*
305 * Work out the current dirty-memory clamping and background writeout
306 * thresholds.
307 *
308 * The main aim here is to lower them aggressively if there is a lot of mapped
309 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
310 * pages.  It is better to clamp down on writers than to start swapping, and
311 * performing lots of scanning.
312 *
313 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
314 *
315 * We don't permit the clamping level to fall below 5% - that is getting rather
316 * excessive.
317 *
318 * We make sure that the background writeout level is below the adjusted
319 * clamping level.
320 */
321
322static unsigned long highmem_dirtyable_memory(unsigned long total)
323{
324#ifdef CONFIG_HIGHMEM
325	int node;
326	unsigned long x = 0;
327
328	for_each_node_state(node, N_HIGH_MEMORY) {
329		struct zone *z =
330			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
331
332		x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z);
333	}
334	/*
335	 * Make sure that the number of highmem pages is never larger
336	 * than the number of the total dirtyable memory. This can only
337	 * occur in very strange VM situations but we want to make sure
338	 * that this does not occur.
339	 */
340	return min(x, total);
341#else
342	return 0;
343#endif
344}
345
346/**
347 * determine_dirtyable_memory - amount of memory that may be used
348 *
349 * Returns the numebr of pages that can currently be freed and used
350 * by the kernel for direct mappings.
351 */
352unsigned long determine_dirtyable_memory(void)
353{
354	unsigned long x;
355
356	x = global_page_state(NR_FREE_PAGES) + global_lru_pages();
357
358	if (!vm_highmem_is_dirtyable)
359		x -= highmem_dirtyable_memory(x);
360
361	return x + 1;	/* Ensure that we never return 0 */
362}
363
364void
365get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
366		 struct backing_dev_info *bdi)
367{
368	int background_ratio;		/* Percentages */
369	int dirty_ratio;
370	long background;
371	long dirty;
372	unsigned long available_memory = determine_dirtyable_memory();
373	struct task_struct *tsk;
374
375	dirty_ratio = vm_dirty_ratio;
376	if (dirty_ratio < 5)
377		dirty_ratio = 5;
378
379	background_ratio = dirty_background_ratio;
380	if (background_ratio >= dirty_ratio)
381		background_ratio = dirty_ratio / 2;
382
383	background = (background_ratio * available_memory) / 100;
384	dirty = (dirty_ratio * available_memory) / 100;
385	tsk = current;
386	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
387		background += background / 4;
388		dirty += dirty / 4;
389	}
390	*pbackground = background;
391	*pdirty = dirty;
392
393	if (bdi) {
394		u64 bdi_dirty;
395		long numerator, denominator;
396
397		/*
398		 * Calculate this BDI's share of the dirty ratio.
399		 */
400		bdi_writeout_fraction(bdi, &numerator, &denominator);
401
402		bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
403		bdi_dirty *= numerator;
404		do_div(bdi_dirty, denominator);
405		bdi_dirty += (dirty * bdi->min_ratio) / 100;
406		if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
407			bdi_dirty = dirty * bdi->max_ratio / 100;
408
409		*pbdi_dirty = bdi_dirty;
410		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
411		task_dirty_limit(current, pbdi_dirty);
412	}
413}
414
415/*
416 * balance_dirty_pages() must be called by processes which are generating dirty
417 * data.  It looks at the number of dirty pages in the machine and will force
418 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
419 * If we're over `background_thresh' then pdflush is woken to perform some
420 * writeout.
421 */
422static void balance_dirty_pages(struct address_space *mapping)
423{
424	long nr_reclaimable, bdi_nr_reclaimable;
425	long nr_writeback, bdi_nr_writeback;
426	long background_thresh;
427	long dirty_thresh;
428	long bdi_thresh;
429	unsigned long pages_written = 0;
430	unsigned long write_chunk = sync_writeback_pages();
431
432	struct backing_dev_info *bdi = mapping->backing_dev_info;
433
434	for (;;) {
435		struct writeback_control wbc = {
436			.bdi		= bdi,
437			.sync_mode	= WB_SYNC_NONE,
438			.older_than_this = NULL,
439			.nr_to_write	= write_chunk,
440			.range_cyclic	= 1,
441		};
442
443		get_dirty_limits(&background_thresh, &dirty_thresh,
444				&bdi_thresh, bdi);
445
446		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
447					global_page_state(NR_UNSTABLE_NFS);
448		nr_writeback = global_page_state(NR_WRITEBACK);
449
450		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
451		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
452
453		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
454			break;
455
456		/*
457		 * Throttle it only when the background writeback cannot
458		 * catch-up. This avoids (excessively) small writeouts
459		 * when the bdi limits are ramping up.
460		 */
461		if (nr_reclaimable + nr_writeback <
462				(background_thresh + dirty_thresh) / 2)
463			break;
464
465		if (!bdi->dirty_exceeded)
466			bdi->dirty_exceeded = 1;
467
468		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
469		 * Unstable writes are a feature of certain networked
470		 * filesystems (i.e. NFS) in which data may have been
471		 * written to the server's write cache, but has not yet
472		 * been flushed to permanent storage.
473		 */
474		if (bdi_nr_reclaimable) {
475			writeback_inodes(&wbc);
476			pages_written += write_chunk - wbc.nr_to_write;
477			get_dirty_limits(&background_thresh, &dirty_thresh,
478				       &bdi_thresh, bdi);
479		}
480
481		/*
482		 * In order to avoid the stacked BDI deadlock we need
483		 * to ensure we accurately count the 'dirty' pages when
484		 * the threshold is low.
485		 *
486		 * Otherwise it would be possible to get thresh+n pages
487		 * reported dirty, even though there are thresh-m pages
488		 * actually dirty; with m+n sitting in the percpu
489		 * deltas.
490		 */
491		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
492			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
493			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
494		} else if (bdi_nr_reclaimable) {
495			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
496			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
497		}
498
499		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
500			break;
501		if (pages_written >= write_chunk)
502			break;		/* We've done our duty */
503
504		congestion_wait(WRITE, HZ/10);
505	}
506
507	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
508			bdi->dirty_exceeded)
509		bdi->dirty_exceeded = 0;
510
511	if (writeback_in_progress(bdi))
512		return;		/* pdflush is already working this queue */
513
514	/*
515	 * In laptop mode, we wait until hitting the higher threshold before
516	 * starting background writeout, and then write out all the way down
517	 * to the lower threshold.  So slow writers cause minimal disk activity.
518	 *
519	 * In normal mode, we start background writeout at the lower
520	 * background_thresh, to keep the amount of dirty memory low.
521	 */
522	if ((laptop_mode && pages_written) ||
523			(!laptop_mode && (global_page_state(NR_FILE_DIRTY)
524					  + global_page_state(NR_UNSTABLE_NFS)
525					  > background_thresh)))
526		pdflush_operation(background_writeout, 0);
527}
528
529void set_page_dirty_balance(struct page *page, int page_mkwrite)
530{
531	if (set_page_dirty(page) || page_mkwrite) {
532		struct address_space *mapping = page_mapping(page);
533
534		if (mapping)
535			balance_dirty_pages_ratelimited(mapping);
536	}
537}
538
539/**
540 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
541 * @mapping: address_space which was dirtied
542 * @nr_pages_dirtied: number of pages which the caller has just dirtied
543 *
544 * Processes which are dirtying memory should call in here once for each page
545 * which was newly dirtied.  The function will periodically check the system's
546 * dirty state and will initiate writeback if needed.
547 *
548 * On really big machines, get_writeback_state is expensive, so try to avoid
549 * calling it too often (ratelimiting).  But once we're over the dirty memory
550 * limit we decrease the ratelimiting by a lot, to prevent individual processes
551 * from overshooting the limit by (ratelimit_pages) each.
552 */
553void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
554					unsigned long nr_pages_dirtied)
555{
556	static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
557	unsigned long ratelimit;
558	unsigned long *p;
559
560	ratelimit = ratelimit_pages;
561	if (mapping->backing_dev_info->dirty_exceeded)
562		ratelimit = 8;
563
564	/*
565	 * Check the rate limiting. Also, we do not want to throttle real-time
566	 * tasks in balance_dirty_pages(). Period.
567	 */
568	preempt_disable();
569	p =  &__get_cpu_var(ratelimits);
570	*p += nr_pages_dirtied;
571	if (unlikely(*p >= ratelimit)) {
572		*p = 0;
573		preempt_enable();
574		balance_dirty_pages(mapping);
575		return;
576	}
577	preempt_enable();
578}
579EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
580
581void throttle_vm_writeout(gfp_t gfp_mask)
582{
583	long background_thresh;
584	long dirty_thresh;
585
586        for ( ; ; ) {
587		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
588
589                /*
590                 * Boost the allowable dirty threshold a bit for page
591                 * allocators so they don't get DoS'ed by heavy writers
592                 */
593                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
594
595                if (global_page_state(NR_UNSTABLE_NFS) +
596			global_page_state(NR_WRITEBACK) <= dirty_thresh)
597                        	break;
598                congestion_wait(WRITE, HZ/10);
599
600		/*
601		 * The caller might hold locks which can prevent IO completion
602		 * or progress in the filesystem.  So we cannot just sit here
603		 * waiting for IO to complete.
604		 */
605		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
606			break;
607        }
608}
609
610/*
611 * writeback at least _min_pages, and keep writing until the amount of dirty
612 * memory is less than the background threshold, or until we're all clean.
613 */
614static void background_writeout(unsigned long _min_pages)
615{
616	long min_pages = _min_pages;
617	struct writeback_control wbc = {
618		.bdi		= NULL,
619		.sync_mode	= WB_SYNC_NONE,
620		.older_than_this = NULL,
621		.nr_to_write	= 0,
622		.nonblocking	= 1,
623		.range_cyclic	= 1,
624	};
625
626	for ( ; ; ) {
627		long background_thresh;
628		long dirty_thresh;
629
630		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
631		if (global_page_state(NR_FILE_DIRTY) +
632			global_page_state(NR_UNSTABLE_NFS) < background_thresh
633				&& min_pages <= 0)
634			break;
635		wbc.more_io = 0;
636		wbc.encountered_congestion = 0;
637		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
638		wbc.pages_skipped = 0;
639		writeback_inodes(&wbc);
640		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
641		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
642			/* Wrote less than expected */
643			if (wbc.encountered_congestion || wbc.more_io)
644				congestion_wait(WRITE, HZ/10);
645			else
646				break;
647		}
648	}
649}
650
651/*
652 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
653 * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
654 * -1 if all pdflush threads were busy.
655 */
656int wakeup_pdflush(long nr_pages)
657{
658	if (nr_pages == 0)
659		nr_pages = global_page_state(NR_FILE_DIRTY) +
660				global_page_state(NR_UNSTABLE_NFS);
661	return pdflush_operation(background_writeout, nr_pages);
662}
663
664static void wb_timer_fn(unsigned long unused);
665static void laptop_timer_fn(unsigned long unused);
666
667static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
668static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
669
670/*
671 * Periodic writeback of "old" data.
672 *
673 * Define "old": the first time one of an inode's pages is dirtied, we mark the
674 * dirtying-time in the inode's address_space.  So this periodic writeback code
675 * just walks the superblock inode list, writing back any inodes which are
676 * older than a specific point in time.
677 *
678 * Try to run once per dirty_writeback_interval.  But if a writeback event
679 * takes longer than a dirty_writeback_interval interval, then leave a
680 * one-second gap.
681 *
682 * older_than_this takes precedence over nr_to_write.  So we'll only write back
683 * all dirty pages if they are all attached to "old" mappings.
684 */
685static void wb_kupdate(unsigned long arg)
686{
687	unsigned long oldest_jif;
688	unsigned long start_jif;
689	unsigned long next_jif;
690	long nr_to_write;
691	struct writeback_control wbc = {
692		.bdi		= NULL,
693		.sync_mode	= WB_SYNC_NONE,
694		.older_than_this = &oldest_jif,
695		.nr_to_write	= 0,
696		.nonblocking	= 1,
697		.for_kupdate	= 1,
698		.range_cyclic	= 1,
699	};
700
701	sync_supers();
702
703	oldest_jif = jiffies - dirty_expire_interval;
704	start_jif = jiffies;
705	next_jif = start_jif + dirty_writeback_interval;
706	nr_to_write = global_page_state(NR_FILE_DIRTY) +
707			global_page_state(NR_UNSTABLE_NFS) +
708			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
709	while (nr_to_write > 0) {
710		wbc.more_io = 0;
711		wbc.encountered_congestion = 0;
712		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
713		writeback_inodes(&wbc);
714		if (wbc.nr_to_write > 0) {
715			if (wbc.encountered_congestion || wbc.more_io)
716				congestion_wait(WRITE, HZ/10);
717			else
718				break;	/* All the old data is written */
719		}
720		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
721	}
722	if (time_before(next_jif, jiffies + HZ))
723		next_jif = jiffies + HZ;
724	if (dirty_writeback_interval)
725		mod_timer(&wb_timer, next_jif);
726}
727
728/*
729 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
730 */
731int dirty_writeback_centisecs_handler(ctl_table *table, int write,
732	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
733{
734	proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
735	if (dirty_writeback_interval)
736		mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
737	else
738		del_timer(&wb_timer);
739	return 0;
740}
741
742static void wb_timer_fn(unsigned long unused)
743{
744	if (pdflush_operation(wb_kupdate, 0) < 0)
745		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
746}
747
748static void laptop_flush(unsigned long unused)
749{
750	sys_sync();
751}
752
753static void laptop_timer_fn(unsigned long unused)
754{
755	pdflush_operation(laptop_flush, 0);
756}
757
758/*
759 * We've spun up the disk and we're in laptop mode: schedule writeback
760 * of all dirty data a few seconds from now.  If the flush is already scheduled
761 * then push it back - the user is still using the disk.
762 */
763void laptop_io_completion(void)
764{
765	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
766}
767
768/*
769 * We're in laptop mode and we've just synced. The sync's writes will have
770 * caused another writeback to be scheduled by laptop_io_completion.
771 * Nothing needs to be written back anymore, so we unschedule the writeback.
772 */
773void laptop_sync_completion(void)
774{
775	del_timer(&laptop_mode_wb_timer);
776}
777
778/*
779 * If ratelimit_pages is too high then we can get into dirty-data overload
780 * if a large number of processes all perform writes at the same time.
781 * If it is too low then SMP machines will call the (expensive)
782 * get_writeback_state too often.
783 *
784 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
785 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
786 * thresholds before writeback cuts in.
787 *
788 * But the limit should not be set too high.  Because it also controls the
789 * amount of memory which the balance_dirty_pages() caller has to write back.
790 * If this is too large then the caller will block on the IO queue all the
791 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
792 * will write six megabyte chunks, max.
793 */
794
795void writeback_set_ratelimit(void)
796{
797	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
798	if (ratelimit_pages < 16)
799		ratelimit_pages = 16;
800	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
801		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
802}
803
804static int __cpuinit
805ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
806{
807	writeback_set_ratelimit();
808	return NOTIFY_DONE;
809}
810
811static struct notifier_block __cpuinitdata ratelimit_nb = {
812	.notifier_call	= ratelimit_handler,
813	.next		= NULL,
814};
815
816/*
817 * Called early on to tune the page writeback dirty limits.
818 *
819 * We used to scale dirty pages according to how total memory
820 * related to pages that could be allocated for buffers (by
821 * comparing nr_free_buffer_pages() to vm_total_pages.
822 *
823 * However, that was when we used "dirty_ratio" to scale with
824 * all memory, and we don't do that any more. "dirty_ratio"
825 * is now applied to total non-HIGHPAGE memory (by subtracting
826 * totalhigh_pages from vm_total_pages), and as such we can't
827 * get into the old insane situation any more where we had
828 * large amounts of dirty pages compared to a small amount of
829 * non-HIGHMEM memory.
830 *
831 * But we might still want to scale the dirty_ratio by how
832 * much memory the box has..
833 */
834void __init page_writeback_init(void)
835{
836	int shift;
837
838	mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
839	writeback_set_ratelimit();
840	register_cpu_notifier(&ratelimit_nb);
841
842	shift = calc_period_shift();
843	prop_descriptor_init(&vm_completions, shift);
844	prop_descriptor_init(&vm_dirties, shift);
845}
846
847/**
848 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
849 * @mapping: address space structure to write
850 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
851 * @writepage: function called for each page
852 * @data: data passed to writepage function
853 *
854 * If a page is already under I/O, write_cache_pages() skips it, even
855 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
856 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
857 * and msync() need to guarantee that all the data which was dirty at the time
858 * the call was made get new I/O started against them.  If wbc->sync_mode is
859 * WB_SYNC_ALL then we were called for data integrity and we must wait for
860 * existing IO to complete.
861 */
862int write_cache_pages(struct address_space *mapping,
863		      struct writeback_control *wbc, writepage_t writepage,
864		      void *data)
865{
866	struct backing_dev_info *bdi = mapping->backing_dev_info;
867	int ret = 0;
868	int done = 0;
869	struct pagevec pvec;
870	int nr_pages;
871	pgoff_t uninitialized_var(writeback_index);
872	pgoff_t index;
873	pgoff_t end;		/* Inclusive */
874	pgoff_t done_index;
875	int cycled;
876	int range_whole = 0;
877	long nr_to_write = wbc->nr_to_write;
878
879	if (wbc->nonblocking && bdi_write_congested(bdi)) {
880		wbc->encountered_congestion = 1;
881		return 0;
882	}
883
884	pagevec_init(&pvec, 0);
885	if (wbc->range_cyclic) {
886		writeback_index = mapping->writeback_index; /* prev offset */
887		index = writeback_index;
888		if (index == 0)
889			cycled = 1;
890		else
891			cycled = 0;
892		end = -1;
893	} else {
894		index = wbc->range_start >> PAGE_CACHE_SHIFT;
895		end = wbc->range_end >> PAGE_CACHE_SHIFT;
896		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
897			range_whole = 1;
898		cycled = 1; /* ignore range_cyclic tests */
899	}
900retry:
901	done_index = index;
902	while (!done && (index <= end) &&
903	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
904					      PAGECACHE_TAG_DIRTY,
905					      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
906		unsigned i;
907
908		for (i = 0; i < nr_pages; i++) {
909			struct page *page = pvec.pages[i];
910
911			done_index = page->index + 1;
912
913			/*
914			 * At this point we hold neither mapping->tree_lock nor
915			 * lock on the page itself: the page may be truncated or
916			 * invalidated (changing page->mapping to NULL), or even
917			 * swizzled back from swapper_space to tmpfs file
918			 * mapping
919			 */
920			lock_page(page);
921
922			if (unlikely(page->mapping != mapping)) {
923				unlock_page(page);
924				continue;
925			}
926
927			if (page->index > end) {
928				/*
929				 * can't be range_cyclic (1st pass) because
930				 * end == -1 in that case.
931				 */
932				done = 1;
933				unlock_page(page);
934				continue;
935			}
936
937			if (wbc->sync_mode != WB_SYNC_NONE)
938				wait_on_page_writeback(page);
939
940			if (PageWriteback(page) ||
941			    !clear_page_dirty_for_io(page)) {
942				unlock_page(page);
943				continue;
944			}
945
946			ret = (*writepage)(page, wbc, data);
947			if (unlikely(ret)) {
948				if (ret == AOP_WRITEPAGE_ACTIVATE) {
949					unlock_page(page);
950					ret = 0;
951				} else {
952					/*
953					 * done_index is set past this page,
954					 * so media errors will not choke
955					 * background writeout for the entire
956					 * file. This has consequences for
957					 * range_cyclic semantics (ie. it may
958					 * not be suitable for data integrity
959					 * writeout).
960					 */
961					done = 1;
962					break;
963				}
964 			}
965
966			if (wbc->sync_mode == WB_SYNC_NONE) {
967				if (--wbc->nr_to_write <= 0)
968					done = 1;
969			}
970			if (wbc->nonblocking && bdi_write_congested(bdi)) {
971				wbc->encountered_congestion = 1;
972				done = 1;
973			}
974		}
975		pagevec_release(&pvec);
976		cond_resched();
977	}
978	if (!cycled) {
979		/*
980		 * range_cyclic:
981		 * We hit the last page and there is more work to be done: wrap
982		 * back to the start of the file
983		 */
984		cycled = 1;
985		index = 0;
986		end = writeback_index - 1;
987		goto retry;
988	}
989	if (!wbc->no_nrwrite_index_update) {
990		if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
991			mapping->writeback_index = done_index;
992		wbc->nr_to_write = nr_to_write;
993	}
994
995	return ret;
996}
997EXPORT_SYMBOL(write_cache_pages);
998
999/*
1000 * Function used by generic_writepages to call the real writepage
1001 * function and set the mapping flags on error
1002 */
1003static int __writepage(struct page *page, struct writeback_control *wbc,
1004		       void *data)
1005{
1006	struct address_space *mapping = data;
1007	int ret = mapping->a_ops->writepage(page, wbc);
1008	mapping_set_error(mapping, ret);
1009	return ret;
1010}
1011
1012/**
1013 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1014 * @mapping: address space structure to write
1015 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1016 *
1017 * This is a library function, which implements the writepages()
1018 * address_space_operation.
1019 */
1020int generic_writepages(struct address_space *mapping,
1021		       struct writeback_control *wbc)
1022{
1023	/* deal with chardevs and other special file */
1024	if (!mapping->a_ops->writepage)
1025		return 0;
1026
1027	return write_cache_pages(mapping, wbc, __writepage, mapping);
1028}
1029
1030EXPORT_SYMBOL(generic_writepages);
1031
1032int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1033{
1034	int ret;
1035
1036	if (wbc->nr_to_write <= 0)
1037		return 0;
1038	wbc->for_writepages = 1;
1039	if (mapping->a_ops->writepages)
1040		ret = mapping->a_ops->writepages(mapping, wbc);
1041	else
1042		ret = generic_writepages(mapping, wbc);
1043	wbc->for_writepages = 0;
1044	return ret;
1045}
1046
1047/**
1048 * write_one_page - write out a single page and optionally wait on I/O
1049 * @page: the page to write
1050 * @wait: if true, wait on writeout
1051 *
1052 * The page must be locked by the caller and will be unlocked upon return.
1053 *
1054 * write_one_page() returns a negative error code if I/O failed.
1055 */
1056int write_one_page(struct page *page, int wait)
1057{
1058	struct address_space *mapping = page->mapping;
1059	int ret = 0;
1060	struct writeback_control wbc = {
1061		.sync_mode = WB_SYNC_ALL,
1062		.nr_to_write = 1,
1063	};
1064
1065	BUG_ON(!PageLocked(page));
1066
1067	if (wait)
1068		wait_on_page_writeback(page);
1069
1070	if (clear_page_dirty_for_io(page)) {
1071		page_cache_get(page);
1072		ret = mapping->a_ops->writepage(page, &wbc);
1073		if (ret == 0 && wait) {
1074			wait_on_page_writeback(page);
1075			if (PageError(page))
1076				ret = -EIO;
1077		}
1078		page_cache_release(page);
1079	} else {
1080		unlock_page(page);
1081	}
1082	return ret;
1083}
1084EXPORT_SYMBOL(write_one_page);
1085
1086/*
1087 * For address_spaces which do not use buffers nor write back.
1088 */
1089int __set_page_dirty_no_writeback(struct page *page)
1090{
1091	if (!PageDirty(page))
1092		SetPageDirty(page);
1093	return 0;
1094}
1095
1096/*
1097 * For address_spaces which do not use buffers.  Just tag the page as dirty in
1098 * its radix tree.
1099 *
1100 * This is also used when a single buffer is being dirtied: we want to set the
1101 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1102 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1103 *
1104 * Most callers have locked the page, which pins the address_space in memory.
1105 * But zap_pte_range() does not lock the page, however in that case the
1106 * mapping is pinned by the vma's ->vm_file reference.
1107 *
1108 * We take care to handle the case where the page was truncated from the
1109 * mapping by re-checking page_mapping() inside tree_lock.
1110 */
1111int __set_page_dirty_nobuffers(struct page *page)
1112{
1113	if (!TestSetPageDirty(page)) {
1114		struct address_space *mapping = page_mapping(page);
1115		struct address_space *mapping2;
1116
1117		if (!mapping)
1118			return 1;
1119
1120		spin_lock_irq(&mapping->tree_lock);
1121		mapping2 = page_mapping(page);
1122		if (mapping2) { /* Race with truncate? */
1123			BUG_ON(mapping2 != mapping);
1124			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1125			if (mapping_cap_account_dirty(mapping)) {
1126				__inc_zone_page_state(page, NR_FILE_DIRTY);
1127				__inc_bdi_stat(mapping->backing_dev_info,
1128						BDI_RECLAIMABLE);
1129				task_io_account_write(PAGE_CACHE_SIZE);
1130			}
1131			radix_tree_tag_set(&mapping->page_tree,
1132				page_index(page), PAGECACHE_TAG_DIRTY);
1133		}
1134		spin_unlock_irq(&mapping->tree_lock);
1135		if (mapping->host) {
1136			/* !PageAnon && !swapper_space */
1137			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1138		}
1139		return 1;
1140	}
1141	return 0;
1142}
1143EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1144
1145/*
1146 * When a writepage implementation decides that it doesn't want to write this
1147 * page for some reason, it should redirty the locked page via
1148 * redirty_page_for_writepage() and it should then unlock the page and return 0
1149 */
1150int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1151{
1152	wbc->pages_skipped++;
1153	return __set_page_dirty_nobuffers(page);
1154}
1155EXPORT_SYMBOL(redirty_page_for_writepage);
1156
1157/*
1158 * If the mapping doesn't provide a set_page_dirty a_op, then
1159 * just fall through and assume that it wants buffer_heads.
1160 */
1161static int __set_page_dirty(struct page *page)
1162{
1163	struct address_space *mapping = page_mapping(page);
1164
1165	if (likely(mapping)) {
1166		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1167#ifdef CONFIG_BLOCK
1168		if (!spd)
1169			spd = __set_page_dirty_buffers;
1170#endif
1171		return (*spd)(page);
1172	}
1173	if (!PageDirty(page)) {
1174		if (!TestSetPageDirty(page))
1175			return 1;
1176	}
1177	return 0;
1178}
1179
1180int set_page_dirty(struct page *page)
1181{
1182	int ret = __set_page_dirty(page);
1183	if (ret)
1184		task_dirty_inc(current);
1185	return ret;
1186}
1187EXPORT_SYMBOL(set_page_dirty);
1188
1189/*
1190 * set_page_dirty() is racy if the caller has no reference against
1191 * page->mapping->host, and if the page is unlocked.  This is because another
1192 * CPU could truncate the page off the mapping and then free the mapping.
1193 *
1194 * Usually, the page _is_ locked, or the caller is a user-space process which
1195 * holds a reference on the inode by having an open file.
1196 *
1197 * In other cases, the page should be locked before running set_page_dirty().
1198 */
1199int set_page_dirty_lock(struct page *page)
1200{
1201	int ret;
1202
1203	lock_page_nosync(page);
1204	ret = set_page_dirty(page);
1205	unlock_page(page);
1206	return ret;
1207}
1208EXPORT_SYMBOL(set_page_dirty_lock);
1209
1210/*
1211 * Clear a page's dirty flag, while caring for dirty memory accounting.
1212 * Returns true if the page was previously dirty.
1213 *
1214 * This is for preparing to put the page under writeout.  We leave the page
1215 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1216 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1217 * implementation will run either set_page_writeback() or set_page_dirty(),
1218 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1219 * back into sync.
1220 *
1221 * This incoherency between the page's dirty flag and radix-tree tag is
1222 * unfortunate, but it only exists while the page is locked.
1223 */
1224int clear_page_dirty_for_io(struct page *page)
1225{
1226	struct address_space *mapping = page_mapping(page);
1227
1228	BUG_ON(!PageLocked(page));
1229
1230	ClearPageReclaim(page);
1231	if (mapping && mapping_cap_account_dirty(mapping)) {
1232		/*
1233		 * Yes, Virginia, this is indeed insane.
1234		 *
1235		 * We use this sequence to make sure that
1236		 *  (a) we account for dirty stats properly
1237		 *  (b) we tell the low-level filesystem to
1238		 *      mark the whole page dirty if it was
1239		 *      dirty in a pagetable. Only to then
1240		 *  (c) clean the page again and return 1 to
1241		 *      cause the writeback.
1242		 *
1243		 * This way we avoid all nasty races with the
1244		 * dirty bit in multiple places and clearing
1245		 * them concurrently from different threads.
1246		 *
1247		 * Note! Normally the "set_page_dirty(page)"
1248		 * has no effect on the actual dirty bit - since
1249		 * that will already usually be set. But we
1250		 * need the side effects, and it can help us
1251		 * avoid races.
1252		 *
1253		 * We basically use the page "master dirty bit"
1254		 * as a serialization point for all the different
1255		 * threads doing their things.
1256		 */
1257		if (page_mkclean(page))
1258			set_page_dirty(page);
1259		/*
1260		 * We carefully synchronise fault handlers against
1261		 * installing a dirty pte and marking the page dirty
1262		 * at this point. We do this by having them hold the
1263		 * page lock at some point after installing their
1264		 * pte, but before marking the page dirty.
1265		 * Pages are always locked coming in here, so we get
1266		 * the desired exclusion. See mm/memory.c:do_wp_page()
1267		 * for more comments.
1268		 */
1269		if (TestClearPageDirty(page)) {
1270			dec_zone_page_state(page, NR_FILE_DIRTY);
1271			dec_bdi_stat(mapping->backing_dev_info,
1272					BDI_RECLAIMABLE);
1273			return 1;
1274		}
1275		return 0;
1276	}
1277	return TestClearPageDirty(page);
1278}
1279EXPORT_SYMBOL(clear_page_dirty_for_io);
1280
1281int test_clear_page_writeback(struct page *page)
1282{
1283	struct address_space *mapping = page_mapping(page);
1284	int ret;
1285
1286	if (mapping) {
1287		struct backing_dev_info *bdi = mapping->backing_dev_info;
1288		unsigned long flags;
1289
1290		spin_lock_irqsave(&mapping->tree_lock, flags);
1291		ret = TestClearPageWriteback(page);
1292		if (ret) {
1293			radix_tree_tag_clear(&mapping->page_tree,
1294						page_index(page),
1295						PAGECACHE_TAG_WRITEBACK);
1296			if (bdi_cap_account_writeback(bdi)) {
1297				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1298				__bdi_writeout_inc(bdi);
1299			}
1300		}
1301		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1302	} else {
1303		ret = TestClearPageWriteback(page);
1304	}
1305	if (ret)
1306		dec_zone_page_state(page, NR_WRITEBACK);
1307	return ret;
1308}
1309
1310int test_set_page_writeback(struct page *page)
1311{
1312	struct address_space *mapping = page_mapping(page);
1313	int ret;
1314
1315	if (mapping) {
1316		struct backing_dev_info *bdi = mapping->backing_dev_info;
1317		unsigned long flags;
1318
1319		spin_lock_irqsave(&mapping->tree_lock, flags);
1320		ret = TestSetPageWriteback(page);
1321		if (!ret) {
1322			radix_tree_tag_set(&mapping->page_tree,
1323						page_index(page),
1324						PAGECACHE_TAG_WRITEBACK);
1325			if (bdi_cap_account_writeback(bdi))
1326				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1327		}
1328		if (!PageDirty(page))
1329			radix_tree_tag_clear(&mapping->page_tree,
1330						page_index(page),
1331						PAGECACHE_TAG_DIRTY);
1332		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1333	} else {
1334		ret = TestSetPageWriteback(page);
1335	}
1336	if (!ret)
1337		inc_zone_page_state(page, NR_WRITEBACK);
1338	return ret;
1339
1340}
1341EXPORT_SYMBOL(test_set_page_writeback);
1342
1343/*
1344 * Return true if any of the pages in the mapping are marked with the
1345 * passed tag.
1346 */
1347int mapping_tagged(struct address_space *mapping, int tag)
1348{
1349	int ret;
1350	rcu_read_lock();
1351	ret = radix_tree_tagged(&mapping->page_tree, tag);
1352	rcu_read_unlock();
1353	return ret;
1354}
1355EXPORT_SYMBOL(mapping_tagged);
1356