page-writeback.c revision 17bc6c30cf6bfffd816bdc53682dd46fc34a2cf4
1/*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002	Andrew Morton
11 *		Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
25#include <linux/task_io_accounting_ops.h>
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
28#include <linux/rmap.h>
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
35#include <linux/buffer_head.h>
36#include <linux/pagevec.h>
37
38/*
39 * The maximum number of pages to writeout in a single bdflush/kupdate
40 * operation.  We do this so we don't hold I_SYNC against an inode for
41 * enormous amounts of time, which would block a userspace task which has
42 * been forced to throttle against that inode.  Also, the code reevaluates
43 * the dirty each time it has written this many pages.
44 */
45#define MAX_WRITEBACK_PAGES	1024
46
47/*
48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49 * will look to see if it needs to force writeback or throttling.
50 */
51static long ratelimit_pages = 32;
52
53/*
54 * When balance_dirty_pages decides that the caller needs to perform some
55 * non-background writeback, this is how many pages it will attempt to write.
56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57 * large amounts of I/O are submitted.
58 */
59static inline long sync_writeback_pages(void)
60{
61	return ratelimit_pages + ratelimit_pages / 2;
62}
63
64/* The following parameters are exported via /proc/sys/vm */
65
66/*
67 * Start background writeback (via pdflush) at this percentage
68 */
69int dirty_background_ratio = 5;
70
71/*
72 * free highmem will not be subtracted from the total free memory
73 * for calculating free ratios if vm_highmem_is_dirtyable is true
74 */
75int vm_highmem_is_dirtyable;
76
77/*
78 * The generator of dirty data starts writeback at this percentage
79 */
80int vm_dirty_ratio = 10;
81
82/*
83 * The interval between `kupdate'-style writebacks, in jiffies
84 */
85int dirty_writeback_interval = 5 * HZ;
86
87/*
88 * The longest number of jiffies for which data is allowed to remain dirty
89 */
90int dirty_expire_interval = 30 * HZ;
91
92/*
93 * Flag that makes the machine dump writes/reads and block dirtyings.
94 */
95int block_dump;
96
97/*
98 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
99 * a full sync is triggered after this time elapses without any disk activity.
100 */
101int laptop_mode;
102
103EXPORT_SYMBOL(laptop_mode);
104
105/* End of sysctl-exported parameters */
106
107
108static void background_writeout(unsigned long _min_pages);
109
110/*
111 * Scale the writeback cache size proportional to the relative writeout speeds.
112 *
113 * We do this by keeping a floating proportion between BDIs, based on page
114 * writeback completions [end_page_writeback()]. Those devices that write out
115 * pages fastest will get the larger share, while the slower will get a smaller
116 * share.
117 *
118 * We use page writeout completions because we are interested in getting rid of
119 * dirty pages. Having them written out is the primary goal.
120 *
121 * We introduce a concept of time, a period over which we measure these events,
122 * because demand can/will vary over time. The length of this period itself is
123 * measured in page writeback completions.
124 *
125 */
126static struct prop_descriptor vm_completions;
127static struct prop_descriptor vm_dirties;
128
129/*
130 * couple the period to the dirty_ratio:
131 *
132 *   period/2 ~ roundup_pow_of_two(dirty limit)
133 */
134static int calc_period_shift(void)
135{
136	unsigned long dirty_total;
137
138	dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
139	return 2 + ilog2(dirty_total - 1);
140}
141
142/*
143 * update the period when the dirty ratio changes.
144 */
145int dirty_ratio_handler(struct ctl_table *table, int write,
146		struct file *filp, void __user *buffer, size_t *lenp,
147		loff_t *ppos)
148{
149	int old_ratio = vm_dirty_ratio;
150	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
151	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
152		int shift = calc_period_shift();
153		prop_change_shift(&vm_completions, shift);
154		prop_change_shift(&vm_dirties, shift);
155	}
156	return ret;
157}
158
159/*
160 * Increment the BDI's writeout completion count and the global writeout
161 * completion count. Called from test_clear_page_writeback().
162 */
163static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
164{
165	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
166			      bdi->max_prop_frac);
167}
168
169void bdi_writeout_inc(struct backing_dev_info *bdi)
170{
171	unsigned long flags;
172
173	local_irq_save(flags);
174	__bdi_writeout_inc(bdi);
175	local_irq_restore(flags);
176}
177EXPORT_SYMBOL_GPL(bdi_writeout_inc);
178
179static inline void task_dirty_inc(struct task_struct *tsk)
180{
181	prop_inc_single(&vm_dirties, &tsk->dirties);
182}
183
184/*
185 * Obtain an accurate fraction of the BDI's portion.
186 */
187static void bdi_writeout_fraction(struct backing_dev_info *bdi,
188		long *numerator, long *denominator)
189{
190	if (bdi_cap_writeback_dirty(bdi)) {
191		prop_fraction_percpu(&vm_completions, &bdi->completions,
192				numerator, denominator);
193	} else {
194		*numerator = 0;
195		*denominator = 1;
196	}
197}
198
199/*
200 * Clip the earned share of dirty pages to that which is actually available.
201 * This avoids exceeding the total dirty_limit when the floating averages
202 * fluctuate too quickly.
203 */
204static void
205clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
206{
207	long avail_dirty;
208
209	avail_dirty = dirty -
210		(global_page_state(NR_FILE_DIRTY) +
211		 global_page_state(NR_WRITEBACK) +
212		 global_page_state(NR_UNSTABLE_NFS) +
213		 global_page_state(NR_WRITEBACK_TEMP));
214
215	if (avail_dirty < 0)
216		avail_dirty = 0;
217
218	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
219		bdi_stat(bdi, BDI_WRITEBACK);
220
221	*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
222}
223
224static inline void task_dirties_fraction(struct task_struct *tsk,
225		long *numerator, long *denominator)
226{
227	prop_fraction_single(&vm_dirties, &tsk->dirties,
228				numerator, denominator);
229}
230
231/*
232 * scale the dirty limit
233 *
234 * task specific dirty limit:
235 *
236 *   dirty -= (dirty/8) * p_{t}
237 */
238static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
239{
240	long numerator, denominator;
241	long dirty = *pdirty;
242	u64 inv = dirty >> 3;
243
244	task_dirties_fraction(tsk, &numerator, &denominator);
245	inv *= numerator;
246	do_div(inv, denominator);
247
248	dirty -= inv;
249	if (dirty < *pdirty/2)
250		dirty = *pdirty/2;
251
252	*pdirty = dirty;
253}
254
255/*
256 *
257 */
258static DEFINE_SPINLOCK(bdi_lock);
259static unsigned int bdi_min_ratio;
260
261int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
262{
263	int ret = 0;
264	unsigned long flags;
265
266	spin_lock_irqsave(&bdi_lock, flags);
267	if (min_ratio > bdi->max_ratio) {
268		ret = -EINVAL;
269	} else {
270		min_ratio -= bdi->min_ratio;
271		if (bdi_min_ratio + min_ratio < 100) {
272			bdi_min_ratio += min_ratio;
273			bdi->min_ratio += min_ratio;
274		} else {
275			ret = -EINVAL;
276		}
277	}
278	spin_unlock_irqrestore(&bdi_lock, flags);
279
280	return ret;
281}
282
283int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
284{
285	unsigned long flags;
286	int ret = 0;
287
288	if (max_ratio > 100)
289		return -EINVAL;
290
291	spin_lock_irqsave(&bdi_lock, flags);
292	if (bdi->min_ratio > max_ratio) {
293		ret = -EINVAL;
294	} else {
295		bdi->max_ratio = max_ratio;
296		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
297	}
298	spin_unlock_irqrestore(&bdi_lock, flags);
299
300	return ret;
301}
302EXPORT_SYMBOL(bdi_set_max_ratio);
303
304/*
305 * Work out the current dirty-memory clamping and background writeout
306 * thresholds.
307 *
308 * The main aim here is to lower them aggressively if there is a lot of mapped
309 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
310 * pages.  It is better to clamp down on writers than to start swapping, and
311 * performing lots of scanning.
312 *
313 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
314 *
315 * We don't permit the clamping level to fall below 5% - that is getting rather
316 * excessive.
317 *
318 * We make sure that the background writeout level is below the adjusted
319 * clamping level.
320 */
321
322static unsigned long highmem_dirtyable_memory(unsigned long total)
323{
324#ifdef CONFIG_HIGHMEM
325	int node;
326	unsigned long x = 0;
327
328	for_each_node_state(node, N_HIGH_MEMORY) {
329		struct zone *z =
330			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
331
332		x += zone_page_state(z, NR_FREE_PAGES)
333			+ zone_page_state(z, NR_INACTIVE)
334			+ zone_page_state(z, NR_ACTIVE);
335	}
336	/*
337	 * Make sure that the number of highmem pages is never larger
338	 * than the number of the total dirtyable memory. This can only
339	 * occur in very strange VM situations but we want to make sure
340	 * that this does not occur.
341	 */
342	return min(x, total);
343#else
344	return 0;
345#endif
346}
347
348/**
349 * determine_dirtyable_memory - amount of memory that may be used
350 *
351 * Returns the numebr of pages that can currently be freed and used
352 * by the kernel for direct mappings.
353 */
354unsigned long determine_dirtyable_memory(void)
355{
356	unsigned long x;
357
358	x = global_page_state(NR_FREE_PAGES)
359		+ global_page_state(NR_INACTIVE)
360		+ global_page_state(NR_ACTIVE);
361
362	if (!vm_highmem_is_dirtyable)
363		x -= highmem_dirtyable_memory(x);
364
365	return x + 1;	/* Ensure that we never return 0 */
366}
367
368void
369get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
370		 struct backing_dev_info *bdi)
371{
372	int background_ratio;		/* Percentages */
373	int dirty_ratio;
374	long background;
375	long dirty;
376	unsigned long available_memory = determine_dirtyable_memory();
377	struct task_struct *tsk;
378
379	dirty_ratio = vm_dirty_ratio;
380	if (dirty_ratio < 5)
381		dirty_ratio = 5;
382
383	background_ratio = dirty_background_ratio;
384	if (background_ratio >= dirty_ratio)
385		background_ratio = dirty_ratio / 2;
386
387	background = (background_ratio * available_memory) / 100;
388	dirty = (dirty_ratio * available_memory) / 100;
389	tsk = current;
390	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
391		background += background / 4;
392		dirty += dirty / 4;
393	}
394	*pbackground = background;
395	*pdirty = dirty;
396
397	if (bdi) {
398		u64 bdi_dirty;
399		long numerator, denominator;
400
401		/*
402		 * Calculate this BDI's share of the dirty ratio.
403		 */
404		bdi_writeout_fraction(bdi, &numerator, &denominator);
405
406		bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
407		bdi_dirty *= numerator;
408		do_div(bdi_dirty, denominator);
409		bdi_dirty += (dirty * bdi->min_ratio) / 100;
410		if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
411			bdi_dirty = dirty * bdi->max_ratio / 100;
412
413		*pbdi_dirty = bdi_dirty;
414		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
415		task_dirty_limit(current, pbdi_dirty);
416	}
417}
418
419/*
420 * balance_dirty_pages() must be called by processes which are generating dirty
421 * data.  It looks at the number of dirty pages in the machine and will force
422 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
423 * If we're over `background_thresh' then pdflush is woken to perform some
424 * writeout.
425 */
426static void balance_dirty_pages(struct address_space *mapping)
427{
428	long nr_reclaimable, bdi_nr_reclaimable;
429	long nr_writeback, bdi_nr_writeback;
430	long background_thresh;
431	long dirty_thresh;
432	long bdi_thresh;
433	unsigned long pages_written = 0;
434	unsigned long write_chunk = sync_writeback_pages();
435
436	struct backing_dev_info *bdi = mapping->backing_dev_info;
437
438	for (;;) {
439		struct writeback_control wbc = {
440			.bdi		= bdi,
441			.sync_mode	= WB_SYNC_NONE,
442			.older_than_this = NULL,
443			.nr_to_write	= write_chunk,
444			.range_cyclic	= 1,
445		};
446
447		get_dirty_limits(&background_thresh, &dirty_thresh,
448				&bdi_thresh, bdi);
449
450		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
451					global_page_state(NR_UNSTABLE_NFS);
452		nr_writeback = global_page_state(NR_WRITEBACK);
453
454		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
455		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
456
457		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
458			break;
459
460		/*
461		 * Throttle it only when the background writeback cannot
462		 * catch-up. This avoids (excessively) small writeouts
463		 * when the bdi limits are ramping up.
464		 */
465		if (nr_reclaimable + nr_writeback <
466				(background_thresh + dirty_thresh) / 2)
467			break;
468
469		if (!bdi->dirty_exceeded)
470			bdi->dirty_exceeded = 1;
471
472		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
473		 * Unstable writes are a feature of certain networked
474		 * filesystems (i.e. NFS) in which data may have been
475		 * written to the server's write cache, but has not yet
476		 * been flushed to permanent storage.
477		 */
478		if (bdi_nr_reclaimable) {
479			writeback_inodes(&wbc);
480			pages_written += write_chunk - wbc.nr_to_write;
481			get_dirty_limits(&background_thresh, &dirty_thresh,
482				       &bdi_thresh, bdi);
483		}
484
485		/*
486		 * In order to avoid the stacked BDI deadlock we need
487		 * to ensure we accurately count the 'dirty' pages when
488		 * the threshold is low.
489		 *
490		 * Otherwise it would be possible to get thresh+n pages
491		 * reported dirty, even though there are thresh-m pages
492		 * actually dirty; with m+n sitting in the percpu
493		 * deltas.
494		 */
495		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
496			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
497			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
498		} else if (bdi_nr_reclaimable) {
499			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
500			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
501		}
502
503		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
504			break;
505		if (pages_written >= write_chunk)
506			break;		/* We've done our duty */
507
508		congestion_wait(WRITE, HZ/10);
509	}
510
511	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
512			bdi->dirty_exceeded)
513		bdi->dirty_exceeded = 0;
514
515	if (writeback_in_progress(bdi))
516		return;		/* pdflush is already working this queue */
517
518	/*
519	 * In laptop mode, we wait until hitting the higher threshold before
520	 * starting background writeout, and then write out all the way down
521	 * to the lower threshold.  So slow writers cause minimal disk activity.
522	 *
523	 * In normal mode, we start background writeout at the lower
524	 * background_thresh, to keep the amount of dirty memory low.
525	 */
526	if ((laptop_mode && pages_written) ||
527			(!laptop_mode && (global_page_state(NR_FILE_DIRTY)
528					  + global_page_state(NR_UNSTABLE_NFS)
529					  > background_thresh)))
530		pdflush_operation(background_writeout, 0);
531}
532
533void set_page_dirty_balance(struct page *page, int page_mkwrite)
534{
535	if (set_page_dirty(page) || page_mkwrite) {
536		struct address_space *mapping = page_mapping(page);
537
538		if (mapping)
539			balance_dirty_pages_ratelimited(mapping);
540	}
541}
542
543/**
544 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
545 * @mapping: address_space which was dirtied
546 * @nr_pages_dirtied: number of pages which the caller has just dirtied
547 *
548 * Processes which are dirtying memory should call in here once for each page
549 * which was newly dirtied.  The function will periodically check the system's
550 * dirty state and will initiate writeback if needed.
551 *
552 * On really big machines, get_writeback_state is expensive, so try to avoid
553 * calling it too often (ratelimiting).  But once we're over the dirty memory
554 * limit we decrease the ratelimiting by a lot, to prevent individual processes
555 * from overshooting the limit by (ratelimit_pages) each.
556 */
557void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
558					unsigned long nr_pages_dirtied)
559{
560	static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
561	unsigned long ratelimit;
562	unsigned long *p;
563
564	ratelimit = ratelimit_pages;
565	if (mapping->backing_dev_info->dirty_exceeded)
566		ratelimit = 8;
567
568	/*
569	 * Check the rate limiting. Also, we do not want to throttle real-time
570	 * tasks in balance_dirty_pages(). Period.
571	 */
572	preempt_disable();
573	p =  &__get_cpu_var(ratelimits);
574	*p += nr_pages_dirtied;
575	if (unlikely(*p >= ratelimit)) {
576		*p = 0;
577		preempt_enable();
578		balance_dirty_pages(mapping);
579		return;
580	}
581	preempt_enable();
582}
583EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
584
585void throttle_vm_writeout(gfp_t gfp_mask)
586{
587	long background_thresh;
588	long dirty_thresh;
589
590        for ( ; ; ) {
591		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
592
593                /*
594                 * Boost the allowable dirty threshold a bit for page
595                 * allocators so they don't get DoS'ed by heavy writers
596                 */
597                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
598
599                if (global_page_state(NR_UNSTABLE_NFS) +
600			global_page_state(NR_WRITEBACK) <= dirty_thresh)
601                        	break;
602                congestion_wait(WRITE, HZ/10);
603
604		/*
605		 * The caller might hold locks which can prevent IO completion
606		 * or progress in the filesystem.  So we cannot just sit here
607		 * waiting for IO to complete.
608		 */
609		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
610			break;
611        }
612}
613
614/*
615 * writeback at least _min_pages, and keep writing until the amount of dirty
616 * memory is less than the background threshold, or until we're all clean.
617 */
618static void background_writeout(unsigned long _min_pages)
619{
620	long min_pages = _min_pages;
621	struct writeback_control wbc = {
622		.bdi		= NULL,
623		.sync_mode	= WB_SYNC_NONE,
624		.older_than_this = NULL,
625		.nr_to_write	= 0,
626		.nonblocking	= 1,
627		.range_cyclic	= 1,
628	};
629
630	for ( ; ; ) {
631		long background_thresh;
632		long dirty_thresh;
633
634		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
635		if (global_page_state(NR_FILE_DIRTY) +
636			global_page_state(NR_UNSTABLE_NFS) < background_thresh
637				&& min_pages <= 0)
638			break;
639		wbc.more_io = 0;
640		wbc.encountered_congestion = 0;
641		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
642		wbc.pages_skipped = 0;
643		writeback_inodes(&wbc);
644		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
645		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
646			/* Wrote less than expected */
647			if (wbc.encountered_congestion || wbc.more_io)
648				congestion_wait(WRITE, HZ/10);
649			else
650				break;
651		}
652	}
653}
654
655/*
656 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
657 * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
658 * -1 if all pdflush threads were busy.
659 */
660int wakeup_pdflush(long nr_pages)
661{
662	if (nr_pages == 0)
663		nr_pages = global_page_state(NR_FILE_DIRTY) +
664				global_page_state(NR_UNSTABLE_NFS);
665	return pdflush_operation(background_writeout, nr_pages);
666}
667
668static void wb_timer_fn(unsigned long unused);
669static void laptop_timer_fn(unsigned long unused);
670
671static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
672static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
673
674/*
675 * Periodic writeback of "old" data.
676 *
677 * Define "old": the first time one of an inode's pages is dirtied, we mark the
678 * dirtying-time in the inode's address_space.  So this periodic writeback code
679 * just walks the superblock inode list, writing back any inodes which are
680 * older than a specific point in time.
681 *
682 * Try to run once per dirty_writeback_interval.  But if a writeback event
683 * takes longer than a dirty_writeback_interval interval, then leave a
684 * one-second gap.
685 *
686 * older_than_this takes precedence over nr_to_write.  So we'll only write back
687 * all dirty pages if they are all attached to "old" mappings.
688 */
689static void wb_kupdate(unsigned long arg)
690{
691	unsigned long oldest_jif;
692	unsigned long start_jif;
693	unsigned long next_jif;
694	long nr_to_write;
695	struct writeback_control wbc = {
696		.bdi		= NULL,
697		.sync_mode	= WB_SYNC_NONE,
698		.older_than_this = &oldest_jif,
699		.nr_to_write	= 0,
700		.nonblocking	= 1,
701		.for_kupdate	= 1,
702		.range_cyclic	= 1,
703	};
704
705	sync_supers();
706
707	oldest_jif = jiffies - dirty_expire_interval;
708	start_jif = jiffies;
709	next_jif = start_jif + dirty_writeback_interval;
710	nr_to_write = global_page_state(NR_FILE_DIRTY) +
711			global_page_state(NR_UNSTABLE_NFS) +
712			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
713	while (nr_to_write > 0) {
714		wbc.more_io = 0;
715		wbc.encountered_congestion = 0;
716		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
717		writeback_inodes(&wbc);
718		if (wbc.nr_to_write > 0) {
719			if (wbc.encountered_congestion || wbc.more_io)
720				congestion_wait(WRITE, HZ/10);
721			else
722				break;	/* All the old data is written */
723		}
724		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
725	}
726	if (time_before(next_jif, jiffies + HZ))
727		next_jif = jiffies + HZ;
728	if (dirty_writeback_interval)
729		mod_timer(&wb_timer, next_jif);
730}
731
732/*
733 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
734 */
735int dirty_writeback_centisecs_handler(ctl_table *table, int write,
736	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
737{
738	proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
739	if (dirty_writeback_interval)
740		mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
741	else
742		del_timer(&wb_timer);
743	return 0;
744}
745
746static void wb_timer_fn(unsigned long unused)
747{
748	if (pdflush_operation(wb_kupdate, 0) < 0)
749		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
750}
751
752static void laptop_flush(unsigned long unused)
753{
754	sys_sync();
755}
756
757static void laptop_timer_fn(unsigned long unused)
758{
759	pdflush_operation(laptop_flush, 0);
760}
761
762/*
763 * We've spun up the disk and we're in laptop mode: schedule writeback
764 * of all dirty data a few seconds from now.  If the flush is already scheduled
765 * then push it back - the user is still using the disk.
766 */
767void laptop_io_completion(void)
768{
769	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
770}
771
772/*
773 * We're in laptop mode and we've just synced. The sync's writes will have
774 * caused another writeback to be scheduled by laptop_io_completion.
775 * Nothing needs to be written back anymore, so we unschedule the writeback.
776 */
777void laptop_sync_completion(void)
778{
779	del_timer(&laptop_mode_wb_timer);
780}
781
782/*
783 * If ratelimit_pages is too high then we can get into dirty-data overload
784 * if a large number of processes all perform writes at the same time.
785 * If it is too low then SMP machines will call the (expensive)
786 * get_writeback_state too often.
787 *
788 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
789 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
790 * thresholds before writeback cuts in.
791 *
792 * But the limit should not be set too high.  Because it also controls the
793 * amount of memory which the balance_dirty_pages() caller has to write back.
794 * If this is too large then the caller will block on the IO queue all the
795 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
796 * will write six megabyte chunks, max.
797 */
798
799void writeback_set_ratelimit(void)
800{
801	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
802	if (ratelimit_pages < 16)
803		ratelimit_pages = 16;
804	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
805		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
806}
807
808static int __cpuinit
809ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
810{
811	writeback_set_ratelimit();
812	return NOTIFY_DONE;
813}
814
815static struct notifier_block __cpuinitdata ratelimit_nb = {
816	.notifier_call	= ratelimit_handler,
817	.next		= NULL,
818};
819
820/*
821 * Called early on to tune the page writeback dirty limits.
822 *
823 * We used to scale dirty pages according to how total memory
824 * related to pages that could be allocated for buffers (by
825 * comparing nr_free_buffer_pages() to vm_total_pages.
826 *
827 * However, that was when we used "dirty_ratio" to scale with
828 * all memory, and we don't do that any more. "dirty_ratio"
829 * is now applied to total non-HIGHPAGE memory (by subtracting
830 * totalhigh_pages from vm_total_pages), and as such we can't
831 * get into the old insane situation any more where we had
832 * large amounts of dirty pages compared to a small amount of
833 * non-HIGHMEM memory.
834 *
835 * But we might still want to scale the dirty_ratio by how
836 * much memory the box has..
837 */
838void __init page_writeback_init(void)
839{
840	int shift;
841
842	mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
843	writeback_set_ratelimit();
844	register_cpu_notifier(&ratelimit_nb);
845
846	shift = calc_period_shift();
847	prop_descriptor_init(&vm_completions, shift);
848	prop_descriptor_init(&vm_dirties, shift);
849}
850
851/**
852 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
853 * @mapping: address space structure to write
854 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
855 * @writepage: function called for each page
856 * @data: data passed to writepage function
857 *
858 * If a page is already under I/O, write_cache_pages() skips it, even
859 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
860 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
861 * and msync() need to guarantee that all the data which was dirty at the time
862 * the call was made get new I/O started against them.  If wbc->sync_mode is
863 * WB_SYNC_ALL then we were called for data integrity and we must wait for
864 * existing IO to complete.
865 */
866int write_cache_pages(struct address_space *mapping,
867		      struct writeback_control *wbc, writepage_t writepage,
868		      void *data)
869{
870	struct backing_dev_info *bdi = mapping->backing_dev_info;
871	int ret = 0;
872	int done = 0;
873	struct pagevec pvec;
874	int nr_pages;
875	pgoff_t index;
876	pgoff_t end;		/* Inclusive */
877	int scanned = 0;
878	int range_whole = 0;
879	long nr_to_write = wbc->nr_to_write;
880
881	if (wbc->nonblocking && bdi_write_congested(bdi)) {
882		wbc->encountered_congestion = 1;
883		return 0;
884	}
885
886	pagevec_init(&pvec, 0);
887	if (wbc->range_cyclic) {
888		index = mapping->writeback_index; /* Start from prev offset */
889		end = -1;
890	} else {
891		index = wbc->range_start >> PAGE_CACHE_SHIFT;
892		end = wbc->range_end >> PAGE_CACHE_SHIFT;
893		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
894			range_whole = 1;
895		scanned = 1;
896	}
897retry:
898	while (!done && (index <= end) &&
899	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
900					      PAGECACHE_TAG_DIRTY,
901					      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
902		unsigned i;
903
904		scanned = 1;
905		for (i = 0; i < nr_pages; i++) {
906			struct page *page = pvec.pages[i];
907
908			/*
909			 * At this point we hold neither mapping->tree_lock nor
910			 * lock on the page itself: the page may be truncated or
911			 * invalidated (changing page->mapping to NULL), or even
912			 * swizzled back from swapper_space to tmpfs file
913			 * mapping
914			 */
915			lock_page(page);
916
917			if (unlikely(page->mapping != mapping)) {
918				unlock_page(page);
919				continue;
920			}
921
922			if (!wbc->range_cyclic && page->index > end) {
923				done = 1;
924				unlock_page(page);
925				continue;
926			}
927
928			if (wbc->sync_mode != WB_SYNC_NONE)
929				wait_on_page_writeback(page);
930
931			if (PageWriteback(page) ||
932			    !clear_page_dirty_for_io(page)) {
933				unlock_page(page);
934				continue;
935			}
936
937			ret = (*writepage)(page, wbc, data);
938
939			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
940				unlock_page(page);
941				ret = 0;
942			}
943			if (ret || (--nr_to_write <= 0))
944				done = 1;
945			if (wbc->nonblocking && bdi_write_congested(bdi)) {
946				wbc->encountered_congestion = 1;
947				done = 1;
948			}
949		}
950		pagevec_release(&pvec);
951		cond_resched();
952	}
953	if (!scanned && !done) {
954		/*
955		 * We hit the last page and there is more work to be done: wrap
956		 * back to the start of the file
957		 */
958		scanned = 1;
959		index = 0;
960		goto retry;
961	}
962	if (!wbc->no_nrwrite_index_update) {
963		if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
964			mapping->writeback_index = index;
965		wbc->nr_to_write = nr_to_write;
966	}
967
968	return ret;
969}
970EXPORT_SYMBOL(write_cache_pages);
971
972/*
973 * Function used by generic_writepages to call the real writepage
974 * function and set the mapping flags on error
975 */
976static int __writepage(struct page *page, struct writeback_control *wbc,
977		       void *data)
978{
979	struct address_space *mapping = data;
980	int ret = mapping->a_ops->writepage(page, wbc);
981	mapping_set_error(mapping, ret);
982	return ret;
983}
984
985/**
986 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
987 * @mapping: address space structure to write
988 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
989 *
990 * This is a library function, which implements the writepages()
991 * address_space_operation.
992 */
993int generic_writepages(struct address_space *mapping,
994		       struct writeback_control *wbc)
995{
996	/* deal with chardevs and other special file */
997	if (!mapping->a_ops->writepage)
998		return 0;
999
1000	return write_cache_pages(mapping, wbc, __writepage, mapping);
1001}
1002
1003EXPORT_SYMBOL(generic_writepages);
1004
1005int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1006{
1007	int ret;
1008
1009	if (wbc->nr_to_write <= 0)
1010		return 0;
1011	wbc->for_writepages = 1;
1012	if (mapping->a_ops->writepages)
1013		ret = mapping->a_ops->writepages(mapping, wbc);
1014	else
1015		ret = generic_writepages(mapping, wbc);
1016	wbc->for_writepages = 0;
1017	return ret;
1018}
1019
1020/**
1021 * write_one_page - write out a single page and optionally wait on I/O
1022 * @page: the page to write
1023 * @wait: if true, wait on writeout
1024 *
1025 * The page must be locked by the caller and will be unlocked upon return.
1026 *
1027 * write_one_page() returns a negative error code if I/O failed.
1028 */
1029int write_one_page(struct page *page, int wait)
1030{
1031	struct address_space *mapping = page->mapping;
1032	int ret = 0;
1033	struct writeback_control wbc = {
1034		.sync_mode = WB_SYNC_ALL,
1035		.nr_to_write = 1,
1036	};
1037
1038	BUG_ON(!PageLocked(page));
1039
1040	if (wait)
1041		wait_on_page_writeback(page);
1042
1043	if (clear_page_dirty_for_io(page)) {
1044		page_cache_get(page);
1045		ret = mapping->a_ops->writepage(page, &wbc);
1046		if (ret == 0 && wait) {
1047			wait_on_page_writeback(page);
1048			if (PageError(page))
1049				ret = -EIO;
1050		}
1051		page_cache_release(page);
1052	} else {
1053		unlock_page(page);
1054	}
1055	return ret;
1056}
1057EXPORT_SYMBOL(write_one_page);
1058
1059/*
1060 * For address_spaces which do not use buffers nor write back.
1061 */
1062int __set_page_dirty_no_writeback(struct page *page)
1063{
1064	if (!PageDirty(page))
1065		SetPageDirty(page);
1066	return 0;
1067}
1068
1069/*
1070 * For address_spaces which do not use buffers.  Just tag the page as dirty in
1071 * its radix tree.
1072 *
1073 * This is also used when a single buffer is being dirtied: we want to set the
1074 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1075 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1076 *
1077 * Most callers have locked the page, which pins the address_space in memory.
1078 * But zap_pte_range() does not lock the page, however in that case the
1079 * mapping is pinned by the vma's ->vm_file reference.
1080 *
1081 * We take care to handle the case where the page was truncated from the
1082 * mapping by re-checking page_mapping() inside tree_lock.
1083 */
1084int __set_page_dirty_nobuffers(struct page *page)
1085{
1086	if (!TestSetPageDirty(page)) {
1087		struct address_space *mapping = page_mapping(page);
1088		struct address_space *mapping2;
1089
1090		if (!mapping)
1091			return 1;
1092
1093		spin_lock_irq(&mapping->tree_lock);
1094		mapping2 = page_mapping(page);
1095		if (mapping2) { /* Race with truncate? */
1096			BUG_ON(mapping2 != mapping);
1097			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1098			if (mapping_cap_account_dirty(mapping)) {
1099				__inc_zone_page_state(page, NR_FILE_DIRTY);
1100				__inc_bdi_stat(mapping->backing_dev_info,
1101						BDI_RECLAIMABLE);
1102				task_io_account_write(PAGE_CACHE_SIZE);
1103			}
1104			radix_tree_tag_set(&mapping->page_tree,
1105				page_index(page), PAGECACHE_TAG_DIRTY);
1106		}
1107		spin_unlock_irq(&mapping->tree_lock);
1108		if (mapping->host) {
1109			/* !PageAnon && !swapper_space */
1110			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1111		}
1112		return 1;
1113	}
1114	return 0;
1115}
1116EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1117
1118/*
1119 * When a writepage implementation decides that it doesn't want to write this
1120 * page for some reason, it should redirty the locked page via
1121 * redirty_page_for_writepage() and it should then unlock the page and return 0
1122 */
1123int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1124{
1125	wbc->pages_skipped++;
1126	return __set_page_dirty_nobuffers(page);
1127}
1128EXPORT_SYMBOL(redirty_page_for_writepage);
1129
1130/*
1131 * If the mapping doesn't provide a set_page_dirty a_op, then
1132 * just fall through and assume that it wants buffer_heads.
1133 */
1134static int __set_page_dirty(struct page *page)
1135{
1136	struct address_space *mapping = page_mapping(page);
1137
1138	if (likely(mapping)) {
1139		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1140#ifdef CONFIG_BLOCK
1141		if (!spd)
1142			spd = __set_page_dirty_buffers;
1143#endif
1144		return (*spd)(page);
1145	}
1146	if (!PageDirty(page)) {
1147		if (!TestSetPageDirty(page))
1148			return 1;
1149	}
1150	return 0;
1151}
1152
1153int set_page_dirty(struct page *page)
1154{
1155	int ret = __set_page_dirty(page);
1156	if (ret)
1157		task_dirty_inc(current);
1158	return ret;
1159}
1160EXPORT_SYMBOL(set_page_dirty);
1161
1162/*
1163 * set_page_dirty() is racy if the caller has no reference against
1164 * page->mapping->host, and if the page is unlocked.  This is because another
1165 * CPU could truncate the page off the mapping and then free the mapping.
1166 *
1167 * Usually, the page _is_ locked, or the caller is a user-space process which
1168 * holds a reference on the inode by having an open file.
1169 *
1170 * In other cases, the page should be locked before running set_page_dirty().
1171 */
1172int set_page_dirty_lock(struct page *page)
1173{
1174	int ret;
1175
1176	lock_page_nosync(page);
1177	ret = set_page_dirty(page);
1178	unlock_page(page);
1179	return ret;
1180}
1181EXPORT_SYMBOL(set_page_dirty_lock);
1182
1183/*
1184 * Clear a page's dirty flag, while caring for dirty memory accounting.
1185 * Returns true if the page was previously dirty.
1186 *
1187 * This is for preparing to put the page under writeout.  We leave the page
1188 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1189 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1190 * implementation will run either set_page_writeback() or set_page_dirty(),
1191 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1192 * back into sync.
1193 *
1194 * This incoherency between the page's dirty flag and radix-tree tag is
1195 * unfortunate, but it only exists while the page is locked.
1196 */
1197int clear_page_dirty_for_io(struct page *page)
1198{
1199	struct address_space *mapping = page_mapping(page);
1200
1201	BUG_ON(!PageLocked(page));
1202
1203	ClearPageReclaim(page);
1204	if (mapping && mapping_cap_account_dirty(mapping)) {
1205		/*
1206		 * Yes, Virginia, this is indeed insane.
1207		 *
1208		 * We use this sequence to make sure that
1209		 *  (a) we account for dirty stats properly
1210		 *  (b) we tell the low-level filesystem to
1211		 *      mark the whole page dirty if it was
1212		 *      dirty in a pagetable. Only to then
1213		 *  (c) clean the page again and return 1 to
1214		 *      cause the writeback.
1215		 *
1216		 * This way we avoid all nasty races with the
1217		 * dirty bit in multiple places and clearing
1218		 * them concurrently from different threads.
1219		 *
1220		 * Note! Normally the "set_page_dirty(page)"
1221		 * has no effect on the actual dirty bit - since
1222		 * that will already usually be set. But we
1223		 * need the side effects, and it can help us
1224		 * avoid races.
1225		 *
1226		 * We basically use the page "master dirty bit"
1227		 * as a serialization point for all the different
1228		 * threads doing their things.
1229		 */
1230		if (page_mkclean(page))
1231			set_page_dirty(page);
1232		/*
1233		 * We carefully synchronise fault handlers against
1234		 * installing a dirty pte and marking the page dirty
1235		 * at this point. We do this by having them hold the
1236		 * page lock at some point after installing their
1237		 * pte, but before marking the page dirty.
1238		 * Pages are always locked coming in here, so we get
1239		 * the desired exclusion. See mm/memory.c:do_wp_page()
1240		 * for more comments.
1241		 */
1242		if (TestClearPageDirty(page)) {
1243			dec_zone_page_state(page, NR_FILE_DIRTY);
1244			dec_bdi_stat(mapping->backing_dev_info,
1245					BDI_RECLAIMABLE);
1246			return 1;
1247		}
1248		return 0;
1249	}
1250	return TestClearPageDirty(page);
1251}
1252EXPORT_SYMBOL(clear_page_dirty_for_io);
1253
1254int test_clear_page_writeback(struct page *page)
1255{
1256	struct address_space *mapping = page_mapping(page);
1257	int ret;
1258
1259	if (mapping) {
1260		struct backing_dev_info *bdi = mapping->backing_dev_info;
1261		unsigned long flags;
1262
1263		spin_lock_irqsave(&mapping->tree_lock, flags);
1264		ret = TestClearPageWriteback(page);
1265		if (ret) {
1266			radix_tree_tag_clear(&mapping->page_tree,
1267						page_index(page),
1268						PAGECACHE_TAG_WRITEBACK);
1269			if (bdi_cap_account_writeback(bdi)) {
1270				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1271				__bdi_writeout_inc(bdi);
1272			}
1273		}
1274		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1275	} else {
1276		ret = TestClearPageWriteback(page);
1277	}
1278	if (ret)
1279		dec_zone_page_state(page, NR_WRITEBACK);
1280	return ret;
1281}
1282
1283int test_set_page_writeback(struct page *page)
1284{
1285	struct address_space *mapping = page_mapping(page);
1286	int ret;
1287
1288	if (mapping) {
1289		struct backing_dev_info *bdi = mapping->backing_dev_info;
1290		unsigned long flags;
1291
1292		spin_lock_irqsave(&mapping->tree_lock, flags);
1293		ret = TestSetPageWriteback(page);
1294		if (!ret) {
1295			radix_tree_tag_set(&mapping->page_tree,
1296						page_index(page),
1297						PAGECACHE_TAG_WRITEBACK);
1298			if (bdi_cap_account_writeback(bdi))
1299				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1300		}
1301		if (!PageDirty(page))
1302			radix_tree_tag_clear(&mapping->page_tree,
1303						page_index(page),
1304						PAGECACHE_TAG_DIRTY);
1305		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1306	} else {
1307		ret = TestSetPageWriteback(page);
1308	}
1309	if (!ret)
1310		inc_zone_page_state(page, NR_WRITEBACK);
1311	return ret;
1312
1313}
1314EXPORT_SYMBOL(test_set_page_writeback);
1315
1316/*
1317 * Return true if any of the pages in the mapping are marked with the
1318 * passed tag.
1319 */
1320int mapping_tagged(struct address_space *mapping, int tag)
1321{
1322	int ret;
1323	rcu_read_lock();
1324	ret = radix_tree_tagged(&mapping->page_tree, tag);
1325	rcu_read_unlock();
1326	return ret;
1327}
1328EXPORT_SYMBOL(mapping_tagged);
1329