page-writeback.c revision 07db59bd6b0f279c31044cba6787344f63be87ea
1/*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains functions related to writing back dirty pages at the
7 * address_space level.
8 *
9 * 10Apr2002	akpm@zip.com.au
10 *		Initial version
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/spinlock.h>
16#include <linux/fs.h>
17#include <linux/mm.h>
18#include <linux/swap.h>
19#include <linux/slab.h>
20#include <linux/pagemap.h>
21#include <linux/writeback.h>
22#include <linux/init.h>
23#include <linux/backing-dev.h>
24#include <linux/task_io_accounting_ops.h>
25#include <linux/blkdev.h>
26#include <linux/mpage.h>
27#include <linux/rmap.h>
28#include <linux/percpu.h>
29#include <linux/notifier.h>
30#include <linux/smp.h>
31#include <linux/sysctl.h>
32#include <linux/cpu.h>
33#include <linux/syscalls.h>
34#include <linux/buffer_head.h>
35#include <linux/pagevec.h>
36
37/*
38 * The maximum number of pages to writeout in a single bdflush/kupdate
39 * operation.  We do this so we don't hold I_LOCK against an inode for
40 * enormous amounts of time, which would block a userspace task which has
41 * been forced to throttle against that inode.  Also, the code reevaluates
42 * the dirty each time it has written this many pages.
43 */
44#define MAX_WRITEBACK_PAGES	1024
45
46/*
47 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
48 * will look to see if it needs to force writeback or throttling.
49 */
50static long ratelimit_pages = 32;
51
52static int dirty_exceeded __cacheline_aligned_in_smp;	/* Dirty mem may be over limit */
53
54/*
55 * When balance_dirty_pages decides that the caller needs to perform some
56 * non-background writeback, this is how many pages it will attempt to write.
57 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
58 * large amounts of I/O are submitted.
59 */
60static inline long sync_writeback_pages(void)
61{
62	return ratelimit_pages + ratelimit_pages / 2;
63}
64
65/* The following parameters are exported via /proc/sys/vm */
66
67/*
68 * Start background writeback (via pdflush) at this percentage
69 */
70int dirty_background_ratio = 5;
71
72/*
73 * The generator of dirty data starts writeback at this percentage
74 */
75int vm_dirty_ratio = 10;
76
77/*
78 * The interval between `kupdate'-style writebacks, in jiffies
79 */
80int dirty_writeback_interval = 5 * HZ;
81
82/*
83 * The longest number of jiffies for which data is allowed to remain dirty
84 */
85int dirty_expire_interval = 30 * HZ;
86
87/*
88 * Flag that makes the machine dump writes/reads and block dirtyings.
89 */
90int block_dump;
91
92/*
93 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
94 * a full sync is triggered after this time elapses without any disk activity.
95 */
96int laptop_mode;
97
98EXPORT_SYMBOL(laptop_mode);
99
100/* End of sysctl-exported parameters */
101
102
103static void background_writeout(unsigned long _min_pages);
104
105/*
106 * Work out the current dirty-memory clamping and background writeout
107 * thresholds.
108 *
109 * The main aim here is to lower them aggressively if there is a lot of mapped
110 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
111 * pages.  It is better to clamp down on writers than to start swapping, and
112 * performing lots of scanning.
113 *
114 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
115 *
116 * We don't permit the clamping level to fall below 5% - that is getting rather
117 * excessive.
118 *
119 * We make sure that the background writeout level is below the adjusted
120 * clamping level.
121 */
122static void
123get_dirty_limits(long *pbackground, long *pdirty,
124					struct address_space *mapping)
125{
126	int background_ratio;		/* Percentages */
127	int dirty_ratio;
128	int unmapped_ratio;
129	long background;
130	long dirty;
131	unsigned long available_memory = vm_total_pages;
132	struct task_struct *tsk;
133
134#ifdef CONFIG_HIGHMEM
135	/*
136	 * We always exclude high memory from our count.
137	 */
138	available_memory -= totalhigh_pages;
139#endif
140
141
142	unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) +
143				global_page_state(NR_ANON_PAGES)) * 100) /
144					vm_total_pages;
145
146	dirty_ratio = vm_dirty_ratio;
147	if (dirty_ratio > unmapped_ratio / 2)
148		dirty_ratio = unmapped_ratio / 2;
149
150	if (dirty_ratio < 5)
151		dirty_ratio = 5;
152
153	background_ratio = dirty_background_ratio;
154	if (background_ratio >= dirty_ratio)
155		background_ratio = dirty_ratio / 2;
156
157	background = (background_ratio * available_memory) / 100;
158	dirty = (dirty_ratio * available_memory) / 100;
159	tsk = current;
160	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
161		background += background / 4;
162		dirty += dirty / 4;
163	}
164	*pbackground = background;
165	*pdirty = dirty;
166}
167
168/*
169 * balance_dirty_pages() must be called by processes which are generating dirty
170 * data.  It looks at the number of dirty pages in the machine and will force
171 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
172 * If we're over `background_thresh' then pdflush is woken to perform some
173 * writeout.
174 */
175static void balance_dirty_pages(struct address_space *mapping)
176{
177	long nr_reclaimable;
178	long background_thresh;
179	long dirty_thresh;
180	unsigned long pages_written = 0;
181	unsigned long write_chunk = sync_writeback_pages();
182
183	struct backing_dev_info *bdi = mapping->backing_dev_info;
184
185	for (;;) {
186		struct writeback_control wbc = {
187			.bdi		= bdi,
188			.sync_mode	= WB_SYNC_NONE,
189			.older_than_this = NULL,
190			.nr_to_write	= write_chunk,
191			.range_cyclic	= 1,
192		};
193
194		get_dirty_limits(&background_thresh, &dirty_thresh, mapping);
195		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
196					global_page_state(NR_UNSTABLE_NFS);
197		if (nr_reclaimable + global_page_state(NR_WRITEBACK) <=
198			dirty_thresh)
199				break;
200
201		if (!dirty_exceeded)
202			dirty_exceeded = 1;
203
204		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
205		 * Unstable writes are a feature of certain networked
206		 * filesystems (i.e. NFS) in which data may have been
207		 * written to the server's write cache, but has not yet
208		 * been flushed to permanent storage.
209		 */
210		if (nr_reclaimable) {
211			writeback_inodes(&wbc);
212			get_dirty_limits(&background_thresh,
213					 	&dirty_thresh, mapping);
214			nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
215					global_page_state(NR_UNSTABLE_NFS);
216			if (nr_reclaimable +
217				global_page_state(NR_WRITEBACK)
218					<= dirty_thresh)
219						break;
220			pages_written += write_chunk - wbc.nr_to_write;
221			if (pages_written >= write_chunk)
222				break;		/* We've done our duty */
223		}
224		congestion_wait(WRITE, HZ/10);
225	}
226
227	if (nr_reclaimable + global_page_state(NR_WRITEBACK)
228		<= dirty_thresh && dirty_exceeded)
229			dirty_exceeded = 0;
230
231	if (writeback_in_progress(bdi))
232		return;		/* pdflush is already working this queue */
233
234	/*
235	 * In laptop mode, we wait until hitting the higher threshold before
236	 * starting background writeout, and then write out all the way down
237	 * to the lower threshold.  So slow writers cause minimal disk activity.
238	 *
239	 * In normal mode, we start background writeout at the lower
240	 * background_thresh, to keep the amount of dirty memory low.
241	 */
242	if ((laptop_mode && pages_written) ||
243	     (!laptop_mode && (nr_reclaimable > background_thresh)))
244		pdflush_operation(background_writeout, 0);
245}
246
247void set_page_dirty_balance(struct page *page)
248{
249	if (set_page_dirty(page)) {
250		struct address_space *mapping = page_mapping(page);
251
252		if (mapping)
253			balance_dirty_pages_ratelimited(mapping);
254	}
255}
256
257/**
258 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
259 * @mapping: address_space which was dirtied
260 * @nr_pages_dirtied: number of pages which the caller has just dirtied
261 *
262 * Processes which are dirtying memory should call in here once for each page
263 * which was newly dirtied.  The function will periodically check the system's
264 * dirty state and will initiate writeback if needed.
265 *
266 * On really big machines, get_writeback_state is expensive, so try to avoid
267 * calling it too often (ratelimiting).  But once we're over the dirty memory
268 * limit we decrease the ratelimiting by a lot, to prevent individual processes
269 * from overshooting the limit by (ratelimit_pages) each.
270 */
271void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
272					unsigned long nr_pages_dirtied)
273{
274	static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
275	unsigned long ratelimit;
276	unsigned long *p;
277
278	ratelimit = ratelimit_pages;
279	if (dirty_exceeded)
280		ratelimit = 8;
281
282	/*
283	 * Check the rate limiting. Also, we do not want to throttle real-time
284	 * tasks in balance_dirty_pages(). Period.
285	 */
286	preempt_disable();
287	p =  &__get_cpu_var(ratelimits);
288	*p += nr_pages_dirtied;
289	if (unlikely(*p >= ratelimit)) {
290		*p = 0;
291		preempt_enable();
292		balance_dirty_pages(mapping);
293		return;
294	}
295	preempt_enable();
296}
297EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
298
299void throttle_vm_writeout(gfp_t gfp_mask)
300{
301	long background_thresh;
302	long dirty_thresh;
303
304	if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) {
305		/*
306		 * The caller might hold locks which can prevent IO completion
307		 * or progress in the filesystem.  So we cannot just sit here
308		 * waiting for IO to complete.
309		 */
310		congestion_wait(WRITE, HZ/10);
311		return;
312	}
313
314        for ( ; ; ) {
315		get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
316
317                /*
318                 * Boost the allowable dirty threshold a bit for page
319                 * allocators so they don't get DoS'ed by heavy writers
320                 */
321                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
322
323                if (global_page_state(NR_UNSTABLE_NFS) +
324			global_page_state(NR_WRITEBACK) <= dirty_thresh)
325                        	break;
326                congestion_wait(WRITE, HZ/10);
327        }
328}
329
330/*
331 * writeback at least _min_pages, and keep writing until the amount of dirty
332 * memory is less than the background threshold, or until we're all clean.
333 */
334static void background_writeout(unsigned long _min_pages)
335{
336	long min_pages = _min_pages;
337	struct writeback_control wbc = {
338		.bdi		= NULL,
339		.sync_mode	= WB_SYNC_NONE,
340		.older_than_this = NULL,
341		.nr_to_write	= 0,
342		.nonblocking	= 1,
343		.range_cyclic	= 1,
344	};
345
346	for ( ; ; ) {
347		long background_thresh;
348		long dirty_thresh;
349
350		get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
351		if (global_page_state(NR_FILE_DIRTY) +
352			global_page_state(NR_UNSTABLE_NFS) < background_thresh
353				&& min_pages <= 0)
354			break;
355		wbc.encountered_congestion = 0;
356		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
357		wbc.pages_skipped = 0;
358		writeback_inodes(&wbc);
359		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
360		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
361			/* Wrote less than expected */
362			congestion_wait(WRITE, HZ/10);
363			if (!wbc.encountered_congestion)
364				break;
365		}
366	}
367}
368
369/*
370 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
371 * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
372 * -1 if all pdflush threads were busy.
373 */
374int wakeup_pdflush(long nr_pages)
375{
376	if (nr_pages == 0)
377		nr_pages = global_page_state(NR_FILE_DIRTY) +
378				global_page_state(NR_UNSTABLE_NFS);
379	return pdflush_operation(background_writeout, nr_pages);
380}
381
382static void wb_timer_fn(unsigned long unused);
383static void laptop_timer_fn(unsigned long unused);
384
385static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
386static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
387
388/*
389 * Periodic writeback of "old" data.
390 *
391 * Define "old": the first time one of an inode's pages is dirtied, we mark the
392 * dirtying-time in the inode's address_space.  So this periodic writeback code
393 * just walks the superblock inode list, writing back any inodes which are
394 * older than a specific point in time.
395 *
396 * Try to run once per dirty_writeback_interval.  But if a writeback event
397 * takes longer than a dirty_writeback_interval interval, then leave a
398 * one-second gap.
399 *
400 * older_than_this takes precedence over nr_to_write.  So we'll only write back
401 * all dirty pages if they are all attached to "old" mappings.
402 */
403static void wb_kupdate(unsigned long arg)
404{
405	unsigned long oldest_jif;
406	unsigned long start_jif;
407	unsigned long next_jif;
408	long nr_to_write;
409	struct writeback_control wbc = {
410		.bdi		= NULL,
411		.sync_mode	= WB_SYNC_NONE,
412		.older_than_this = &oldest_jif,
413		.nr_to_write	= 0,
414		.nonblocking	= 1,
415		.for_kupdate	= 1,
416		.range_cyclic	= 1,
417	};
418
419	sync_supers();
420
421	oldest_jif = jiffies - dirty_expire_interval;
422	start_jif = jiffies;
423	next_jif = start_jif + dirty_writeback_interval;
424	nr_to_write = global_page_state(NR_FILE_DIRTY) +
425			global_page_state(NR_UNSTABLE_NFS) +
426			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
427	while (nr_to_write > 0) {
428		wbc.encountered_congestion = 0;
429		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
430		writeback_inodes(&wbc);
431		if (wbc.nr_to_write > 0) {
432			if (wbc.encountered_congestion)
433				congestion_wait(WRITE, HZ/10);
434			else
435				break;	/* All the old data is written */
436		}
437		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
438	}
439	if (time_before(next_jif, jiffies + HZ))
440		next_jif = jiffies + HZ;
441	if (dirty_writeback_interval)
442		mod_timer(&wb_timer, next_jif);
443}
444
445/*
446 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
447 */
448int dirty_writeback_centisecs_handler(ctl_table *table, int write,
449		struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
450{
451	proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
452	if (dirty_writeback_interval) {
453		mod_timer(&wb_timer,
454			jiffies + dirty_writeback_interval);
455		} else {
456		del_timer(&wb_timer);
457	}
458	return 0;
459}
460
461static void wb_timer_fn(unsigned long unused)
462{
463	if (pdflush_operation(wb_kupdate, 0) < 0)
464		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
465}
466
467static void laptop_flush(unsigned long unused)
468{
469	sys_sync();
470}
471
472static void laptop_timer_fn(unsigned long unused)
473{
474	pdflush_operation(laptop_flush, 0);
475}
476
477/*
478 * We've spun up the disk and we're in laptop mode: schedule writeback
479 * of all dirty data a few seconds from now.  If the flush is already scheduled
480 * then push it back - the user is still using the disk.
481 */
482void laptop_io_completion(void)
483{
484	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
485}
486
487/*
488 * We're in laptop mode and we've just synced. The sync's writes will have
489 * caused another writeback to be scheduled by laptop_io_completion.
490 * Nothing needs to be written back anymore, so we unschedule the writeback.
491 */
492void laptop_sync_completion(void)
493{
494	del_timer(&laptop_mode_wb_timer);
495}
496
497/*
498 * If ratelimit_pages is too high then we can get into dirty-data overload
499 * if a large number of processes all perform writes at the same time.
500 * If it is too low then SMP machines will call the (expensive)
501 * get_writeback_state too often.
502 *
503 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
504 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
505 * thresholds before writeback cuts in.
506 *
507 * But the limit should not be set too high.  Because it also controls the
508 * amount of memory which the balance_dirty_pages() caller has to write back.
509 * If this is too large then the caller will block on the IO queue all the
510 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
511 * will write six megabyte chunks, max.
512 */
513
514void writeback_set_ratelimit(void)
515{
516	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
517	if (ratelimit_pages < 16)
518		ratelimit_pages = 16;
519	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
520		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
521}
522
523static int __cpuinit
524ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
525{
526	writeback_set_ratelimit();
527	return NOTIFY_DONE;
528}
529
530static struct notifier_block __cpuinitdata ratelimit_nb = {
531	.notifier_call	= ratelimit_handler,
532	.next		= NULL,
533};
534
535/*
536 * Called early on to tune the page writeback dirty limits.
537 *
538 * We used to scale dirty pages according to how total memory
539 * related to pages that could be allocated for buffers (by
540 * comparing nr_free_buffer_pages() to vm_total_pages.
541 *
542 * However, that was when we used "dirty_ratio" to scale with
543 * all memory, and we don't do that any more. "dirty_ratio"
544 * is now applied to total non-HIGHPAGE memory (by subtracting
545 * totalhigh_pages from vm_total_pages), and as such we can't
546 * get into the old insane situation any more where we had
547 * large amounts of dirty pages compared to a small amount of
548 * non-HIGHMEM memory.
549 *
550 * But we might still want to scale the dirty_ratio by how
551 * much memory the box has..
552 */
553void __init page_writeback_init(void)
554{
555	mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
556	writeback_set_ratelimit();
557	register_cpu_notifier(&ratelimit_nb);
558}
559
560/**
561 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
562 * @mapping: address space structure to write
563 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
564 *
565 * This is a library function, which implements the writepages()
566 * address_space_operation.
567 *
568 * If a page is already under I/O, generic_writepages() skips it, even
569 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
570 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
571 * and msync() need to guarantee that all the data which was dirty at the time
572 * the call was made get new I/O started against them.  If wbc->sync_mode is
573 * WB_SYNC_ALL then we were called for data integrity and we must wait for
574 * existing IO to complete.
575 *
576 * Derived from mpage_writepages() - if you fix this you should check that
577 * also!
578 */
579int generic_writepages(struct address_space *mapping,
580		       struct writeback_control *wbc)
581{
582	struct backing_dev_info *bdi = mapping->backing_dev_info;
583	int ret = 0;
584	int done = 0;
585	int (*writepage)(struct page *page, struct writeback_control *wbc);
586	struct pagevec pvec;
587	int nr_pages;
588	pgoff_t index;
589	pgoff_t end;		/* Inclusive */
590	int scanned = 0;
591	int range_whole = 0;
592
593	if (wbc->nonblocking && bdi_write_congested(bdi)) {
594		wbc->encountered_congestion = 1;
595		return 0;
596	}
597
598	writepage = mapping->a_ops->writepage;
599
600	/* deal with chardevs and other special file */
601	if (!writepage)
602		return 0;
603
604	pagevec_init(&pvec, 0);
605	if (wbc->range_cyclic) {
606		index = mapping->writeback_index; /* Start from prev offset */
607		end = -1;
608	} else {
609		index = wbc->range_start >> PAGE_CACHE_SHIFT;
610		end = wbc->range_end >> PAGE_CACHE_SHIFT;
611		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
612			range_whole = 1;
613		scanned = 1;
614	}
615retry:
616	while (!done && (index <= end) &&
617	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
618					      PAGECACHE_TAG_DIRTY,
619					      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
620		unsigned i;
621
622		scanned = 1;
623		for (i = 0; i < nr_pages; i++) {
624			struct page *page = pvec.pages[i];
625
626			/*
627			 * At this point we hold neither mapping->tree_lock nor
628			 * lock on the page itself: the page may be truncated or
629			 * invalidated (changing page->mapping to NULL), or even
630			 * swizzled back from swapper_space to tmpfs file
631			 * mapping
632			 */
633			lock_page(page);
634
635			if (unlikely(page->mapping != mapping)) {
636				unlock_page(page);
637				continue;
638			}
639
640			if (!wbc->range_cyclic && page->index > end) {
641				done = 1;
642				unlock_page(page);
643				continue;
644			}
645
646			if (wbc->sync_mode != WB_SYNC_NONE)
647				wait_on_page_writeback(page);
648
649			if (PageWriteback(page) ||
650			    !clear_page_dirty_for_io(page)) {
651				unlock_page(page);
652				continue;
653			}
654
655			ret = (*writepage)(page, wbc);
656			if (ret) {
657				if (ret == -ENOSPC)
658					set_bit(AS_ENOSPC, &mapping->flags);
659				else
660					set_bit(AS_EIO, &mapping->flags);
661			}
662
663			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE))
664				unlock_page(page);
665			if (ret || (--(wbc->nr_to_write) <= 0))
666				done = 1;
667			if (wbc->nonblocking && bdi_write_congested(bdi)) {
668				wbc->encountered_congestion = 1;
669				done = 1;
670			}
671		}
672		pagevec_release(&pvec);
673		cond_resched();
674	}
675	if (!scanned && !done) {
676		/*
677		 * We hit the last page and there is more work to be done: wrap
678		 * back to the start of the file
679		 */
680		scanned = 1;
681		index = 0;
682		goto retry;
683	}
684	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
685		mapping->writeback_index = index;
686	return ret;
687}
688
689EXPORT_SYMBOL(generic_writepages);
690
691int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
692{
693	int ret;
694
695	if (wbc->nr_to_write <= 0)
696		return 0;
697	wbc->for_writepages = 1;
698	if (mapping->a_ops->writepages)
699		ret = mapping->a_ops->writepages(mapping, wbc);
700	else
701		ret = generic_writepages(mapping, wbc);
702	wbc->for_writepages = 0;
703	return ret;
704}
705
706/**
707 * write_one_page - write out a single page and optionally wait on I/O
708 * @page: the page to write
709 * @wait: if true, wait on writeout
710 *
711 * The page must be locked by the caller and will be unlocked upon return.
712 *
713 * write_one_page() returns a negative error code if I/O failed.
714 */
715int write_one_page(struct page *page, int wait)
716{
717	struct address_space *mapping = page->mapping;
718	int ret = 0;
719	struct writeback_control wbc = {
720		.sync_mode = WB_SYNC_ALL,
721		.nr_to_write = 1,
722	};
723
724	BUG_ON(!PageLocked(page));
725
726	if (wait)
727		wait_on_page_writeback(page);
728
729	if (clear_page_dirty_for_io(page)) {
730		page_cache_get(page);
731		ret = mapping->a_ops->writepage(page, &wbc);
732		if (ret == 0 && wait) {
733			wait_on_page_writeback(page);
734			if (PageError(page))
735				ret = -EIO;
736		}
737		page_cache_release(page);
738	} else {
739		unlock_page(page);
740	}
741	return ret;
742}
743EXPORT_SYMBOL(write_one_page);
744
745/*
746 * For address_spaces which do not use buffers nor write back.
747 */
748int __set_page_dirty_no_writeback(struct page *page)
749{
750	if (!PageDirty(page))
751		SetPageDirty(page);
752	return 0;
753}
754
755/*
756 * For address_spaces which do not use buffers.  Just tag the page as dirty in
757 * its radix tree.
758 *
759 * This is also used when a single buffer is being dirtied: we want to set the
760 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
761 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
762 *
763 * Most callers have locked the page, which pins the address_space in memory.
764 * But zap_pte_range() does not lock the page, however in that case the
765 * mapping is pinned by the vma's ->vm_file reference.
766 *
767 * We take care to handle the case where the page was truncated from the
768 * mapping by re-checking page_mapping() insode tree_lock.
769 */
770int __set_page_dirty_nobuffers(struct page *page)
771{
772	if (!TestSetPageDirty(page)) {
773		struct address_space *mapping = page_mapping(page);
774		struct address_space *mapping2;
775
776		if (!mapping)
777			return 1;
778
779		write_lock_irq(&mapping->tree_lock);
780		mapping2 = page_mapping(page);
781		if (mapping2) { /* Race with truncate? */
782			BUG_ON(mapping2 != mapping);
783			if (mapping_cap_account_dirty(mapping)) {
784				__inc_zone_page_state(page, NR_FILE_DIRTY);
785				task_io_account_write(PAGE_CACHE_SIZE);
786			}
787			radix_tree_tag_set(&mapping->page_tree,
788				page_index(page), PAGECACHE_TAG_DIRTY);
789		}
790		write_unlock_irq(&mapping->tree_lock);
791		if (mapping->host) {
792			/* !PageAnon && !swapper_space */
793			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
794		}
795		return 1;
796	}
797	return 0;
798}
799EXPORT_SYMBOL(__set_page_dirty_nobuffers);
800
801/*
802 * When a writepage implementation decides that it doesn't want to write this
803 * page for some reason, it should redirty the locked page via
804 * redirty_page_for_writepage() and it should then unlock the page and return 0
805 */
806int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
807{
808	wbc->pages_skipped++;
809	return __set_page_dirty_nobuffers(page);
810}
811EXPORT_SYMBOL(redirty_page_for_writepage);
812
813/*
814 * If the mapping doesn't provide a set_page_dirty a_op, then
815 * just fall through and assume that it wants buffer_heads.
816 */
817int fastcall set_page_dirty(struct page *page)
818{
819	struct address_space *mapping = page_mapping(page);
820
821	if (likely(mapping)) {
822		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
823#ifdef CONFIG_BLOCK
824		if (!spd)
825			spd = __set_page_dirty_buffers;
826#endif
827		return (*spd)(page);
828	}
829	if (!PageDirty(page)) {
830		if (!TestSetPageDirty(page))
831			return 1;
832	}
833	return 0;
834}
835EXPORT_SYMBOL(set_page_dirty);
836
837/*
838 * set_page_dirty() is racy if the caller has no reference against
839 * page->mapping->host, and if the page is unlocked.  This is because another
840 * CPU could truncate the page off the mapping and then free the mapping.
841 *
842 * Usually, the page _is_ locked, or the caller is a user-space process which
843 * holds a reference on the inode by having an open file.
844 *
845 * In other cases, the page should be locked before running set_page_dirty().
846 */
847int set_page_dirty_lock(struct page *page)
848{
849	int ret;
850
851	lock_page_nosync(page);
852	ret = set_page_dirty(page);
853	unlock_page(page);
854	return ret;
855}
856EXPORT_SYMBOL(set_page_dirty_lock);
857
858/*
859 * Clear a page's dirty flag, while caring for dirty memory accounting.
860 * Returns true if the page was previously dirty.
861 *
862 * This is for preparing to put the page under writeout.  We leave the page
863 * tagged as dirty in the radix tree so that a concurrent write-for-sync
864 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
865 * implementation will run either set_page_writeback() or set_page_dirty(),
866 * at which stage we bring the page's dirty flag and radix-tree dirty tag
867 * back into sync.
868 *
869 * This incoherency between the page's dirty flag and radix-tree tag is
870 * unfortunate, but it only exists while the page is locked.
871 */
872int clear_page_dirty_for_io(struct page *page)
873{
874	struct address_space *mapping = page_mapping(page);
875
876	if (mapping && mapping_cap_account_dirty(mapping)) {
877		/*
878		 * Yes, Virginia, this is indeed insane.
879		 *
880		 * We use this sequence to make sure that
881		 *  (a) we account for dirty stats properly
882		 *  (b) we tell the low-level filesystem to
883		 *      mark the whole page dirty if it was
884		 *      dirty in a pagetable. Only to then
885		 *  (c) clean the page again and return 1 to
886		 *      cause the writeback.
887		 *
888		 * This way we avoid all nasty races with the
889		 * dirty bit in multiple places and clearing
890		 * them concurrently from different threads.
891		 *
892		 * Note! Normally the "set_page_dirty(page)"
893		 * has no effect on the actual dirty bit - since
894		 * that will already usually be set. But we
895		 * need the side effects, and it can help us
896		 * avoid races.
897		 *
898		 * We basically use the page "master dirty bit"
899		 * as a serialization point for all the different
900		 * threads doing their things.
901		 *
902		 * FIXME! We still have a race here: if somebody
903		 * adds the page back to the page tables in
904		 * between the "page_mkclean()" and the "TestClearPageDirty()",
905		 * we might have it mapped without the dirty bit set.
906		 */
907		if (page_mkclean(page))
908			set_page_dirty(page);
909		if (TestClearPageDirty(page)) {
910			dec_zone_page_state(page, NR_FILE_DIRTY);
911			return 1;
912		}
913		return 0;
914	}
915	return TestClearPageDirty(page);
916}
917EXPORT_SYMBOL(clear_page_dirty_for_io);
918
919int test_clear_page_writeback(struct page *page)
920{
921	struct address_space *mapping = page_mapping(page);
922	int ret;
923
924	if (mapping) {
925		unsigned long flags;
926
927		write_lock_irqsave(&mapping->tree_lock, flags);
928		ret = TestClearPageWriteback(page);
929		if (ret)
930			radix_tree_tag_clear(&mapping->page_tree,
931						page_index(page),
932						PAGECACHE_TAG_WRITEBACK);
933		write_unlock_irqrestore(&mapping->tree_lock, flags);
934	} else {
935		ret = TestClearPageWriteback(page);
936	}
937	return ret;
938}
939
940int test_set_page_writeback(struct page *page)
941{
942	struct address_space *mapping = page_mapping(page);
943	int ret;
944
945	if (mapping) {
946		unsigned long flags;
947
948		write_lock_irqsave(&mapping->tree_lock, flags);
949		ret = TestSetPageWriteback(page);
950		if (!ret)
951			radix_tree_tag_set(&mapping->page_tree,
952						page_index(page),
953						PAGECACHE_TAG_WRITEBACK);
954		if (!PageDirty(page))
955			radix_tree_tag_clear(&mapping->page_tree,
956						page_index(page),
957						PAGECACHE_TAG_DIRTY);
958		write_unlock_irqrestore(&mapping->tree_lock, flags);
959	} else {
960		ret = TestSetPageWriteback(page);
961	}
962	return ret;
963
964}
965EXPORT_SYMBOL(test_set_page_writeback);
966
967/*
968 * Return true if any of the pages in the mapping are marged with the
969 * passed tag.
970 */
971int mapping_tagged(struct address_space *mapping, int tag)
972{
973	unsigned long flags;
974	int ret;
975
976	read_lock_irqsave(&mapping->tree_lock, flags);
977	ret = radix_tree_tagged(&mapping->page_tree, tag);
978	read_unlock_irqrestore(&mapping->tree_lock, flags);
979	return ret;
980}
981EXPORT_SYMBOL(mapping_tagged);
982