page-writeback.c revision 1df647197c5b8aacaeb58592cba9a1df322c9000
1/*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002	Andrew Morton
11 *		Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/export.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
25#include <linux/task_io_accounting_ops.h>
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
28#include <linux/rmap.h>
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
35#include <linux/buffer_head.h>
36#include <linux/pagevec.h>
37#include <trace/events/writeback.h>
38
39/*
40 * Sleep at most 200ms at a time in balance_dirty_pages().
41 */
42#define MAX_PAUSE		max(HZ/5, 1)
43
44/*
45 * Estimate write bandwidth at 200ms intervals.
46 */
47#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
48
49#define RATELIMIT_CALC_SHIFT	10
50
51/*
52 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53 * will look to see if it needs to force writeback or throttling.
54 */
55static long ratelimit_pages = 32;
56
57/* The following parameters are exported via /proc/sys/vm */
58
59/*
60 * Start background writeback (via writeback threads) at this percentage
61 */
62int dirty_background_ratio = 10;
63
64/*
65 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
66 * dirty_background_ratio * the amount of dirtyable memory
67 */
68unsigned long dirty_background_bytes;
69
70/*
71 * free highmem will not be subtracted from the total free memory
72 * for calculating free ratios if vm_highmem_is_dirtyable is true
73 */
74int vm_highmem_is_dirtyable;
75
76/*
77 * The generator of dirty data starts writeback at this percentage
78 */
79int vm_dirty_ratio = 20;
80
81/*
82 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
83 * vm_dirty_ratio * the amount of dirtyable memory
84 */
85unsigned long vm_dirty_bytes;
86
87/*
88 * The interval between `kupdate'-style writebacks
89 */
90unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
91
92/*
93 * The longest time for which data is allowed to remain dirty
94 */
95unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
96
97/*
98 * Flag that makes the machine dump writes/reads and block dirtyings.
99 */
100int block_dump;
101
102/*
103 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
104 * a full sync is triggered after this time elapses without any disk activity.
105 */
106int laptop_mode;
107
108EXPORT_SYMBOL(laptop_mode);
109
110/* End of sysctl-exported parameters */
111
112unsigned long global_dirty_limit;
113
114/*
115 * Scale the writeback cache size proportional to the relative writeout speeds.
116 *
117 * We do this by keeping a floating proportion between BDIs, based on page
118 * writeback completions [end_page_writeback()]. Those devices that write out
119 * pages fastest will get the larger share, while the slower will get a smaller
120 * share.
121 *
122 * We use page writeout completions because we are interested in getting rid of
123 * dirty pages. Having them written out is the primary goal.
124 *
125 * We introduce a concept of time, a period over which we measure these events,
126 * because demand can/will vary over time. The length of this period itself is
127 * measured in page writeback completions.
128 *
129 */
130static struct prop_descriptor vm_completions;
131static struct prop_descriptor vm_dirties;
132
133/*
134 * couple the period to the dirty_ratio:
135 *
136 *   period/2 ~ roundup_pow_of_two(dirty limit)
137 */
138static int calc_period_shift(void)
139{
140	unsigned long dirty_total;
141
142	if (vm_dirty_bytes)
143		dirty_total = vm_dirty_bytes / PAGE_SIZE;
144	else
145		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
146				100;
147	return 2 + ilog2(dirty_total - 1);
148}
149
150/*
151 * update the period when the dirty threshold changes.
152 */
153static void update_completion_period(void)
154{
155	int shift = calc_period_shift();
156	prop_change_shift(&vm_completions, shift);
157	prop_change_shift(&vm_dirties, shift);
158
159	writeback_set_ratelimit();
160}
161
162int dirty_background_ratio_handler(struct ctl_table *table, int write,
163		void __user *buffer, size_t *lenp,
164		loff_t *ppos)
165{
166	int ret;
167
168	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
169	if (ret == 0 && write)
170		dirty_background_bytes = 0;
171	return ret;
172}
173
174int dirty_background_bytes_handler(struct ctl_table *table, int write,
175		void __user *buffer, size_t *lenp,
176		loff_t *ppos)
177{
178	int ret;
179
180	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
181	if (ret == 0 && write)
182		dirty_background_ratio = 0;
183	return ret;
184}
185
186int dirty_ratio_handler(struct ctl_table *table, int write,
187		void __user *buffer, size_t *lenp,
188		loff_t *ppos)
189{
190	int old_ratio = vm_dirty_ratio;
191	int ret;
192
193	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
194	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
195		update_completion_period();
196		vm_dirty_bytes = 0;
197	}
198	return ret;
199}
200
201
202int dirty_bytes_handler(struct ctl_table *table, int write,
203		void __user *buffer, size_t *lenp,
204		loff_t *ppos)
205{
206	unsigned long old_bytes = vm_dirty_bytes;
207	int ret;
208
209	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
210	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
211		update_completion_period();
212		vm_dirty_ratio = 0;
213	}
214	return ret;
215}
216
217/*
218 * Increment the BDI's writeout completion count and the global writeout
219 * completion count. Called from test_clear_page_writeback().
220 */
221static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
222{
223	__inc_bdi_stat(bdi, BDI_WRITTEN);
224	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
225			      bdi->max_prop_frac);
226}
227
228void bdi_writeout_inc(struct backing_dev_info *bdi)
229{
230	unsigned long flags;
231
232	local_irq_save(flags);
233	__bdi_writeout_inc(bdi);
234	local_irq_restore(flags);
235}
236EXPORT_SYMBOL_GPL(bdi_writeout_inc);
237
238void task_dirty_inc(struct task_struct *tsk)
239{
240	prop_inc_single(&vm_dirties, &tsk->dirties);
241}
242
243/*
244 * Obtain an accurate fraction of the BDI's portion.
245 */
246static void bdi_writeout_fraction(struct backing_dev_info *bdi,
247		long *numerator, long *denominator)
248{
249	prop_fraction_percpu(&vm_completions, &bdi->completions,
250				numerator, denominator);
251}
252
253/*
254 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
255 * registered backing devices, which, for obvious reasons, can not
256 * exceed 100%.
257 */
258static unsigned int bdi_min_ratio;
259
260int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
261{
262	int ret = 0;
263
264	spin_lock_bh(&bdi_lock);
265	if (min_ratio > bdi->max_ratio) {
266		ret = -EINVAL;
267	} else {
268		min_ratio -= bdi->min_ratio;
269		if (bdi_min_ratio + min_ratio < 100) {
270			bdi_min_ratio += min_ratio;
271			bdi->min_ratio += min_ratio;
272		} else {
273			ret = -EINVAL;
274		}
275	}
276	spin_unlock_bh(&bdi_lock);
277
278	return ret;
279}
280
281int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
282{
283	int ret = 0;
284
285	if (max_ratio > 100)
286		return -EINVAL;
287
288	spin_lock_bh(&bdi_lock);
289	if (bdi->min_ratio > max_ratio) {
290		ret = -EINVAL;
291	} else {
292		bdi->max_ratio = max_ratio;
293		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
294	}
295	spin_unlock_bh(&bdi_lock);
296
297	return ret;
298}
299EXPORT_SYMBOL(bdi_set_max_ratio);
300
301/*
302 * Work out the current dirty-memory clamping and background writeout
303 * thresholds.
304 *
305 * The main aim here is to lower them aggressively if there is a lot of mapped
306 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
307 * pages.  It is better to clamp down on writers than to start swapping, and
308 * performing lots of scanning.
309 *
310 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
311 *
312 * We don't permit the clamping level to fall below 5% - that is getting rather
313 * excessive.
314 *
315 * We make sure that the background writeout level is below the adjusted
316 * clamping level.
317 */
318
319static unsigned long highmem_dirtyable_memory(unsigned long total)
320{
321#ifdef CONFIG_HIGHMEM
322	int node;
323	unsigned long x = 0;
324
325	for_each_node_state(node, N_HIGH_MEMORY) {
326		struct zone *z =
327			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
328
329		x += zone_page_state(z, NR_FREE_PAGES) +
330		     zone_reclaimable_pages(z);
331	}
332	/*
333	 * Make sure that the number of highmem pages is never larger
334	 * than the number of the total dirtyable memory. This can only
335	 * occur in very strange VM situations but we want to make sure
336	 * that this does not occur.
337	 */
338	return min(x, total);
339#else
340	return 0;
341#endif
342}
343
344/**
345 * determine_dirtyable_memory - amount of memory that may be used
346 *
347 * Returns the numebr of pages that can currently be freed and used
348 * by the kernel for direct mappings.
349 */
350unsigned long determine_dirtyable_memory(void)
351{
352	unsigned long x;
353
354	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
355
356	if (!vm_highmem_is_dirtyable)
357		x -= highmem_dirtyable_memory(x);
358
359	return x + 1;	/* Ensure that we never return 0 */
360}
361
362static unsigned long dirty_freerun_ceiling(unsigned long thresh,
363					   unsigned long bg_thresh)
364{
365	return (thresh + bg_thresh) / 2;
366}
367
368static unsigned long hard_dirty_limit(unsigned long thresh)
369{
370	return max(thresh, global_dirty_limit);
371}
372
373/*
374 * global_dirty_limits - background-writeback and dirty-throttling thresholds
375 *
376 * Calculate the dirty thresholds based on sysctl parameters
377 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
378 * - vm.dirty_ratio             or  vm.dirty_bytes
379 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
380 * real-time tasks.
381 */
382void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
383{
384	unsigned long background;
385	unsigned long dirty;
386	unsigned long uninitialized_var(available_memory);
387	struct task_struct *tsk;
388
389	if (!vm_dirty_bytes || !dirty_background_bytes)
390		available_memory = determine_dirtyable_memory();
391
392	if (vm_dirty_bytes)
393		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
394	else
395		dirty = (vm_dirty_ratio * available_memory) / 100;
396
397	if (dirty_background_bytes)
398		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
399	else
400		background = (dirty_background_ratio * available_memory) / 100;
401
402	if (background >= dirty)
403		background = dirty / 2;
404	tsk = current;
405	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
406		background += background / 4;
407		dirty += dirty / 4;
408	}
409	*pbackground = background;
410	*pdirty = dirty;
411	trace_global_dirty_state(background, dirty);
412}
413
414/**
415 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
416 * @bdi: the backing_dev_info to query
417 * @dirty: global dirty limit in pages
418 *
419 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
420 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
421 * And the "limit" in the name is not seriously taken as hard limit in
422 * balance_dirty_pages().
423 *
424 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
425 * - starving fast devices
426 * - piling up dirty pages (that will take long time to sync) on slow devices
427 *
428 * The bdi's share of dirty limit will be adapting to its throughput and
429 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
430 */
431unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
432{
433	u64 bdi_dirty;
434	long numerator, denominator;
435
436	/*
437	 * Calculate this BDI's share of the dirty ratio.
438	 */
439	bdi_writeout_fraction(bdi, &numerator, &denominator);
440
441	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
442	bdi_dirty *= numerator;
443	do_div(bdi_dirty, denominator);
444
445	bdi_dirty += (dirty * bdi->min_ratio) / 100;
446	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
447		bdi_dirty = dirty * bdi->max_ratio / 100;
448
449	return bdi_dirty;
450}
451
452/*
453 * Dirty position control.
454 *
455 * (o) global/bdi setpoints
456 *
457 * We want the dirty pages be balanced around the global/bdi setpoints.
458 * When the number of dirty pages is higher/lower than the setpoint, the
459 * dirty position control ratio (and hence task dirty ratelimit) will be
460 * decreased/increased to bring the dirty pages back to the setpoint.
461 *
462 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
463 *
464 *     if (dirty < setpoint) scale up   pos_ratio
465 *     if (dirty > setpoint) scale down pos_ratio
466 *
467 *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
468 *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
469 *
470 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
471 *
472 * (o) global control line
473 *
474 *     ^ pos_ratio
475 *     |
476 *     |            |<===== global dirty control scope ======>|
477 * 2.0 .............*
478 *     |            .*
479 *     |            . *
480 *     |            .   *
481 *     |            .     *
482 *     |            .        *
483 *     |            .            *
484 * 1.0 ................................*
485 *     |            .                  .     *
486 *     |            .                  .          *
487 *     |            .                  .              *
488 *     |            .                  .                 *
489 *     |            .                  .                    *
490 *   0 +------------.------------------.----------------------*------------->
491 *           freerun^          setpoint^                 limit^   dirty pages
492 *
493 * (o) bdi control line
494 *
495 *     ^ pos_ratio
496 *     |
497 *     |            *
498 *     |              *
499 *     |                *
500 *     |                  *
501 *     |                    * |<=========== span ============>|
502 * 1.0 .......................*
503 *     |                      . *
504 *     |                      .   *
505 *     |                      .     *
506 *     |                      .       *
507 *     |                      .         *
508 *     |                      .           *
509 *     |                      .             *
510 *     |                      .               *
511 *     |                      .                 *
512 *     |                      .                   *
513 *     |                      .                     *
514 * 1/4 ...............................................* * * * * * * * * * * *
515 *     |                      .                         .
516 *     |                      .                           .
517 *     |                      .                             .
518 *   0 +----------------------.-------------------------------.------------->
519 *                bdi_setpoint^                    x_intercept^
520 *
521 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
522 * be smoothly throttled down to normal if it starts high in situations like
523 * - start writing to a slow SD card and a fast disk at the same time. The SD
524 *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
525 * - the bdi dirty thresh drops quickly due to change of JBOD workload
526 */
527static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
528					unsigned long thresh,
529					unsigned long bg_thresh,
530					unsigned long dirty,
531					unsigned long bdi_thresh,
532					unsigned long bdi_dirty)
533{
534	unsigned long write_bw = bdi->avg_write_bandwidth;
535	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
536	unsigned long limit = hard_dirty_limit(thresh);
537	unsigned long x_intercept;
538	unsigned long setpoint;		/* dirty pages' target balance point */
539	unsigned long bdi_setpoint;
540	unsigned long span;
541	long long pos_ratio;		/* for scaling up/down the rate limit */
542	long x;
543
544	if (unlikely(dirty >= limit))
545		return 0;
546
547	/*
548	 * global setpoint
549	 *
550	 *                           setpoint - dirty 3
551	 *        f(dirty) := 1.0 + (----------------)
552	 *                           limit - setpoint
553	 *
554	 * it's a 3rd order polynomial that subjects to
555	 *
556	 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
557	 * (2) f(setpoint) = 1.0 => the balance point
558	 * (3) f(limit)    = 0   => the hard limit
559	 * (4) df/dx      <= 0	 => negative feedback control
560	 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
561	 *     => fast response on large errors; small oscillation near setpoint
562	 */
563	setpoint = (freerun + limit) / 2;
564	x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
565		    limit - setpoint + 1);
566	pos_ratio = x;
567	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
568	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
569	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
570
571	/*
572	 * We have computed basic pos_ratio above based on global situation. If
573	 * the bdi is over/under its share of dirty pages, we want to scale
574	 * pos_ratio further down/up. That is done by the following mechanism.
575	 */
576
577	/*
578	 * bdi setpoint
579	 *
580	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
581	 *
582	 *                        x_intercept - bdi_dirty
583	 *                     := --------------------------
584	 *                        x_intercept - bdi_setpoint
585	 *
586	 * The main bdi control line is a linear function that subjects to
587	 *
588	 * (1) f(bdi_setpoint) = 1.0
589	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
590	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
591	 *
592	 * For single bdi case, the dirty pages are observed to fluctuate
593	 * regularly within range
594	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
595	 * for various filesystems, where (2) can yield in a reasonable 12.5%
596	 * fluctuation range for pos_ratio.
597	 *
598	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
599	 * own size, so move the slope over accordingly and choose a slope that
600	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
601	 */
602	if (unlikely(bdi_thresh > thresh))
603		bdi_thresh = thresh;
604	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
605	/*
606	 * scale global setpoint to bdi's:
607	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
608	 */
609	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
610	bdi_setpoint = setpoint * (u64)x >> 16;
611	/*
612	 * Use span=(8*write_bw) in single bdi case as indicated by
613	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
614	 *
615	 *        bdi_thresh                    thresh - bdi_thresh
616	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
617	 *          thresh                            thresh
618	 */
619	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
620	x_intercept = bdi_setpoint + span;
621
622	if (bdi_dirty < x_intercept - span / 4) {
623		pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
624				    x_intercept - bdi_setpoint + 1);
625	} else
626		pos_ratio /= 4;
627
628	/*
629	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
630	 * It may push the desired control point of global dirty pages higher
631	 * than setpoint.
632	 */
633	x_intercept = bdi_thresh / 2;
634	if (bdi_dirty < x_intercept) {
635		if (bdi_dirty > x_intercept / 8)
636			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
637		else
638			pos_ratio *= 8;
639	}
640
641	return pos_ratio;
642}
643
644static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
645				       unsigned long elapsed,
646				       unsigned long written)
647{
648	const unsigned long period = roundup_pow_of_two(3 * HZ);
649	unsigned long avg = bdi->avg_write_bandwidth;
650	unsigned long old = bdi->write_bandwidth;
651	u64 bw;
652
653	/*
654	 * bw = written * HZ / elapsed
655	 *
656	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
657	 * write_bandwidth = ---------------------------------------------------
658	 *                                          period
659	 */
660	bw = written - bdi->written_stamp;
661	bw *= HZ;
662	if (unlikely(elapsed > period)) {
663		do_div(bw, elapsed);
664		avg = bw;
665		goto out;
666	}
667	bw += (u64)bdi->write_bandwidth * (period - elapsed);
668	bw >>= ilog2(period);
669
670	/*
671	 * one more level of smoothing, for filtering out sudden spikes
672	 */
673	if (avg > old && old >= (unsigned long)bw)
674		avg -= (avg - old) >> 3;
675
676	if (avg < old && old <= (unsigned long)bw)
677		avg += (old - avg) >> 3;
678
679out:
680	bdi->write_bandwidth = bw;
681	bdi->avg_write_bandwidth = avg;
682}
683
684/*
685 * The global dirtyable memory and dirty threshold could be suddenly knocked
686 * down by a large amount (eg. on the startup of KVM in a swapless system).
687 * This may throw the system into deep dirty exceeded state and throttle
688 * heavy/light dirtiers alike. To retain good responsiveness, maintain
689 * global_dirty_limit for tracking slowly down to the knocked down dirty
690 * threshold.
691 */
692static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
693{
694	unsigned long limit = global_dirty_limit;
695
696	/*
697	 * Follow up in one step.
698	 */
699	if (limit < thresh) {
700		limit = thresh;
701		goto update;
702	}
703
704	/*
705	 * Follow down slowly. Use the higher one as the target, because thresh
706	 * may drop below dirty. This is exactly the reason to introduce
707	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
708	 */
709	thresh = max(thresh, dirty);
710	if (limit > thresh) {
711		limit -= (limit - thresh) >> 5;
712		goto update;
713	}
714	return;
715update:
716	global_dirty_limit = limit;
717}
718
719static void global_update_bandwidth(unsigned long thresh,
720				    unsigned long dirty,
721				    unsigned long now)
722{
723	static DEFINE_SPINLOCK(dirty_lock);
724	static unsigned long update_time;
725
726	/*
727	 * check locklessly first to optimize away locking for the most time
728	 */
729	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
730		return;
731
732	spin_lock(&dirty_lock);
733	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
734		update_dirty_limit(thresh, dirty);
735		update_time = now;
736	}
737	spin_unlock(&dirty_lock);
738}
739
740/*
741 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
742 *
743 * Normal bdi tasks will be curbed at or below it in long term.
744 * Obviously it should be around (write_bw / N) when there are N dd tasks.
745 */
746static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
747				       unsigned long thresh,
748				       unsigned long bg_thresh,
749				       unsigned long dirty,
750				       unsigned long bdi_thresh,
751				       unsigned long bdi_dirty,
752				       unsigned long dirtied,
753				       unsigned long elapsed)
754{
755	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
756	unsigned long limit = hard_dirty_limit(thresh);
757	unsigned long setpoint = (freerun + limit) / 2;
758	unsigned long write_bw = bdi->avg_write_bandwidth;
759	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
760	unsigned long dirty_rate;
761	unsigned long task_ratelimit;
762	unsigned long balanced_dirty_ratelimit;
763	unsigned long pos_ratio;
764	unsigned long step;
765	unsigned long x;
766
767	/*
768	 * The dirty rate will match the writeout rate in long term, except
769	 * when dirty pages are truncated by userspace or re-dirtied by FS.
770	 */
771	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
772
773	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
774				       bdi_thresh, bdi_dirty);
775	/*
776	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
777	 */
778	task_ratelimit = (u64)dirty_ratelimit *
779					pos_ratio >> RATELIMIT_CALC_SHIFT;
780	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
781
782	/*
783	 * A linear estimation of the "balanced" throttle rate. The theory is,
784	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
785	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
786	 * formula will yield the balanced rate limit (write_bw / N).
787	 *
788	 * Note that the expanded form is not a pure rate feedback:
789	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
790	 * but also takes pos_ratio into account:
791	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
792	 *
793	 * (1) is not realistic because pos_ratio also takes part in balancing
794	 * the dirty rate.  Consider the state
795	 *	pos_ratio = 0.5						     (3)
796	 *	rate = 2 * (write_bw / N)				     (4)
797	 * If (1) is used, it will stuck in that state! Because each dd will
798	 * be throttled at
799	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
800	 * yielding
801	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
802	 * put (6) into (1) we get
803	 *	rate_(i+1) = rate_(i)					     (7)
804	 *
805	 * So we end up using (2) to always keep
806	 *	rate_(i+1) ~= (write_bw / N)				     (8)
807	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
808	 * pos_ratio is able to drive itself to 1.0, which is not only where
809	 * the dirty count meet the setpoint, but also where the slope of
810	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
811	 */
812	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
813					   dirty_rate | 1);
814
815	/*
816	 * We could safely do this and return immediately:
817	 *
818	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
819	 *
820	 * However to get a more stable dirty_ratelimit, the below elaborated
821	 * code makes use of task_ratelimit to filter out sigular points and
822	 * limit the step size.
823	 *
824	 * The below code essentially only uses the relative value of
825	 *
826	 *	task_ratelimit - dirty_ratelimit
827	 *	= (pos_ratio - 1) * dirty_ratelimit
828	 *
829	 * which reflects the direction and size of dirty position error.
830	 */
831
832	/*
833	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
834	 * task_ratelimit is on the same side of dirty_ratelimit, too.
835	 * For example, when
836	 * - dirty_ratelimit > balanced_dirty_ratelimit
837	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
838	 * lowering dirty_ratelimit will help meet both the position and rate
839	 * control targets. Otherwise, don't update dirty_ratelimit if it will
840	 * only help meet the rate target. After all, what the users ultimately
841	 * feel and care are stable dirty rate and small position error.
842	 *
843	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
844	 * and filter out the sigular points of balanced_dirty_ratelimit. Which
845	 * keeps jumping around randomly and can even leap far away at times
846	 * due to the small 200ms estimation period of dirty_rate (we want to
847	 * keep that period small to reduce time lags).
848	 */
849	step = 0;
850	if (dirty < setpoint) {
851		x = min(bdi->balanced_dirty_ratelimit,
852			 min(balanced_dirty_ratelimit, task_ratelimit));
853		if (dirty_ratelimit < x)
854			step = x - dirty_ratelimit;
855	} else {
856		x = max(bdi->balanced_dirty_ratelimit,
857			 max(balanced_dirty_ratelimit, task_ratelimit));
858		if (dirty_ratelimit > x)
859			step = dirty_ratelimit - x;
860	}
861
862	/*
863	 * Don't pursue 100% rate matching. It's impossible since the balanced
864	 * rate itself is constantly fluctuating. So decrease the track speed
865	 * when it gets close to the target. Helps eliminate pointless tremors.
866	 */
867	step >>= dirty_ratelimit / (2 * step + 1);
868	/*
869	 * Limit the tracking speed to avoid overshooting.
870	 */
871	step = (step + 7) / 8;
872
873	if (dirty_ratelimit < balanced_dirty_ratelimit)
874		dirty_ratelimit += step;
875	else
876		dirty_ratelimit -= step;
877
878	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
879	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
880
881	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
882}
883
884void __bdi_update_bandwidth(struct backing_dev_info *bdi,
885			    unsigned long thresh,
886			    unsigned long bg_thresh,
887			    unsigned long dirty,
888			    unsigned long bdi_thresh,
889			    unsigned long bdi_dirty,
890			    unsigned long start_time)
891{
892	unsigned long now = jiffies;
893	unsigned long elapsed = now - bdi->bw_time_stamp;
894	unsigned long dirtied;
895	unsigned long written;
896
897	/*
898	 * rate-limit, only update once every 200ms.
899	 */
900	if (elapsed < BANDWIDTH_INTERVAL)
901		return;
902
903	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
904	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
905
906	/*
907	 * Skip quiet periods when disk bandwidth is under-utilized.
908	 * (at least 1s idle time between two flusher runs)
909	 */
910	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
911		goto snapshot;
912
913	if (thresh) {
914		global_update_bandwidth(thresh, dirty, now);
915		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
916					   bdi_thresh, bdi_dirty,
917					   dirtied, elapsed);
918	}
919	bdi_update_write_bandwidth(bdi, elapsed, written);
920
921snapshot:
922	bdi->dirtied_stamp = dirtied;
923	bdi->written_stamp = written;
924	bdi->bw_time_stamp = now;
925}
926
927static void bdi_update_bandwidth(struct backing_dev_info *bdi,
928				 unsigned long thresh,
929				 unsigned long bg_thresh,
930				 unsigned long dirty,
931				 unsigned long bdi_thresh,
932				 unsigned long bdi_dirty,
933				 unsigned long start_time)
934{
935	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
936		return;
937	spin_lock(&bdi->wb.list_lock);
938	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
939			       bdi_thresh, bdi_dirty, start_time);
940	spin_unlock(&bdi->wb.list_lock);
941}
942
943/*
944 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
945 * will look to see if it needs to start dirty throttling.
946 *
947 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
948 * global_page_state() too often. So scale it near-sqrt to the safety margin
949 * (the number of pages we may dirty without exceeding the dirty limits).
950 */
951static unsigned long dirty_poll_interval(unsigned long dirty,
952					 unsigned long thresh)
953{
954	if (thresh > dirty)
955		return 1UL << (ilog2(thresh - dirty) >> 1);
956
957	return 1;
958}
959
960static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
961				   unsigned long bdi_dirty)
962{
963	unsigned long bw = bdi->avg_write_bandwidth;
964	unsigned long hi = ilog2(bw);
965	unsigned long lo = ilog2(bdi->dirty_ratelimit);
966	unsigned long t;
967
968	/* target for 20ms max pause on 1-dd case */
969	t = HZ / 50;
970
971	/*
972	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
973	 * overheads.
974	 *
975	 * (N * 20ms) on 2^N concurrent tasks.
976	 */
977	if (hi > lo)
978		t += (hi - lo) * (20 * HZ) / 1024;
979
980	/*
981	 * Limit pause time for small memory systems. If sleeping for too long
982	 * time, a small pool of dirty/writeback pages may go empty and disk go
983	 * idle.
984	 *
985	 * 8 serves as the safety ratio.
986	 */
987	if (bdi_dirty)
988		t = min(t, bdi_dirty * HZ / (8 * bw + 1));
989
990	/*
991	 * The pause time will be settled within range (max_pause/4, max_pause).
992	 * Apply a minimal value of 4 to get a non-zero max_pause/4.
993	 */
994	return clamp_val(t, 4, MAX_PAUSE);
995}
996
997/*
998 * balance_dirty_pages() must be called by processes which are generating dirty
999 * data.  It looks at the number of dirty pages in the machine and will force
1000 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1001 * If we're over `background_thresh' then the writeback threads are woken to
1002 * perform some writeout.
1003 */
1004static void balance_dirty_pages(struct address_space *mapping,
1005				unsigned long pages_dirtied)
1006{
1007	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1008	unsigned long bdi_reclaimable;
1009	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1010	unsigned long bdi_dirty;
1011	unsigned long freerun;
1012	unsigned long background_thresh;
1013	unsigned long dirty_thresh;
1014	unsigned long bdi_thresh;
1015	long pause = 0;
1016	long uninitialized_var(max_pause);
1017	bool dirty_exceeded = false;
1018	unsigned long task_ratelimit;
1019	unsigned long uninitialized_var(dirty_ratelimit);
1020	unsigned long pos_ratio;
1021	struct backing_dev_info *bdi = mapping->backing_dev_info;
1022	unsigned long start_time = jiffies;
1023
1024	for (;;) {
1025		/*
1026		 * Unstable writes are a feature of certain networked
1027		 * filesystems (i.e. NFS) in which data may have been
1028		 * written to the server's write cache, but has not yet
1029		 * been flushed to permanent storage.
1030		 */
1031		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1032					global_page_state(NR_UNSTABLE_NFS);
1033		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1034
1035		global_dirty_limits(&background_thresh, &dirty_thresh);
1036
1037		/*
1038		 * Throttle it only when the background writeback cannot
1039		 * catch-up. This avoids (excessively) small writeouts
1040		 * when the bdi limits are ramping up.
1041		 */
1042		freerun = dirty_freerun_ceiling(dirty_thresh,
1043						background_thresh);
1044		if (nr_dirty <= freerun)
1045			break;
1046
1047		if (unlikely(!writeback_in_progress(bdi)))
1048			bdi_start_background_writeback(bdi);
1049
1050		/*
1051		 * bdi_thresh is not treated as some limiting factor as
1052		 * dirty_thresh, due to reasons
1053		 * - in JBOD setup, bdi_thresh can fluctuate a lot
1054		 * - in a system with HDD and USB key, the USB key may somehow
1055		 *   go into state (bdi_dirty >> bdi_thresh) either because
1056		 *   bdi_dirty starts high, or because bdi_thresh drops low.
1057		 *   In this case we don't want to hard throttle the USB key
1058		 *   dirtiers for 100 seconds until bdi_dirty drops under
1059		 *   bdi_thresh. Instead the auxiliary bdi control line in
1060		 *   bdi_position_ratio() will let the dirtier task progress
1061		 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1062		 */
1063		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1064
1065		/*
1066		 * In order to avoid the stacked BDI deadlock we need
1067		 * to ensure we accurately count the 'dirty' pages when
1068		 * the threshold is low.
1069		 *
1070		 * Otherwise it would be possible to get thresh+n pages
1071		 * reported dirty, even though there are thresh-m pages
1072		 * actually dirty; with m+n sitting in the percpu
1073		 * deltas.
1074		 */
1075		if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1076			bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1077			bdi_dirty = bdi_reclaimable +
1078				    bdi_stat_sum(bdi, BDI_WRITEBACK);
1079		} else {
1080			bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1081			bdi_dirty = bdi_reclaimable +
1082				    bdi_stat(bdi, BDI_WRITEBACK);
1083		}
1084
1085		dirty_exceeded = (bdi_dirty > bdi_thresh) ||
1086				  (nr_dirty > dirty_thresh);
1087		if (dirty_exceeded && !bdi->dirty_exceeded)
1088			bdi->dirty_exceeded = 1;
1089
1090		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1091				     nr_dirty, bdi_thresh, bdi_dirty,
1092				     start_time);
1093
1094		max_pause = bdi_max_pause(bdi, bdi_dirty);
1095
1096		dirty_ratelimit = bdi->dirty_ratelimit;
1097		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1098					       background_thresh, nr_dirty,
1099					       bdi_thresh, bdi_dirty);
1100		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1101							RATELIMIT_CALC_SHIFT;
1102		if (unlikely(task_ratelimit == 0)) {
1103			pause = max_pause;
1104			goto pause;
1105		}
1106		pause = HZ * pages_dirtied / task_ratelimit;
1107		if (unlikely(pause <= 0)) {
1108			trace_balance_dirty_pages(bdi,
1109						  dirty_thresh,
1110						  background_thresh,
1111						  nr_dirty,
1112						  bdi_thresh,
1113						  bdi_dirty,
1114						  dirty_ratelimit,
1115						  task_ratelimit,
1116						  pages_dirtied,
1117						  pause,
1118						  start_time);
1119			pause = 1; /* avoid resetting nr_dirtied_pause below */
1120			break;
1121		}
1122		pause = min(pause, max_pause);
1123
1124pause:
1125		trace_balance_dirty_pages(bdi,
1126					  dirty_thresh,
1127					  background_thresh,
1128					  nr_dirty,
1129					  bdi_thresh,
1130					  bdi_dirty,
1131					  dirty_ratelimit,
1132					  task_ratelimit,
1133					  pages_dirtied,
1134					  pause,
1135					  start_time);
1136		__set_current_state(TASK_KILLABLE);
1137		io_schedule_timeout(pause);
1138
1139		/*
1140		 * This is typically equal to (nr_dirty < dirty_thresh) and can
1141		 * also keep "1000+ dd on a slow USB stick" under control.
1142		 */
1143		if (task_ratelimit)
1144			break;
1145
1146		if (fatal_signal_pending(current))
1147			break;
1148	}
1149
1150	if (!dirty_exceeded && bdi->dirty_exceeded)
1151		bdi->dirty_exceeded = 0;
1152
1153	current->nr_dirtied = 0;
1154	if (pause == 0) { /* in freerun area */
1155		current->nr_dirtied_pause =
1156				dirty_poll_interval(nr_dirty, dirty_thresh);
1157	} else if (pause <= max_pause / 4 &&
1158		   pages_dirtied >= current->nr_dirtied_pause) {
1159		current->nr_dirtied_pause = clamp_val(
1160					dirty_ratelimit * (max_pause / 2) / HZ,
1161					pages_dirtied + pages_dirtied / 8,
1162					pages_dirtied * 4);
1163	} else if (pause >= max_pause) {
1164		current->nr_dirtied_pause = 1 | clamp_val(
1165					dirty_ratelimit * (max_pause / 2) / HZ,
1166					pages_dirtied / 4,
1167					pages_dirtied - pages_dirtied / 8);
1168	}
1169
1170	if (writeback_in_progress(bdi))
1171		return;
1172
1173	/*
1174	 * In laptop mode, we wait until hitting the higher threshold before
1175	 * starting background writeout, and then write out all the way down
1176	 * to the lower threshold.  So slow writers cause minimal disk activity.
1177	 *
1178	 * In normal mode, we start background writeout at the lower
1179	 * background_thresh, to keep the amount of dirty memory low.
1180	 */
1181	if (laptop_mode)
1182		return;
1183
1184	if (nr_reclaimable > background_thresh)
1185		bdi_start_background_writeback(bdi);
1186}
1187
1188void set_page_dirty_balance(struct page *page, int page_mkwrite)
1189{
1190	if (set_page_dirty(page) || page_mkwrite) {
1191		struct address_space *mapping = page_mapping(page);
1192
1193		if (mapping)
1194			balance_dirty_pages_ratelimited(mapping);
1195	}
1196}
1197
1198static DEFINE_PER_CPU(int, bdp_ratelimits);
1199
1200/**
1201 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1202 * @mapping: address_space which was dirtied
1203 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1204 *
1205 * Processes which are dirtying memory should call in here once for each page
1206 * which was newly dirtied.  The function will periodically check the system's
1207 * dirty state and will initiate writeback if needed.
1208 *
1209 * On really big machines, get_writeback_state is expensive, so try to avoid
1210 * calling it too often (ratelimiting).  But once we're over the dirty memory
1211 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1212 * from overshooting the limit by (ratelimit_pages) each.
1213 */
1214void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1215					unsigned long nr_pages_dirtied)
1216{
1217	struct backing_dev_info *bdi = mapping->backing_dev_info;
1218	int ratelimit;
1219	int *p;
1220
1221	if (!bdi_cap_account_dirty(bdi))
1222		return;
1223
1224	ratelimit = current->nr_dirtied_pause;
1225	if (bdi->dirty_exceeded)
1226		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1227
1228	current->nr_dirtied += nr_pages_dirtied;
1229
1230	preempt_disable();
1231	/*
1232	 * This prevents one CPU to accumulate too many dirtied pages without
1233	 * calling into balance_dirty_pages(), which can happen when there are
1234	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1235	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1236	 */
1237	p =  &__get_cpu_var(bdp_ratelimits);
1238	if (unlikely(current->nr_dirtied >= ratelimit))
1239		*p = 0;
1240	else {
1241		*p += nr_pages_dirtied;
1242		if (unlikely(*p >= ratelimit_pages)) {
1243			*p = 0;
1244			ratelimit = 0;
1245		}
1246	}
1247	preempt_enable();
1248
1249	if (unlikely(current->nr_dirtied >= ratelimit))
1250		balance_dirty_pages(mapping, current->nr_dirtied);
1251}
1252EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1253
1254void throttle_vm_writeout(gfp_t gfp_mask)
1255{
1256	unsigned long background_thresh;
1257	unsigned long dirty_thresh;
1258
1259        for ( ; ; ) {
1260		global_dirty_limits(&background_thresh, &dirty_thresh);
1261
1262                /*
1263                 * Boost the allowable dirty threshold a bit for page
1264                 * allocators so they don't get DoS'ed by heavy writers
1265                 */
1266                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1267
1268                if (global_page_state(NR_UNSTABLE_NFS) +
1269			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1270                        	break;
1271                congestion_wait(BLK_RW_ASYNC, HZ/10);
1272
1273		/*
1274		 * The caller might hold locks which can prevent IO completion
1275		 * or progress in the filesystem.  So we cannot just sit here
1276		 * waiting for IO to complete.
1277		 */
1278		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1279			break;
1280        }
1281}
1282
1283/*
1284 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1285 */
1286int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1287	void __user *buffer, size_t *length, loff_t *ppos)
1288{
1289	proc_dointvec(table, write, buffer, length, ppos);
1290	bdi_arm_supers_timer();
1291	return 0;
1292}
1293
1294#ifdef CONFIG_BLOCK
1295void laptop_mode_timer_fn(unsigned long data)
1296{
1297	struct request_queue *q = (struct request_queue *)data;
1298	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1299		global_page_state(NR_UNSTABLE_NFS);
1300
1301	/*
1302	 * We want to write everything out, not just down to the dirty
1303	 * threshold
1304	 */
1305	if (bdi_has_dirty_io(&q->backing_dev_info))
1306		bdi_start_writeback(&q->backing_dev_info, nr_pages,
1307					WB_REASON_LAPTOP_TIMER);
1308}
1309
1310/*
1311 * We've spun up the disk and we're in laptop mode: schedule writeback
1312 * of all dirty data a few seconds from now.  If the flush is already scheduled
1313 * then push it back - the user is still using the disk.
1314 */
1315void laptop_io_completion(struct backing_dev_info *info)
1316{
1317	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1318}
1319
1320/*
1321 * We're in laptop mode and we've just synced. The sync's writes will have
1322 * caused another writeback to be scheduled by laptop_io_completion.
1323 * Nothing needs to be written back anymore, so we unschedule the writeback.
1324 */
1325void laptop_sync_completion(void)
1326{
1327	struct backing_dev_info *bdi;
1328
1329	rcu_read_lock();
1330
1331	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1332		del_timer(&bdi->laptop_mode_wb_timer);
1333
1334	rcu_read_unlock();
1335}
1336#endif
1337
1338/*
1339 * If ratelimit_pages is too high then we can get into dirty-data overload
1340 * if a large number of processes all perform writes at the same time.
1341 * If it is too low then SMP machines will call the (expensive)
1342 * get_writeback_state too often.
1343 *
1344 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1345 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1346 * thresholds.
1347 */
1348
1349void writeback_set_ratelimit(void)
1350{
1351	unsigned long background_thresh;
1352	unsigned long dirty_thresh;
1353	global_dirty_limits(&background_thresh, &dirty_thresh);
1354	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1355	if (ratelimit_pages < 16)
1356		ratelimit_pages = 16;
1357}
1358
1359static int __cpuinit
1360ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1361{
1362	writeback_set_ratelimit();
1363	return NOTIFY_DONE;
1364}
1365
1366static struct notifier_block __cpuinitdata ratelimit_nb = {
1367	.notifier_call	= ratelimit_handler,
1368	.next		= NULL,
1369};
1370
1371/*
1372 * Called early on to tune the page writeback dirty limits.
1373 *
1374 * We used to scale dirty pages according to how total memory
1375 * related to pages that could be allocated for buffers (by
1376 * comparing nr_free_buffer_pages() to vm_total_pages.
1377 *
1378 * However, that was when we used "dirty_ratio" to scale with
1379 * all memory, and we don't do that any more. "dirty_ratio"
1380 * is now applied to total non-HIGHPAGE memory (by subtracting
1381 * totalhigh_pages from vm_total_pages), and as such we can't
1382 * get into the old insane situation any more where we had
1383 * large amounts of dirty pages compared to a small amount of
1384 * non-HIGHMEM memory.
1385 *
1386 * But we might still want to scale the dirty_ratio by how
1387 * much memory the box has..
1388 */
1389void __init page_writeback_init(void)
1390{
1391	int shift;
1392
1393	writeback_set_ratelimit();
1394	register_cpu_notifier(&ratelimit_nb);
1395
1396	shift = calc_period_shift();
1397	prop_descriptor_init(&vm_completions, shift);
1398	prop_descriptor_init(&vm_dirties, shift);
1399}
1400
1401/**
1402 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1403 * @mapping: address space structure to write
1404 * @start: starting page index
1405 * @end: ending page index (inclusive)
1406 *
1407 * This function scans the page range from @start to @end (inclusive) and tags
1408 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1409 * that write_cache_pages (or whoever calls this function) will then use
1410 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1411 * used to avoid livelocking of writeback by a process steadily creating new
1412 * dirty pages in the file (thus it is important for this function to be quick
1413 * so that it can tag pages faster than a dirtying process can create them).
1414 */
1415/*
1416 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1417 */
1418void tag_pages_for_writeback(struct address_space *mapping,
1419			     pgoff_t start, pgoff_t end)
1420{
1421#define WRITEBACK_TAG_BATCH 4096
1422	unsigned long tagged;
1423
1424	do {
1425		spin_lock_irq(&mapping->tree_lock);
1426		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1427				&start, end, WRITEBACK_TAG_BATCH,
1428				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1429		spin_unlock_irq(&mapping->tree_lock);
1430		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1431		cond_resched();
1432		/* We check 'start' to handle wrapping when end == ~0UL */
1433	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1434}
1435EXPORT_SYMBOL(tag_pages_for_writeback);
1436
1437/**
1438 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1439 * @mapping: address space structure to write
1440 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1441 * @writepage: function called for each page
1442 * @data: data passed to writepage function
1443 *
1444 * If a page is already under I/O, write_cache_pages() skips it, even
1445 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1446 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1447 * and msync() need to guarantee that all the data which was dirty at the time
1448 * the call was made get new I/O started against them.  If wbc->sync_mode is
1449 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1450 * existing IO to complete.
1451 *
1452 * To avoid livelocks (when other process dirties new pages), we first tag
1453 * pages which should be written back with TOWRITE tag and only then start
1454 * writing them. For data-integrity sync we have to be careful so that we do
1455 * not miss some pages (e.g., because some other process has cleared TOWRITE
1456 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1457 * by the process clearing the DIRTY tag (and submitting the page for IO).
1458 */
1459int write_cache_pages(struct address_space *mapping,
1460		      struct writeback_control *wbc, writepage_t writepage,
1461		      void *data)
1462{
1463	int ret = 0;
1464	int done = 0;
1465	struct pagevec pvec;
1466	int nr_pages;
1467	pgoff_t uninitialized_var(writeback_index);
1468	pgoff_t index;
1469	pgoff_t end;		/* Inclusive */
1470	pgoff_t done_index;
1471	int cycled;
1472	int range_whole = 0;
1473	int tag;
1474
1475	pagevec_init(&pvec, 0);
1476	if (wbc->range_cyclic) {
1477		writeback_index = mapping->writeback_index; /* prev offset */
1478		index = writeback_index;
1479		if (index == 0)
1480			cycled = 1;
1481		else
1482			cycled = 0;
1483		end = -1;
1484	} else {
1485		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1486		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1487		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1488			range_whole = 1;
1489		cycled = 1; /* ignore range_cyclic tests */
1490	}
1491	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1492		tag = PAGECACHE_TAG_TOWRITE;
1493	else
1494		tag = PAGECACHE_TAG_DIRTY;
1495retry:
1496	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1497		tag_pages_for_writeback(mapping, index, end);
1498	done_index = index;
1499	while (!done && (index <= end)) {
1500		int i;
1501
1502		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1503			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1504		if (nr_pages == 0)
1505			break;
1506
1507		for (i = 0; i < nr_pages; i++) {
1508			struct page *page = pvec.pages[i];
1509
1510			/*
1511			 * At this point, the page may be truncated or
1512			 * invalidated (changing page->mapping to NULL), or
1513			 * even swizzled back from swapper_space to tmpfs file
1514			 * mapping. However, page->index will not change
1515			 * because we have a reference on the page.
1516			 */
1517			if (page->index > end) {
1518				/*
1519				 * can't be range_cyclic (1st pass) because
1520				 * end == -1 in that case.
1521				 */
1522				done = 1;
1523				break;
1524			}
1525
1526			done_index = page->index;
1527
1528			lock_page(page);
1529
1530			/*
1531			 * Page truncated or invalidated. We can freely skip it
1532			 * then, even for data integrity operations: the page
1533			 * has disappeared concurrently, so there could be no
1534			 * real expectation of this data interity operation
1535			 * even if there is now a new, dirty page at the same
1536			 * pagecache address.
1537			 */
1538			if (unlikely(page->mapping != mapping)) {
1539continue_unlock:
1540				unlock_page(page);
1541				continue;
1542			}
1543
1544			if (!PageDirty(page)) {
1545				/* someone wrote it for us */
1546				goto continue_unlock;
1547			}
1548
1549			if (PageWriteback(page)) {
1550				if (wbc->sync_mode != WB_SYNC_NONE)
1551					wait_on_page_writeback(page);
1552				else
1553					goto continue_unlock;
1554			}
1555
1556			BUG_ON(PageWriteback(page));
1557			if (!clear_page_dirty_for_io(page))
1558				goto continue_unlock;
1559
1560			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1561			ret = (*writepage)(page, wbc, data);
1562			if (unlikely(ret)) {
1563				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1564					unlock_page(page);
1565					ret = 0;
1566				} else {
1567					/*
1568					 * done_index is set past this page,
1569					 * so media errors will not choke
1570					 * background writeout for the entire
1571					 * file. This has consequences for
1572					 * range_cyclic semantics (ie. it may
1573					 * not be suitable for data integrity
1574					 * writeout).
1575					 */
1576					done_index = page->index + 1;
1577					done = 1;
1578					break;
1579				}
1580			}
1581
1582			/*
1583			 * We stop writing back only if we are not doing
1584			 * integrity sync. In case of integrity sync we have to
1585			 * keep going until we have written all the pages
1586			 * we tagged for writeback prior to entering this loop.
1587			 */
1588			if (--wbc->nr_to_write <= 0 &&
1589			    wbc->sync_mode == WB_SYNC_NONE) {
1590				done = 1;
1591				break;
1592			}
1593		}
1594		pagevec_release(&pvec);
1595		cond_resched();
1596	}
1597	if (!cycled && !done) {
1598		/*
1599		 * range_cyclic:
1600		 * We hit the last page and there is more work to be done: wrap
1601		 * back to the start of the file
1602		 */
1603		cycled = 1;
1604		index = 0;
1605		end = writeback_index - 1;
1606		goto retry;
1607	}
1608	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1609		mapping->writeback_index = done_index;
1610
1611	return ret;
1612}
1613EXPORT_SYMBOL(write_cache_pages);
1614
1615/*
1616 * Function used by generic_writepages to call the real writepage
1617 * function and set the mapping flags on error
1618 */
1619static int __writepage(struct page *page, struct writeback_control *wbc,
1620		       void *data)
1621{
1622	struct address_space *mapping = data;
1623	int ret = mapping->a_ops->writepage(page, wbc);
1624	mapping_set_error(mapping, ret);
1625	return ret;
1626}
1627
1628/**
1629 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1630 * @mapping: address space structure to write
1631 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1632 *
1633 * This is a library function, which implements the writepages()
1634 * address_space_operation.
1635 */
1636int generic_writepages(struct address_space *mapping,
1637		       struct writeback_control *wbc)
1638{
1639	struct blk_plug plug;
1640	int ret;
1641
1642	/* deal with chardevs and other special file */
1643	if (!mapping->a_ops->writepage)
1644		return 0;
1645
1646	blk_start_plug(&plug);
1647	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1648	blk_finish_plug(&plug);
1649	return ret;
1650}
1651
1652EXPORT_SYMBOL(generic_writepages);
1653
1654int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1655{
1656	int ret;
1657
1658	if (wbc->nr_to_write <= 0)
1659		return 0;
1660	if (mapping->a_ops->writepages)
1661		ret = mapping->a_ops->writepages(mapping, wbc);
1662	else
1663		ret = generic_writepages(mapping, wbc);
1664	return ret;
1665}
1666
1667/**
1668 * write_one_page - write out a single page and optionally wait on I/O
1669 * @page: the page to write
1670 * @wait: if true, wait on writeout
1671 *
1672 * The page must be locked by the caller and will be unlocked upon return.
1673 *
1674 * write_one_page() returns a negative error code if I/O failed.
1675 */
1676int write_one_page(struct page *page, int wait)
1677{
1678	struct address_space *mapping = page->mapping;
1679	int ret = 0;
1680	struct writeback_control wbc = {
1681		.sync_mode = WB_SYNC_ALL,
1682		.nr_to_write = 1,
1683	};
1684
1685	BUG_ON(!PageLocked(page));
1686
1687	if (wait)
1688		wait_on_page_writeback(page);
1689
1690	if (clear_page_dirty_for_io(page)) {
1691		page_cache_get(page);
1692		ret = mapping->a_ops->writepage(page, &wbc);
1693		if (ret == 0 && wait) {
1694			wait_on_page_writeback(page);
1695			if (PageError(page))
1696				ret = -EIO;
1697		}
1698		page_cache_release(page);
1699	} else {
1700		unlock_page(page);
1701	}
1702	return ret;
1703}
1704EXPORT_SYMBOL(write_one_page);
1705
1706/*
1707 * For address_spaces which do not use buffers nor write back.
1708 */
1709int __set_page_dirty_no_writeback(struct page *page)
1710{
1711	if (!PageDirty(page))
1712		return !TestSetPageDirty(page);
1713	return 0;
1714}
1715
1716/*
1717 * Helper function for set_page_dirty family.
1718 * NOTE: This relies on being atomic wrt interrupts.
1719 */
1720void account_page_dirtied(struct page *page, struct address_space *mapping)
1721{
1722	if (mapping_cap_account_dirty(mapping)) {
1723		__inc_zone_page_state(page, NR_FILE_DIRTY);
1724		__inc_zone_page_state(page, NR_DIRTIED);
1725		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1726		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1727		task_dirty_inc(current);
1728		task_io_account_write(PAGE_CACHE_SIZE);
1729	}
1730}
1731EXPORT_SYMBOL(account_page_dirtied);
1732
1733/*
1734 * Helper function for set_page_writeback family.
1735 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1736 * wrt interrupts.
1737 */
1738void account_page_writeback(struct page *page)
1739{
1740	inc_zone_page_state(page, NR_WRITEBACK);
1741}
1742EXPORT_SYMBOL(account_page_writeback);
1743
1744/*
1745 * For address_spaces which do not use buffers.  Just tag the page as dirty in
1746 * its radix tree.
1747 *
1748 * This is also used when a single buffer is being dirtied: we want to set the
1749 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1750 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1751 *
1752 * Most callers have locked the page, which pins the address_space in memory.
1753 * But zap_pte_range() does not lock the page, however in that case the
1754 * mapping is pinned by the vma's ->vm_file reference.
1755 *
1756 * We take care to handle the case where the page was truncated from the
1757 * mapping by re-checking page_mapping() inside tree_lock.
1758 */
1759int __set_page_dirty_nobuffers(struct page *page)
1760{
1761	if (!TestSetPageDirty(page)) {
1762		struct address_space *mapping = page_mapping(page);
1763		struct address_space *mapping2;
1764
1765		if (!mapping)
1766			return 1;
1767
1768		spin_lock_irq(&mapping->tree_lock);
1769		mapping2 = page_mapping(page);
1770		if (mapping2) { /* Race with truncate? */
1771			BUG_ON(mapping2 != mapping);
1772			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1773			account_page_dirtied(page, mapping);
1774			radix_tree_tag_set(&mapping->page_tree,
1775				page_index(page), PAGECACHE_TAG_DIRTY);
1776		}
1777		spin_unlock_irq(&mapping->tree_lock);
1778		if (mapping->host) {
1779			/* !PageAnon && !swapper_space */
1780			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1781		}
1782		return 1;
1783	}
1784	return 0;
1785}
1786EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1787
1788/*
1789 * When a writepage implementation decides that it doesn't want to write this
1790 * page for some reason, it should redirty the locked page via
1791 * redirty_page_for_writepage() and it should then unlock the page and return 0
1792 */
1793int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1794{
1795	wbc->pages_skipped++;
1796	return __set_page_dirty_nobuffers(page);
1797}
1798EXPORT_SYMBOL(redirty_page_for_writepage);
1799
1800/*
1801 * Dirty a page.
1802 *
1803 * For pages with a mapping this should be done under the page lock
1804 * for the benefit of asynchronous memory errors who prefer a consistent
1805 * dirty state. This rule can be broken in some special cases,
1806 * but should be better not to.
1807 *
1808 * If the mapping doesn't provide a set_page_dirty a_op, then
1809 * just fall through and assume that it wants buffer_heads.
1810 */
1811int set_page_dirty(struct page *page)
1812{
1813	struct address_space *mapping = page_mapping(page);
1814
1815	if (likely(mapping)) {
1816		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1817		/*
1818		 * readahead/lru_deactivate_page could remain
1819		 * PG_readahead/PG_reclaim due to race with end_page_writeback
1820		 * About readahead, if the page is written, the flags would be
1821		 * reset. So no problem.
1822		 * About lru_deactivate_page, if the page is redirty, the flag
1823		 * will be reset. So no problem. but if the page is used by readahead
1824		 * it will confuse readahead and make it restart the size rampup
1825		 * process. But it's a trivial problem.
1826		 */
1827		ClearPageReclaim(page);
1828#ifdef CONFIG_BLOCK
1829		if (!spd)
1830			spd = __set_page_dirty_buffers;
1831#endif
1832		return (*spd)(page);
1833	}
1834	if (!PageDirty(page)) {
1835		if (!TestSetPageDirty(page))
1836			return 1;
1837	}
1838	return 0;
1839}
1840EXPORT_SYMBOL(set_page_dirty);
1841
1842/*
1843 * set_page_dirty() is racy if the caller has no reference against
1844 * page->mapping->host, and if the page is unlocked.  This is because another
1845 * CPU could truncate the page off the mapping and then free the mapping.
1846 *
1847 * Usually, the page _is_ locked, or the caller is a user-space process which
1848 * holds a reference on the inode by having an open file.
1849 *
1850 * In other cases, the page should be locked before running set_page_dirty().
1851 */
1852int set_page_dirty_lock(struct page *page)
1853{
1854	int ret;
1855
1856	lock_page(page);
1857	ret = set_page_dirty(page);
1858	unlock_page(page);
1859	return ret;
1860}
1861EXPORT_SYMBOL(set_page_dirty_lock);
1862
1863/*
1864 * Clear a page's dirty flag, while caring for dirty memory accounting.
1865 * Returns true if the page was previously dirty.
1866 *
1867 * This is for preparing to put the page under writeout.  We leave the page
1868 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1869 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1870 * implementation will run either set_page_writeback() or set_page_dirty(),
1871 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1872 * back into sync.
1873 *
1874 * This incoherency between the page's dirty flag and radix-tree tag is
1875 * unfortunate, but it only exists while the page is locked.
1876 */
1877int clear_page_dirty_for_io(struct page *page)
1878{
1879	struct address_space *mapping = page_mapping(page);
1880
1881	BUG_ON(!PageLocked(page));
1882
1883	if (mapping && mapping_cap_account_dirty(mapping)) {
1884		/*
1885		 * Yes, Virginia, this is indeed insane.
1886		 *
1887		 * We use this sequence to make sure that
1888		 *  (a) we account for dirty stats properly
1889		 *  (b) we tell the low-level filesystem to
1890		 *      mark the whole page dirty if it was
1891		 *      dirty in a pagetable. Only to then
1892		 *  (c) clean the page again and return 1 to
1893		 *      cause the writeback.
1894		 *
1895		 * This way we avoid all nasty races with the
1896		 * dirty bit in multiple places and clearing
1897		 * them concurrently from different threads.
1898		 *
1899		 * Note! Normally the "set_page_dirty(page)"
1900		 * has no effect on the actual dirty bit - since
1901		 * that will already usually be set. But we
1902		 * need the side effects, and it can help us
1903		 * avoid races.
1904		 *
1905		 * We basically use the page "master dirty bit"
1906		 * as a serialization point for all the different
1907		 * threads doing their things.
1908		 */
1909		if (page_mkclean(page))
1910			set_page_dirty(page);
1911		/*
1912		 * We carefully synchronise fault handlers against
1913		 * installing a dirty pte and marking the page dirty
1914		 * at this point. We do this by having them hold the
1915		 * page lock at some point after installing their
1916		 * pte, but before marking the page dirty.
1917		 * Pages are always locked coming in here, so we get
1918		 * the desired exclusion. See mm/memory.c:do_wp_page()
1919		 * for more comments.
1920		 */
1921		if (TestClearPageDirty(page)) {
1922			dec_zone_page_state(page, NR_FILE_DIRTY);
1923			dec_bdi_stat(mapping->backing_dev_info,
1924					BDI_RECLAIMABLE);
1925			return 1;
1926		}
1927		return 0;
1928	}
1929	return TestClearPageDirty(page);
1930}
1931EXPORT_SYMBOL(clear_page_dirty_for_io);
1932
1933int test_clear_page_writeback(struct page *page)
1934{
1935	struct address_space *mapping = page_mapping(page);
1936	int ret;
1937
1938	if (mapping) {
1939		struct backing_dev_info *bdi = mapping->backing_dev_info;
1940		unsigned long flags;
1941
1942		spin_lock_irqsave(&mapping->tree_lock, flags);
1943		ret = TestClearPageWriteback(page);
1944		if (ret) {
1945			radix_tree_tag_clear(&mapping->page_tree,
1946						page_index(page),
1947						PAGECACHE_TAG_WRITEBACK);
1948			if (bdi_cap_account_writeback(bdi)) {
1949				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1950				__bdi_writeout_inc(bdi);
1951			}
1952		}
1953		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1954	} else {
1955		ret = TestClearPageWriteback(page);
1956	}
1957	if (ret) {
1958		dec_zone_page_state(page, NR_WRITEBACK);
1959		inc_zone_page_state(page, NR_WRITTEN);
1960	}
1961	return ret;
1962}
1963
1964int test_set_page_writeback(struct page *page)
1965{
1966	struct address_space *mapping = page_mapping(page);
1967	int ret;
1968
1969	if (mapping) {
1970		struct backing_dev_info *bdi = mapping->backing_dev_info;
1971		unsigned long flags;
1972
1973		spin_lock_irqsave(&mapping->tree_lock, flags);
1974		ret = TestSetPageWriteback(page);
1975		if (!ret) {
1976			radix_tree_tag_set(&mapping->page_tree,
1977						page_index(page),
1978						PAGECACHE_TAG_WRITEBACK);
1979			if (bdi_cap_account_writeback(bdi))
1980				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1981		}
1982		if (!PageDirty(page))
1983			radix_tree_tag_clear(&mapping->page_tree,
1984						page_index(page),
1985						PAGECACHE_TAG_DIRTY);
1986		radix_tree_tag_clear(&mapping->page_tree,
1987				     page_index(page),
1988				     PAGECACHE_TAG_TOWRITE);
1989		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1990	} else {
1991		ret = TestSetPageWriteback(page);
1992	}
1993	if (!ret)
1994		account_page_writeback(page);
1995	return ret;
1996
1997}
1998EXPORT_SYMBOL(test_set_page_writeback);
1999
2000/*
2001 * Return true if any of the pages in the mapping are marked with the
2002 * passed tag.
2003 */
2004int mapping_tagged(struct address_space *mapping, int tag)
2005{
2006	return radix_tree_tagged(&mapping->page_tree, tag);
2007}
2008EXPORT_SYMBOL(mapping_tagged);
2009