page-writeback.c revision 1fe06ad89255c211fe100d7f690d10b161398df8
1/*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002	Andrew Morton
11 *		Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
25#include <linux/task_io_accounting_ops.h>
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
28#include <linux/rmap.h>
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
35#include <linux/buffer_head.h>
36#include <linux/pagevec.h>
37
38/*
39 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
40 * will look to see if it needs to force writeback or throttling.
41 */
42static long ratelimit_pages = 32;
43
44/*
45 * When balance_dirty_pages decides that the caller needs to perform some
46 * non-background writeback, this is how many pages it will attempt to write.
47 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
48 * large amounts of I/O are submitted.
49 */
50static inline long sync_writeback_pages(void)
51{
52	return ratelimit_pages + ratelimit_pages / 2;
53}
54
55/* The following parameters are exported via /proc/sys/vm */
56
57/*
58 * Start background writeback (via pdflush) at this percentage
59 */
60int dirty_background_ratio = 10;
61
62/*
63 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
64 * dirty_background_ratio * the amount of dirtyable memory
65 */
66unsigned long dirty_background_bytes;
67
68/*
69 * free highmem will not be subtracted from the total free memory
70 * for calculating free ratios if vm_highmem_is_dirtyable is true
71 */
72int vm_highmem_is_dirtyable;
73
74/*
75 * The generator of dirty data starts writeback at this percentage
76 */
77int vm_dirty_ratio = 20;
78
79/*
80 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
81 * vm_dirty_ratio * the amount of dirtyable memory
82 */
83unsigned long vm_dirty_bytes;
84
85/*
86 * The interval between `kupdate'-style writebacks
87 */
88unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
89
90/*
91 * The longest time for which data is allowed to remain dirty
92 */
93unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
94
95/*
96 * Flag that makes the machine dump writes/reads and block dirtyings.
97 */
98int block_dump;
99
100/*
101 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
102 * a full sync is triggered after this time elapses without any disk activity.
103 */
104int laptop_mode;
105
106EXPORT_SYMBOL(laptop_mode);
107
108/* End of sysctl-exported parameters */
109
110
111/*
112 * Scale the writeback cache size proportional to the relative writeout speeds.
113 *
114 * We do this by keeping a floating proportion between BDIs, based on page
115 * writeback completions [end_page_writeback()]. Those devices that write out
116 * pages fastest will get the larger share, while the slower will get a smaller
117 * share.
118 *
119 * We use page writeout completions because we are interested in getting rid of
120 * dirty pages. Having them written out is the primary goal.
121 *
122 * We introduce a concept of time, a period over which we measure these events,
123 * because demand can/will vary over time. The length of this period itself is
124 * measured in page writeback completions.
125 *
126 */
127static struct prop_descriptor vm_completions;
128static struct prop_descriptor vm_dirties;
129
130/*
131 * couple the period to the dirty_ratio:
132 *
133 *   period/2 ~ roundup_pow_of_two(dirty limit)
134 */
135static int calc_period_shift(void)
136{
137	unsigned long dirty_total;
138
139	if (vm_dirty_bytes)
140		dirty_total = vm_dirty_bytes / PAGE_SIZE;
141	else
142		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
143				100;
144	return 2 + ilog2(dirty_total - 1);
145}
146
147/*
148 * update the period when the dirty threshold changes.
149 */
150static void update_completion_period(void)
151{
152	int shift = calc_period_shift();
153	prop_change_shift(&vm_completions, shift);
154	prop_change_shift(&vm_dirties, shift);
155}
156
157int dirty_background_ratio_handler(struct ctl_table *table, int write,
158		struct file *filp, void __user *buffer, size_t *lenp,
159		loff_t *ppos)
160{
161	int ret;
162
163	ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
164	if (ret == 0 && write)
165		dirty_background_bytes = 0;
166	return ret;
167}
168
169int dirty_background_bytes_handler(struct ctl_table *table, int write,
170		struct file *filp, void __user *buffer, size_t *lenp,
171		loff_t *ppos)
172{
173	int ret;
174
175	ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
176	if (ret == 0 && write)
177		dirty_background_ratio = 0;
178	return ret;
179}
180
181int dirty_ratio_handler(struct ctl_table *table, int write,
182		struct file *filp, void __user *buffer, size_t *lenp,
183		loff_t *ppos)
184{
185	int old_ratio = vm_dirty_ratio;
186	int ret;
187
188	ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
189	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
190		update_completion_period();
191		vm_dirty_bytes = 0;
192	}
193	return ret;
194}
195
196
197int dirty_bytes_handler(struct ctl_table *table, int write,
198		struct file *filp, void __user *buffer, size_t *lenp,
199		loff_t *ppos)
200{
201	unsigned long old_bytes = vm_dirty_bytes;
202	int ret;
203
204	ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
205	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
206		update_completion_period();
207		vm_dirty_ratio = 0;
208	}
209	return ret;
210}
211
212/*
213 * Increment the BDI's writeout completion count and the global writeout
214 * completion count. Called from test_clear_page_writeback().
215 */
216static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
217{
218	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
219			      bdi->max_prop_frac);
220}
221
222void bdi_writeout_inc(struct backing_dev_info *bdi)
223{
224	unsigned long flags;
225
226	local_irq_save(flags);
227	__bdi_writeout_inc(bdi);
228	local_irq_restore(flags);
229}
230EXPORT_SYMBOL_GPL(bdi_writeout_inc);
231
232void task_dirty_inc(struct task_struct *tsk)
233{
234	prop_inc_single(&vm_dirties, &tsk->dirties);
235}
236
237/*
238 * Obtain an accurate fraction of the BDI's portion.
239 */
240static void bdi_writeout_fraction(struct backing_dev_info *bdi,
241		long *numerator, long *denominator)
242{
243	if (bdi_cap_writeback_dirty(bdi)) {
244		prop_fraction_percpu(&vm_completions, &bdi->completions,
245				numerator, denominator);
246	} else {
247		*numerator = 0;
248		*denominator = 1;
249	}
250}
251
252/*
253 * Clip the earned share of dirty pages to that which is actually available.
254 * This avoids exceeding the total dirty_limit when the floating averages
255 * fluctuate too quickly.
256 */
257static void clip_bdi_dirty_limit(struct backing_dev_info *bdi,
258		unsigned long dirty, unsigned long *pbdi_dirty)
259{
260	unsigned long avail_dirty;
261
262	avail_dirty = global_page_state(NR_FILE_DIRTY) +
263		 global_page_state(NR_WRITEBACK) +
264		 global_page_state(NR_UNSTABLE_NFS) +
265		 global_page_state(NR_WRITEBACK_TEMP);
266
267	if (avail_dirty < dirty)
268		avail_dirty = dirty - avail_dirty;
269	else
270		avail_dirty = 0;
271
272	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
273		bdi_stat(bdi, BDI_WRITEBACK);
274
275	*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
276}
277
278static inline void task_dirties_fraction(struct task_struct *tsk,
279		long *numerator, long *denominator)
280{
281	prop_fraction_single(&vm_dirties, &tsk->dirties,
282				numerator, denominator);
283}
284
285/*
286 * scale the dirty limit
287 *
288 * task specific dirty limit:
289 *
290 *   dirty -= (dirty/8) * p_{t}
291 */
292static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty)
293{
294	long numerator, denominator;
295	unsigned long dirty = *pdirty;
296	u64 inv = dirty >> 3;
297
298	task_dirties_fraction(tsk, &numerator, &denominator);
299	inv *= numerator;
300	do_div(inv, denominator);
301
302	dirty -= inv;
303	if (dirty < *pdirty/2)
304		dirty = *pdirty/2;
305
306	*pdirty = dirty;
307}
308
309/*
310 *
311 */
312static unsigned int bdi_min_ratio;
313
314int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
315{
316	int ret = 0;
317
318	spin_lock(&bdi_lock);
319	if (min_ratio > bdi->max_ratio) {
320		ret = -EINVAL;
321	} else {
322		min_ratio -= bdi->min_ratio;
323		if (bdi_min_ratio + min_ratio < 100) {
324			bdi_min_ratio += min_ratio;
325			bdi->min_ratio += min_ratio;
326		} else {
327			ret = -EINVAL;
328		}
329	}
330	spin_unlock(&bdi_lock);
331
332	return ret;
333}
334
335int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
336{
337	int ret = 0;
338
339	if (max_ratio > 100)
340		return -EINVAL;
341
342	spin_lock(&bdi_lock);
343	if (bdi->min_ratio > max_ratio) {
344		ret = -EINVAL;
345	} else {
346		bdi->max_ratio = max_ratio;
347		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
348	}
349	spin_unlock(&bdi_lock);
350
351	return ret;
352}
353EXPORT_SYMBOL(bdi_set_max_ratio);
354
355/*
356 * Work out the current dirty-memory clamping and background writeout
357 * thresholds.
358 *
359 * The main aim here is to lower them aggressively if there is a lot of mapped
360 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
361 * pages.  It is better to clamp down on writers than to start swapping, and
362 * performing lots of scanning.
363 *
364 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
365 *
366 * We don't permit the clamping level to fall below 5% - that is getting rather
367 * excessive.
368 *
369 * We make sure that the background writeout level is below the adjusted
370 * clamping level.
371 */
372
373static unsigned long highmem_dirtyable_memory(unsigned long total)
374{
375#ifdef CONFIG_HIGHMEM
376	int node;
377	unsigned long x = 0;
378
379	for_each_node_state(node, N_HIGH_MEMORY) {
380		struct zone *z =
381			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
382
383		x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z);
384	}
385	/*
386	 * Make sure that the number of highmem pages is never larger
387	 * than the number of the total dirtyable memory. This can only
388	 * occur in very strange VM situations but we want to make sure
389	 * that this does not occur.
390	 */
391	return min(x, total);
392#else
393	return 0;
394#endif
395}
396
397/**
398 * determine_dirtyable_memory - amount of memory that may be used
399 *
400 * Returns the numebr of pages that can currently be freed and used
401 * by the kernel for direct mappings.
402 */
403unsigned long determine_dirtyable_memory(void)
404{
405	unsigned long x;
406
407	x = global_page_state(NR_FREE_PAGES) + global_lru_pages();
408
409	if (!vm_highmem_is_dirtyable)
410		x -= highmem_dirtyable_memory(x);
411
412	return x + 1;	/* Ensure that we never return 0 */
413}
414
415void
416get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
417		 unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
418{
419	unsigned long background;
420	unsigned long dirty;
421	unsigned long available_memory = determine_dirtyable_memory();
422	struct task_struct *tsk;
423
424	if (vm_dirty_bytes)
425		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
426	else {
427		int dirty_ratio;
428
429		dirty_ratio = vm_dirty_ratio;
430		if (dirty_ratio < 5)
431			dirty_ratio = 5;
432		dirty = (dirty_ratio * available_memory) / 100;
433	}
434
435	if (dirty_background_bytes)
436		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
437	else
438		background = (dirty_background_ratio * available_memory) / 100;
439
440	if (background >= dirty)
441		background = dirty / 2;
442	tsk = current;
443	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
444		background += background / 4;
445		dirty += dirty / 4;
446	}
447	*pbackground = background;
448	*pdirty = dirty;
449
450	if (bdi) {
451		u64 bdi_dirty;
452		long numerator, denominator;
453
454		/*
455		 * Calculate this BDI's share of the dirty ratio.
456		 */
457		bdi_writeout_fraction(bdi, &numerator, &denominator);
458
459		bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
460		bdi_dirty *= numerator;
461		do_div(bdi_dirty, denominator);
462		bdi_dirty += (dirty * bdi->min_ratio) / 100;
463		if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
464			bdi_dirty = dirty * bdi->max_ratio / 100;
465
466		*pbdi_dirty = bdi_dirty;
467		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
468		task_dirty_limit(current, pbdi_dirty);
469	}
470}
471
472/*
473 * balance_dirty_pages() must be called by processes which are generating dirty
474 * data.  It looks at the number of dirty pages in the machine and will force
475 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
476 * If we're over `background_thresh' then pdflush is woken to perform some
477 * writeout.
478 */
479static void balance_dirty_pages(struct address_space *mapping)
480{
481	long nr_reclaimable, bdi_nr_reclaimable;
482	long nr_writeback, bdi_nr_writeback;
483	unsigned long background_thresh;
484	unsigned long dirty_thresh;
485	unsigned long bdi_thresh;
486	unsigned long pages_written = 0;
487	unsigned long write_chunk = sync_writeback_pages();
488
489	struct backing_dev_info *bdi = mapping->backing_dev_info;
490
491	for (;;) {
492		struct writeback_control wbc = {
493			.bdi		= bdi,
494			.sync_mode	= WB_SYNC_NONE,
495			.older_than_this = NULL,
496			.nr_to_write	= write_chunk,
497			.range_cyclic	= 1,
498		};
499
500		get_dirty_limits(&background_thresh, &dirty_thresh,
501				&bdi_thresh, bdi);
502
503		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
504					global_page_state(NR_UNSTABLE_NFS);
505		nr_writeback = global_page_state(NR_WRITEBACK);
506
507		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
508		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
509
510		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
511			break;
512
513		/*
514		 * Throttle it only when the background writeback cannot
515		 * catch-up. This avoids (excessively) small writeouts
516		 * when the bdi limits are ramping up.
517		 */
518		if (nr_reclaimable + nr_writeback <
519				(background_thresh + dirty_thresh) / 2)
520			break;
521
522		if (!bdi->dirty_exceeded)
523			bdi->dirty_exceeded = 1;
524
525		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
526		 * Unstable writes are a feature of certain networked
527		 * filesystems (i.e. NFS) in which data may have been
528		 * written to the server's write cache, but has not yet
529		 * been flushed to permanent storage.
530		 * Only move pages to writeback if this bdi is over its
531		 * threshold otherwise wait until the disk writes catch
532		 * up.
533		 */
534		if (bdi_nr_reclaimable > bdi_thresh) {
535			writeback_inodes_wbc(&wbc);
536			pages_written += write_chunk - wbc.nr_to_write;
537			get_dirty_limits(&background_thresh, &dirty_thresh,
538				       &bdi_thresh, bdi);
539		}
540
541		/*
542		 * In order to avoid the stacked BDI deadlock we need
543		 * to ensure we accurately count the 'dirty' pages when
544		 * the threshold is low.
545		 *
546		 * Otherwise it would be possible to get thresh+n pages
547		 * reported dirty, even though there are thresh-m pages
548		 * actually dirty; with m+n sitting in the percpu
549		 * deltas.
550		 */
551		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
552			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
553			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
554		} else if (bdi_nr_reclaimable) {
555			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
556			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
557		}
558
559		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
560			break;
561		if (pages_written >= write_chunk)
562			break;		/* We've done our duty */
563
564		schedule_timeout(1);
565	}
566
567	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
568			bdi->dirty_exceeded)
569		bdi->dirty_exceeded = 0;
570
571	if (writeback_in_progress(bdi))
572		return;		/* pdflush is already working this queue */
573
574	/*
575	 * In laptop mode, we wait until hitting the higher threshold before
576	 * starting background writeout, and then write out all the way down
577	 * to the lower threshold.  So slow writers cause minimal disk activity.
578	 *
579	 * In normal mode, we start background writeout at the lower
580	 * background_thresh, to keep the amount of dirty memory low.
581	 */
582	if ((laptop_mode && pages_written) ||
583	    (!laptop_mode && ((nr_writeback = global_page_state(NR_FILE_DIRTY)
584					  + global_page_state(NR_UNSTABLE_NFS))
585					  > background_thresh))) {
586		struct writeback_control wbc = {
587			.bdi		= bdi,
588			.sync_mode	= WB_SYNC_NONE,
589			.nr_to_write	= nr_writeback,
590		};
591
592
593		bdi_start_writeback(&wbc);
594	}
595}
596
597void set_page_dirty_balance(struct page *page, int page_mkwrite)
598{
599	if (set_page_dirty(page) || page_mkwrite) {
600		struct address_space *mapping = page_mapping(page);
601
602		if (mapping)
603			balance_dirty_pages_ratelimited(mapping);
604	}
605}
606
607static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
608
609/**
610 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
611 * @mapping: address_space which was dirtied
612 * @nr_pages_dirtied: number of pages which the caller has just dirtied
613 *
614 * Processes which are dirtying memory should call in here once for each page
615 * which was newly dirtied.  The function will periodically check the system's
616 * dirty state and will initiate writeback if needed.
617 *
618 * On really big machines, get_writeback_state is expensive, so try to avoid
619 * calling it too often (ratelimiting).  But once we're over the dirty memory
620 * limit we decrease the ratelimiting by a lot, to prevent individual processes
621 * from overshooting the limit by (ratelimit_pages) each.
622 */
623void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
624					unsigned long nr_pages_dirtied)
625{
626	unsigned long ratelimit;
627	unsigned long *p;
628
629	ratelimit = ratelimit_pages;
630	if (mapping->backing_dev_info->dirty_exceeded)
631		ratelimit = 8;
632
633	/*
634	 * Check the rate limiting. Also, we do not want to throttle real-time
635	 * tasks in balance_dirty_pages(). Period.
636	 */
637	preempt_disable();
638	p =  &__get_cpu_var(bdp_ratelimits);
639	*p += nr_pages_dirtied;
640	if (unlikely(*p >= ratelimit)) {
641		*p = 0;
642		preempt_enable();
643		balance_dirty_pages(mapping);
644		return;
645	}
646	preempt_enable();
647}
648EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
649
650void throttle_vm_writeout(gfp_t gfp_mask)
651{
652	unsigned long background_thresh;
653	unsigned long dirty_thresh;
654
655        for ( ; ; ) {
656		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
657
658                /*
659                 * Boost the allowable dirty threshold a bit for page
660                 * allocators so they don't get DoS'ed by heavy writers
661                 */
662                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
663
664                if (global_page_state(NR_UNSTABLE_NFS) +
665			global_page_state(NR_WRITEBACK) <= dirty_thresh)
666                        	break;
667                congestion_wait(BLK_RW_ASYNC, HZ/10);
668
669		/*
670		 * The caller might hold locks which can prevent IO completion
671		 * or progress in the filesystem.  So we cannot just sit here
672		 * waiting for IO to complete.
673		 */
674		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
675			break;
676        }
677}
678
679static void laptop_timer_fn(unsigned long unused);
680
681static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
682
683/*
684 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
685 */
686int dirty_writeback_centisecs_handler(ctl_table *table, int write,
687	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
688{
689	proc_dointvec(table, write, file, buffer, length, ppos);
690	return 0;
691}
692
693static void do_laptop_sync(struct work_struct *work)
694{
695	wakeup_flusher_threads(0);
696	kfree(work);
697}
698
699static void laptop_timer_fn(unsigned long unused)
700{
701	struct work_struct *work;
702
703	work = kmalloc(sizeof(*work), GFP_ATOMIC);
704	if (work) {
705		INIT_WORK(work, do_laptop_sync);
706		schedule_work(work);
707	}
708}
709
710/*
711 * We've spun up the disk and we're in laptop mode: schedule writeback
712 * of all dirty data a few seconds from now.  If the flush is already scheduled
713 * then push it back - the user is still using the disk.
714 */
715void laptop_io_completion(void)
716{
717	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
718}
719
720/*
721 * We're in laptop mode and we've just synced. The sync's writes will have
722 * caused another writeback to be scheduled by laptop_io_completion.
723 * Nothing needs to be written back anymore, so we unschedule the writeback.
724 */
725void laptop_sync_completion(void)
726{
727	del_timer(&laptop_mode_wb_timer);
728}
729
730/*
731 * If ratelimit_pages is too high then we can get into dirty-data overload
732 * if a large number of processes all perform writes at the same time.
733 * If it is too low then SMP machines will call the (expensive)
734 * get_writeback_state too often.
735 *
736 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
737 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
738 * thresholds before writeback cuts in.
739 *
740 * But the limit should not be set too high.  Because it also controls the
741 * amount of memory which the balance_dirty_pages() caller has to write back.
742 * If this is too large then the caller will block on the IO queue all the
743 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
744 * will write six megabyte chunks, max.
745 */
746
747void writeback_set_ratelimit(void)
748{
749	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
750	if (ratelimit_pages < 16)
751		ratelimit_pages = 16;
752	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
753		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
754}
755
756static int __cpuinit
757ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
758{
759	writeback_set_ratelimit();
760	return NOTIFY_DONE;
761}
762
763static struct notifier_block __cpuinitdata ratelimit_nb = {
764	.notifier_call	= ratelimit_handler,
765	.next		= NULL,
766};
767
768/*
769 * Called early on to tune the page writeback dirty limits.
770 *
771 * We used to scale dirty pages according to how total memory
772 * related to pages that could be allocated for buffers (by
773 * comparing nr_free_buffer_pages() to vm_total_pages.
774 *
775 * However, that was when we used "dirty_ratio" to scale with
776 * all memory, and we don't do that any more. "dirty_ratio"
777 * is now applied to total non-HIGHPAGE memory (by subtracting
778 * totalhigh_pages from vm_total_pages), and as such we can't
779 * get into the old insane situation any more where we had
780 * large amounts of dirty pages compared to a small amount of
781 * non-HIGHMEM memory.
782 *
783 * But we might still want to scale the dirty_ratio by how
784 * much memory the box has..
785 */
786void __init page_writeback_init(void)
787{
788	int shift;
789
790	writeback_set_ratelimit();
791	register_cpu_notifier(&ratelimit_nb);
792
793	shift = calc_period_shift();
794	prop_descriptor_init(&vm_completions, shift);
795	prop_descriptor_init(&vm_dirties, shift);
796}
797
798/**
799 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
800 * @mapping: address space structure to write
801 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
802 * @writepage: function called for each page
803 * @data: data passed to writepage function
804 *
805 * If a page is already under I/O, write_cache_pages() skips it, even
806 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
807 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
808 * and msync() need to guarantee that all the data which was dirty at the time
809 * the call was made get new I/O started against them.  If wbc->sync_mode is
810 * WB_SYNC_ALL then we were called for data integrity and we must wait for
811 * existing IO to complete.
812 */
813int write_cache_pages(struct address_space *mapping,
814		      struct writeback_control *wbc, writepage_t writepage,
815		      void *data)
816{
817	struct backing_dev_info *bdi = mapping->backing_dev_info;
818	int ret = 0;
819	int done = 0;
820	struct pagevec pvec;
821	int nr_pages;
822	pgoff_t uninitialized_var(writeback_index);
823	pgoff_t index;
824	pgoff_t end;		/* Inclusive */
825	pgoff_t done_index;
826	int cycled;
827	int range_whole = 0;
828	long nr_to_write = wbc->nr_to_write;
829
830	if (wbc->nonblocking && bdi_write_congested(bdi)) {
831		wbc->encountered_congestion = 1;
832		return 0;
833	}
834
835	pagevec_init(&pvec, 0);
836	if (wbc->range_cyclic) {
837		writeback_index = mapping->writeback_index; /* prev offset */
838		index = writeback_index;
839		if (index == 0)
840			cycled = 1;
841		else
842			cycled = 0;
843		end = -1;
844	} else {
845		index = wbc->range_start >> PAGE_CACHE_SHIFT;
846		end = wbc->range_end >> PAGE_CACHE_SHIFT;
847		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
848			range_whole = 1;
849		cycled = 1; /* ignore range_cyclic tests */
850	}
851retry:
852	done_index = index;
853	while (!done && (index <= end)) {
854		int i;
855
856		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
857			      PAGECACHE_TAG_DIRTY,
858			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
859		if (nr_pages == 0)
860			break;
861
862		for (i = 0; i < nr_pages; i++) {
863			struct page *page = pvec.pages[i];
864
865			/*
866			 * At this point, the page may be truncated or
867			 * invalidated (changing page->mapping to NULL), or
868			 * even swizzled back from swapper_space to tmpfs file
869			 * mapping. However, page->index will not change
870			 * because we have a reference on the page.
871			 */
872			if (page->index > end) {
873				/*
874				 * can't be range_cyclic (1st pass) because
875				 * end == -1 in that case.
876				 */
877				done = 1;
878				break;
879			}
880
881			done_index = page->index + 1;
882
883			lock_page(page);
884
885			/*
886			 * Page truncated or invalidated. We can freely skip it
887			 * then, even for data integrity operations: the page
888			 * has disappeared concurrently, so there could be no
889			 * real expectation of this data interity operation
890			 * even if there is now a new, dirty page at the same
891			 * pagecache address.
892			 */
893			if (unlikely(page->mapping != mapping)) {
894continue_unlock:
895				unlock_page(page);
896				continue;
897			}
898
899			if (!PageDirty(page)) {
900				/* someone wrote it for us */
901				goto continue_unlock;
902			}
903
904			if (PageWriteback(page)) {
905				if (wbc->sync_mode != WB_SYNC_NONE)
906					wait_on_page_writeback(page);
907				else
908					goto continue_unlock;
909			}
910
911			BUG_ON(PageWriteback(page));
912			if (!clear_page_dirty_for_io(page))
913				goto continue_unlock;
914
915			ret = (*writepage)(page, wbc, data);
916			if (unlikely(ret)) {
917				if (ret == AOP_WRITEPAGE_ACTIVATE) {
918					unlock_page(page);
919					ret = 0;
920				} else {
921					/*
922					 * done_index is set past this page,
923					 * so media errors will not choke
924					 * background writeout for the entire
925					 * file. This has consequences for
926					 * range_cyclic semantics (ie. it may
927					 * not be suitable for data integrity
928					 * writeout).
929					 */
930					done = 1;
931					break;
932				}
933 			}
934
935			if (nr_to_write > 0) {
936				nr_to_write--;
937				if (nr_to_write == 0 &&
938				    wbc->sync_mode == WB_SYNC_NONE) {
939					/*
940					 * We stop writing back only if we are
941					 * not doing integrity sync. In case of
942					 * integrity sync we have to keep going
943					 * because someone may be concurrently
944					 * dirtying pages, and we might have
945					 * synced a lot of newly appeared dirty
946					 * pages, but have not synced all of the
947					 * old dirty pages.
948					 */
949					done = 1;
950					break;
951				}
952			}
953
954			if (wbc->nonblocking && bdi_write_congested(bdi)) {
955				wbc->encountered_congestion = 1;
956				done = 1;
957				break;
958			}
959		}
960		pagevec_release(&pvec);
961		cond_resched();
962	}
963	if (!cycled && !done) {
964		/*
965		 * range_cyclic:
966		 * We hit the last page and there is more work to be done: wrap
967		 * back to the start of the file
968		 */
969		cycled = 1;
970		index = 0;
971		end = writeback_index - 1;
972		goto retry;
973	}
974	if (!wbc->no_nrwrite_index_update) {
975		if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
976			mapping->writeback_index = done_index;
977		wbc->nr_to_write = nr_to_write;
978	}
979
980	return ret;
981}
982EXPORT_SYMBOL(write_cache_pages);
983
984/*
985 * Function used by generic_writepages to call the real writepage
986 * function and set the mapping flags on error
987 */
988static int __writepage(struct page *page, struct writeback_control *wbc,
989		       void *data)
990{
991	struct address_space *mapping = data;
992	int ret = mapping->a_ops->writepage(page, wbc);
993	mapping_set_error(mapping, ret);
994	return ret;
995}
996
997/**
998 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
999 * @mapping: address space structure to write
1000 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1001 *
1002 * This is a library function, which implements the writepages()
1003 * address_space_operation.
1004 */
1005int generic_writepages(struct address_space *mapping,
1006		       struct writeback_control *wbc)
1007{
1008	/* deal with chardevs and other special file */
1009	if (!mapping->a_ops->writepage)
1010		return 0;
1011
1012	return write_cache_pages(mapping, wbc, __writepage, mapping);
1013}
1014
1015EXPORT_SYMBOL(generic_writepages);
1016
1017int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1018{
1019	int ret;
1020
1021	if (wbc->nr_to_write <= 0)
1022		return 0;
1023	if (mapping->a_ops->writepages)
1024		ret = mapping->a_ops->writepages(mapping, wbc);
1025	else
1026		ret = generic_writepages(mapping, wbc);
1027	return ret;
1028}
1029
1030/**
1031 * write_one_page - write out a single page and optionally wait on I/O
1032 * @page: the page to write
1033 * @wait: if true, wait on writeout
1034 *
1035 * The page must be locked by the caller and will be unlocked upon return.
1036 *
1037 * write_one_page() returns a negative error code if I/O failed.
1038 */
1039int write_one_page(struct page *page, int wait)
1040{
1041	struct address_space *mapping = page->mapping;
1042	int ret = 0;
1043	struct writeback_control wbc = {
1044		.sync_mode = WB_SYNC_ALL,
1045		.nr_to_write = 1,
1046	};
1047
1048	BUG_ON(!PageLocked(page));
1049
1050	if (wait)
1051		wait_on_page_writeback(page);
1052
1053	if (clear_page_dirty_for_io(page)) {
1054		page_cache_get(page);
1055		ret = mapping->a_ops->writepage(page, &wbc);
1056		if (ret == 0 && wait) {
1057			wait_on_page_writeback(page);
1058			if (PageError(page))
1059				ret = -EIO;
1060		}
1061		page_cache_release(page);
1062	} else {
1063		unlock_page(page);
1064	}
1065	return ret;
1066}
1067EXPORT_SYMBOL(write_one_page);
1068
1069/*
1070 * For address_spaces which do not use buffers nor write back.
1071 */
1072int __set_page_dirty_no_writeback(struct page *page)
1073{
1074	if (!PageDirty(page))
1075		SetPageDirty(page);
1076	return 0;
1077}
1078
1079/*
1080 * Helper function for set_page_dirty family.
1081 * NOTE: This relies on being atomic wrt interrupts.
1082 */
1083void account_page_dirtied(struct page *page, struct address_space *mapping)
1084{
1085	if (mapping_cap_account_dirty(mapping)) {
1086		__inc_zone_page_state(page, NR_FILE_DIRTY);
1087		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1088		task_dirty_inc(current);
1089		task_io_account_write(PAGE_CACHE_SIZE);
1090	}
1091}
1092
1093/*
1094 * For address_spaces which do not use buffers.  Just tag the page as dirty in
1095 * its radix tree.
1096 *
1097 * This is also used when a single buffer is being dirtied: we want to set the
1098 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1099 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1100 *
1101 * Most callers have locked the page, which pins the address_space in memory.
1102 * But zap_pte_range() does not lock the page, however in that case the
1103 * mapping is pinned by the vma's ->vm_file reference.
1104 *
1105 * We take care to handle the case where the page was truncated from the
1106 * mapping by re-checking page_mapping() inside tree_lock.
1107 */
1108int __set_page_dirty_nobuffers(struct page *page)
1109{
1110	if (!TestSetPageDirty(page)) {
1111		struct address_space *mapping = page_mapping(page);
1112		struct address_space *mapping2;
1113
1114		if (!mapping)
1115			return 1;
1116
1117		spin_lock_irq(&mapping->tree_lock);
1118		mapping2 = page_mapping(page);
1119		if (mapping2) { /* Race with truncate? */
1120			BUG_ON(mapping2 != mapping);
1121			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1122			account_page_dirtied(page, mapping);
1123			radix_tree_tag_set(&mapping->page_tree,
1124				page_index(page), PAGECACHE_TAG_DIRTY);
1125		}
1126		spin_unlock_irq(&mapping->tree_lock);
1127		if (mapping->host) {
1128			/* !PageAnon && !swapper_space */
1129			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1130		}
1131		return 1;
1132	}
1133	return 0;
1134}
1135EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1136
1137/*
1138 * When a writepage implementation decides that it doesn't want to write this
1139 * page for some reason, it should redirty the locked page via
1140 * redirty_page_for_writepage() and it should then unlock the page and return 0
1141 */
1142int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1143{
1144	wbc->pages_skipped++;
1145	return __set_page_dirty_nobuffers(page);
1146}
1147EXPORT_SYMBOL(redirty_page_for_writepage);
1148
1149/*
1150 * If the mapping doesn't provide a set_page_dirty a_op, then
1151 * just fall through and assume that it wants buffer_heads.
1152 */
1153int set_page_dirty(struct page *page)
1154{
1155	struct address_space *mapping = page_mapping(page);
1156
1157	if (likely(mapping)) {
1158		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1159#ifdef CONFIG_BLOCK
1160		if (!spd)
1161			spd = __set_page_dirty_buffers;
1162#endif
1163		return (*spd)(page);
1164	}
1165	if (!PageDirty(page)) {
1166		if (!TestSetPageDirty(page))
1167			return 1;
1168	}
1169	return 0;
1170}
1171EXPORT_SYMBOL(set_page_dirty);
1172
1173/*
1174 * set_page_dirty() is racy if the caller has no reference against
1175 * page->mapping->host, and if the page is unlocked.  This is because another
1176 * CPU could truncate the page off the mapping and then free the mapping.
1177 *
1178 * Usually, the page _is_ locked, or the caller is a user-space process which
1179 * holds a reference on the inode by having an open file.
1180 *
1181 * In other cases, the page should be locked before running set_page_dirty().
1182 */
1183int set_page_dirty_lock(struct page *page)
1184{
1185	int ret;
1186
1187	lock_page_nosync(page);
1188	ret = set_page_dirty(page);
1189	unlock_page(page);
1190	return ret;
1191}
1192EXPORT_SYMBOL(set_page_dirty_lock);
1193
1194/*
1195 * Clear a page's dirty flag, while caring for dirty memory accounting.
1196 * Returns true if the page was previously dirty.
1197 *
1198 * This is for preparing to put the page under writeout.  We leave the page
1199 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1200 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1201 * implementation will run either set_page_writeback() or set_page_dirty(),
1202 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1203 * back into sync.
1204 *
1205 * This incoherency between the page's dirty flag and radix-tree tag is
1206 * unfortunate, but it only exists while the page is locked.
1207 */
1208int clear_page_dirty_for_io(struct page *page)
1209{
1210	struct address_space *mapping = page_mapping(page);
1211
1212	BUG_ON(!PageLocked(page));
1213
1214	ClearPageReclaim(page);
1215	if (mapping && mapping_cap_account_dirty(mapping)) {
1216		/*
1217		 * Yes, Virginia, this is indeed insane.
1218		 *
1219		 * We use this sequence to make sure that
1220		 *  (a) we account for dirty stats properly
1221		 *  (b) we tell the low-level filesystem to
1222		 *      mark the whole page dirty if it was
1223		 *      dirty in a pagetable. Only to then
1224		 *  (c) clean the page again and return 1 to
1225		 *      cause the writeback.
1226		 *
1227		 * This way we avoid all nasty races with the
1228		 * dirty bit in multiple places and clearing
1229		 * them concurrently from different threads.
1230		 *
1231		 * Note! Normally the "set_page_dirty(page)"
1232		 * has no effect on the actual dirty bit - since
1233		 * that will already usually be set. But we
1234		 * need the side effects, and it can help us
1235		 * avoid races.
1236		 *
1237		 * We basically use the page "master dirty bit"
1238		 * as a serialization point for all the different
1239		 * threads doing their things.
1240		 */
1241		if (page_mkclean(page))
1242			set_page_dirty(page);
1243		/*
1244		 * We carefully synchronise fault handlers against
1245		 * installing a dirty pte and marking the page dirty
1246		 * at this point. We do this by having them hold the
1247		 * page lock at some point after installing their
1248		 * pte, but before marking the page dirty.
1249		 * Pages are always locked coming in here, so we get
1250		 * the desired exclusion. See mm/memory.c:do_wp_page()
1251		 * for more comments.
1252		 */
1253		if (TestClearPageDirty(page)) {
1254			dec_zone_page_state(page, NR_FILE_DIRTY);
1255			dec_bdi_stat(mapping->backing_dev_info,
1256					BDI_RECLAIMABLE);
1257			return 1;
1258		}
1259		return 0;
1260	}
1261	return TestClearPageDirty(page);
1262}
1263EXPORT_SYMBOL(clear_page_dirty_for_io);
1264
1265int test_clear_page_writeback(struct page *page)
1266{
1267	struct address_space *mapping = page_mapping(page);
1268	int ret;
1269
1270	if (mapping) {
1271		struct backing_dev_info *bdi = mapping->backing_dev_info;
1272		unsigned long flags;
1273
1274		spin_lock_irqsave(&mapping->tree_lock, flags);
1275		ret = TestClearPageWriteback(page);
1276		if (ret) {
1277			radix_tree_tag_clear(&mapping->page_tree,
1278						page_index(page),
1279						PAGECACHE_TAG_WRITEBACK);
1280			if (bdi_cap_account_writeback(bdi)) {
1281				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1282				__bdi_writeout_inc(bdi);
1283			}
1284		}
1285		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1286	} else {
1287		ret = TestClearPageWriteback(page);
1288	}
1289	if (ret)
1290		dec_zone_page_state(page, NR_WRITEBACK);
1291	return ret;
1292}
1293
1294int test_set_page_writeback(struct page *page)
1295{
1296	struct address_space *mapping = page_mapping(page);
1297	int ret;
1298
1299	if (mapping) {
1300		struct backing_dev_info *bdi = mapping->backing_dev_info;
1301		unsigned long flags;
1302
1303		spin_lock_irqsave(&mapping->tree_lock, flags);
1304		ret = TestSetPageWriteback(page);
1305		if (!ret) {
1306			radix_tree_tag_set(&mapping->page_tree,
1307						page_index(page),
1308						PAGECACHE_TAG_WRITEBACK);
1309			if (bdi_cap_account_writeback(bdi))
1310				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1311		}
1312		if (!PageDirty(page))
1313			radix_tree_tag_clear(&mapping->page_tree,
1314						page_index(page),
1315						PAGECACHE_TAG_DIRTY);
1316		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1317	} else {
1318		ret = TestSetPageWriteback(page);
1319	}
1320	if (!ret)
1321		inc_zone_page_state(page, NR_WRITEBACK);
1322	return ret;
1323
1324}
1325EXPORT_SYMBOL(test_set_page_writeback);
1326
1327/*
1328 * Return true if any of the pages in the mapping are marked with the
1329 * passed tag.
1330 */
1331int mapping_tagged(struct address_space *mapping, int tag)
1332{
1333	int ret;
1334	rcu_read_lock();
1335	ret = radix_tree_tagged(&mapping->page_tree, tag);
1336	rcu_read_unlock();
1337	return ret;
1338}
1339EXPORT_SYMBOL(mapping_tagged);
1340