page-writeback.c revision 240c879f20a605346705be24253bc9fc6fa8a106
1/*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002	Andrew Morton
11 *		Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
25#include <linux/task_io_accounting_ops.h>
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
28#include <linux/rmap.h>
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
35#include <linux/buffer_head.h>
36#include <linux/pagevec.h>
37#include <trace/events/writeback.h>
38
39/*
40 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41 * will look to see if it needs to force writeback or throttling.
42 */
43static long ratelimit_pages = 32;
44
45/*
46 * When balance_dirty_pages decides that the caller needs to perform some
47 * non-background writeback, this is how many pages it will attempt to write.
48 * It should be somewhat larger than dirtied pages to ensure that reasonably
49 * large amounts of I/O are submitted.
50 */
51static inline long sync_writeback_pages(unsigned long dirtied)
52{
53	if (dirtied < ratelimit_pages)
54		dirtied = ratelimit_pages;
55
56	return dirtied + dirtied / 2;
57}
58
59/* The following parameters are exported via /proc/sys/vm */
60
61/*
62 * Start background writeback (via writeback threads) at this percentage
63 */
64int dirty_background_ratio = 10;
65
66/*
67 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
68 * dirty_background_ratio * the amount of dirtyable memory
69 */
70unsigned long dirty_background_bytes;
71
72/*
73 * free highmem will not be subtracted from the total free memory
74 * for calculating free ratios if vm_highmem_is_dirtyable is true
75 */
76int vm_highmem_is_dirtyable;
77
78/*
79 * The generator of dirty data starts writeback at this percentage
80 */
81int vm_dirty_ratio = 20;
82
83/*
84 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85 * vm_dirty_ratio * the amount of dirtyable memory
86 */
87unsigned long vm_dirty_bytes;
88
89/*
90 * The interval between `kupdate'-style writebacks
91 */
92unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
93
94/*
95 * The longest time for which data is allowed to remain dirty
96 */
97unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
98
99/*
100 * Flag that makes the machine dump writes/reads and block dirtyings.
101 */
102int block_dump;
103
104/*
105 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106 * a full sync is triggered after this time elapses without any disk activity.
107 */
108int laptop_mode;
109
110EXPORT_SYMBOL(laptop_mode);
111
112/* End of sysctl-exported parameters */
113
114
115/*
116 * Scale the writeback cache size proportional to the relative writeout speeds.
117 *
118 * We do this by keeping a floating proportion between BDIs, based on page
119 * writeback completions [end_page_writeback()]. Those devices that write out
120 * pages fastest will get the larger share, while the slower will get a smaller
121 * share.
122 *
123 * We use page writeout completions because we are interested in getting rid of
124 * dirty pages. Having them written out is the primary goal.
125 *
126 * We introduce a concept of time, a period over which we measure these events,
127 * because demand can/will vary over time. The length of this period itself is
128 * measured in page writeback completions.
129 *
130 */
131static struct prop_descriptor vm_completions;
132static struct prop_descriptor vm_dirties;
133
134/*
135 * couple the period to the dirty_ratio:
136 *
137 *   period/2 ~ roundup_pow_of_two(dirty limit)
138 */
139static int calc_period_shift(void)
140{
141	unsigned long dirty_total;
142
143	if (vm_dirty_bytes)
144		dirty_total = vm_dirty_bytes / PAGE_SIZE;
145	else
146		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
147				100;
148	return 2 + ilog2(dirty_total - 1);
149}
150
151/*
152 * update the period when the dirty threshold changes.
153 */
154static void update_completion_period(void)
155{
156	int shift = calc_period_shift();
157	prop_change_shift(&vm_completions, shift);
158	prop_change_shift(&vm_dirties, shift);
159}
160
161int dirty_background_ratio_handler(struct ctl_table *table, int write,
162		void __user *buffer, size_t *lenp,
163		loff_t *ppos)
164{
165	int ret;
166
167	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
168	if (ret == 0 && write)
169		dirty_background_bytes = 0;
170	return ret;
171}
172
173int dirty_background_bytes_handler(struct ctl_table *table, int write,
174		void __user *buffer, size_t *lenp,
175		loff_t *ppos)
176{
177	int ret;
178
179	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
180	if (ret == 0 && write)
181		dirty_background_ratio = 0;
182	return ret;
183}
184
185int dirty_ratio_handler(struct ctl_table *table, int write,
186		void __user *buffer, size_t *lenp,
187		loff_t *ppos)
188{
189	int old_ratio = vm_dirty_ratio;
190	int ret;
191
192	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
193	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
194		update_completion_period();
195		vm_dirty_bytes = 0;
196	}
197	return ret;
198}
199
200
201int dirty_bytes_handler(struct ctl_table *table, int write,
202		void __user *buffer, size_t *lenp,
203		loff_t *ppos)
204{
205	unsigned long old_bytes = vm_dirty_bytes;
206	int ret;
207
208	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
209	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
210		update_completion_period();
211		vm_dirty_ratio = 0;
212	}
213	return ret;
214}
215
216/*
217 * Increment the BDI's writeout completion count and the global writeout
218 * completion count. Called from test_clear_page_writeback().
219 */
220static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
221{
222	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
223			      bdi->max_prop_frac);
224}
225
226void bdi_writeout_inc(struct backing_dev_info *bdi)
227{
228	unsigned long flags;
229
230	local_irq_save(flags);
231	__bdi_writeout_inc(bdi);
232	local_irq_restore(flags);
233}
234EXPORT_SYMBOL_GPL(bdi_writeout_inc);
235
236void task_dirty_inc(struct task_struct *tsk)
237{
238	prop_inc_single(&vm_dirties, &tsk->dirties);
239}
240
241/*
242 * Obtain an accurate fraction of the BDI's portion.
243 */
244static void bdi_writeout_fraction(struct backing_dev_info *bdi,
245		long *numerator, long *denominator)
246{
247	if (bdi_cap_writeback_dirty(bdi)) {
248		prop_fraction_percpu(&vm_completions, &bdi->completions,
249				numerator, denominator);
250	} else {
251		*numerator = 0;
252		*denominator = 1;
253	}
254}
255
256static inline void task_dirties_fraction(struct task_struct *tsk,
257		long *numerator, long *denominator)
258{
259	prop_fraction_single(&vm_dirties, &tsk->dirties,
260				numerator, denominator);
261}
262
263/*
264 * task_dirty_limit - scale down dirty throttling threshold for one task
265 *
266 * task specific dirty limit:
267 *
268 *   dirty -= (dirty/8) * p_{t}
269 *
270 * To protect light/slow dirtying tasks from heavier/fast ones, we start
271 * throttling individual tasks before reaching the bdi dirty limit.
272 * Relatively low thresholds will be allocated to heavy dirtiers. So when
273 * dirty pages grow large, heavy dirtiers will be throttled first, which will
274 * effectively curb the growth of dirty pages. Light dirtiers with high enough
275 * dirty threshold may never get throttled.
276 */
277static unsigned long task_dirty_limit(struct task_struct *tsk,
278				       unsigned long bdi_dirty)
279{
280	long numerator, denominator;
281	unsigned long dirty = bdi_dirty;
282	u64 inv = dirty >> 3;
283
284	task_dirties_fraction(tsk, &numerator, &denominator);
285	inv *= numerator;
286	do_div(inv, denominator);
287
288	dirty -= inv;
289
290	return max(dirty, bdi_dirty/2);
291}
292
293/*
294 *
295 */
296static unsigned int bdi_min_ratio;
297
298int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
299{
300	int ret = 0;
301
302	spin_lock_bh(&bdi_lock);
303	if (min_ratio > bdi->max_ratio) {
304		ret = -EINVAL;
305	} else {
306		min_ratio -= bdi->min_ratio;
307		if (bdi_min_ratio + min_ratio < 100) {
308			bdi_min_ratio += min_ratio;
309			bdi->min_ratio += min_ratio;
310		} else {
311			ret = -EINVAL;
312		}
313	}
314	spin_unlock_bh(&bdi_lock);
315
316	return ret;
317}
318
319int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
320{
321	int ret = 0;
322
323	if (max_ratio > 100)
324		return -EINVAL;
325
326	spin_lock_bh(&bdi_lock);
327	if (bdi->min_ratio > max_ratio) {
328		ret = -EINVAL;
329	} else {
330		bdi->max_ratio = max_ratio;
331		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
332	}
333	spin_unlock_bh(&bdi_lock);
334
335	return ret;
336}
337EXPORT_SYMBOL(bdi_set_max_ratio);
338
339/*
340 * Work out the current dirty-memory clamping and background writeout
341 * thresholds.
342 *
343 * The main aim here is to lower them aggressively if there is a lot of mapped
344 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
345 * pages.  It is better to clamp down on writers than to start swapping, and
346 * performing lots of scanning.
347 *
348 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
349 *
350 * We don't permit the clamping level to fall below 5% - that is getting rather
351 * excessive.
352 *
353 * We make sure that the background writeout level is below the adjusted
354 * clamping level.
355 */
356
357static unsigned long highmem_dirtyable_memory(unsigned long total)
358{
359#ifdef CONFIG_HIGHMEM
360	int node;
361	unsigned long x = 0;
362
363	for_each_node_state(node, N_HIGH_MEMORY) {
364		struct zone *z =
365			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
366
367		x += zone_page_state(z, NR_FREE_PAGES) +
368		     zone_reclaimable_pages(z);
369	}
370	/*
371	 * Make sure that the number of highmem pages is never larger
372	 * than the number of the total dirtyable memory. This can only
373	 * occur in very strange VM situations but we want to make sure
374	 * that this does not occur.
375	 */
376	return min(x, total);
377#else
378	return 0;
379#endif
380}
381
382/**
383 * determine_dirtyable_memory - amount of memory that may be used
384 *
385 * Returns the numebr of pages that can currently be freed and used
386 * by the kernel for direct mappings.
387 */
388unsigned long determine_dirtyable_memory(void)
389{
390	unsigned long x;
391
392	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
393
394	if (!vm_highmem_is_dirtyable)
395		x -= highmem_dirtyable_memory(x);
396
397	return x + 1;	/* Ensure that we never return 0 */
398}
399
400/*
401 * global_dirty_limits - background-writeback and dirty-throttling thresholds
402 *
403 * Calculate the dirty thresholds based on sysctl parameters
404 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
405 * - vm.dirty_ratio             or  vm.dirty_bytes
406 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
407 * real-time tasks.
408 */
409void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
410{
411	unsigned long background;
412	unsigned long dirty;
413	unsigned long uninitialized_var(available_memory);
414	struct task_struct *tsk;
415
416	if (!vm_dirty_bytes || !dirty_background_bytes)
417		available_memory = determine_dirtyable_memory();
418
419	if (vm_dirty_bytes)
420		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
421	else
422		dirty = (vm_dirty_ratio * available_memory) / 100;
423
424	if (dirty_background_bytes)
425		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
426	else
427		background = (dirty_background_ratio * available_memory) / 100;
428
429	if (background >= dirty)
430		background = dirty / 2;
431	tsk = current;
432	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
433		background += background / 4;
434		dirty += dirty / 4;
435	}
436	*pbackground = background;
437	*pdirty = dirty;
438}
439
440/*
441 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
442 *
443 * Allocate high/low dirty limits to fast/slow devices, in order to prevent
444 * - starving fast devices
445 * - piling up dirty pages (that will take long time to sync) on slow devices
446 *
447 * The bdi's share of dirty limit will be adapting to its throughput and
448 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
449 */
450unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
451{
452	u64 bdi_dirty;
453	long numerator, denominator;
454
455	/*
456	 * Calculate this BDI's share of the dirty ratio.
457	 */
458	bdi_writeout_fraction(bdi, &numerator, &denominator);
459
460	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
461	bdi_dirty *= numerator;
462	do_div(bdi_dirty, denominator);
463
464	bdi_dirty += (dirty * bdi->min_ratio) / 100;
465	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
466		bdi_dirty = dirty * bdi->max_ratio / 100;
467
468	return bdi_dirty;
469}
470
471/*
472 * balance_dirty_pages() must be called by processes which are generating dirty
473 * data.  It looks at the number of dirty pages in the machine and will force
474 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
475 * If we're over `background_thresh' then the writeback threads are woken to
476 * perform some writeout.
477 */
478static void balance_dirty_pages(struct address_space *mapping,
479				unsigned long write_chunk)
480{
481	long nr_reclaimable, bdi_nr_reclaimable;
482	long nr_writeback, bdi_nr_writeback;
483	unsigned long background_thresh;
484	unsigned long dirty_thresh;
485	unsigned long bdi_thresh;
486	unsigned long pages_written = 0;
487	unsigned long pause = 1;
488	bool dirty_exceeded = false;
489	struct backing_dev_info *bdi = mapping->backing_dev_info;
490
491	for (;;) {
492		struct writeback_control wbc = {
493			.sync_mode	= WB_SYNC_NONE,
494			.older_than_this = NULL,
495			.nr_to_write	= write_chunk,
496			.range_cyclic	= 1,
497		};
498
499		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
500					global_page_state(NR_UNSTABLE_NFS);
501		nr_writeback = global_page_state(NR_WRITEBACK);
502
503		global_dirty_limits(&background_thresh, &dirty_thresh);
504
505		/*
506		 * Throttle it only when the background writeback cannot
507		 * catch-up. This avoids (excessively) small writeouts
508		 * when the bdi limits are ramping up.
509		 */
510		if (nr_reclaimable + nr_writeback <=
511				(background_thresh + dirty_thresh) / 2)
512			break;
513
514		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
515		bdi_thresh = task_dirty_limit(current, bdi_thresh);
516
517		/*
518		 * In order to avoid the stacked BDI deadlock we need
519		 * to ensure we accurately count the 'dirty' pages when
520		 * the threshold is low.
521		 *
522		 * Otherwise it would be possible to get thresh+n pages
523		 * reported dirty, even though there are thresh-m pages
524		 * actually dirty; with m+n sitting in the percpu
525		 * deltas.
526		 */
527		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
528			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
529			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
530		} else {
531			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
532			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
533		}
534
535		/*
536		 * The bdi thresh is somehow "soft" limit derived from the
537		 * global "hard" limit. The former helps to prevent heavy IO
538		 * bdi or process from holding back light ones; The latter is
539		 * the last resort safeguard.
540		 */
541		dirty_exceeded =
542			(bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh)
543			|| (nr_reclaimable + nr_writeback > dirty_thresh);
544
545		if (!dirty_exceeded)
546			break;
547
548		if (!bdi->dirty_exceeded)
549			bdi->dirty_exceeded = 1;
550
551		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
552		 * Unstable writes are a feature of certain networked
553		 * filesystems (i.e. NFS) in which data may have been
554		 * written to the server's write cache, but has not yet
555		 * been flushed to permanent storage.
556		 * Only move pages to writeback if this bdi is over its
557		 * threshold otherwise wait until the disk writes catch
558		 * up.
559		 */
560		trace_wbc_balance_dirty_start(&wbc, bdi);
561		if (bdi_nr_reclaimable > bdi_thresh) {
562			writeback_inodes_wb(&bdi->wb, &wbc);
563			pages_written += write_chunk - wbc.nr_to_write;
564			trace_wbc_balance_dirty_written(&wbc, bdi);
565			if (pages_written >= write_chunk)
566				break;		/* We've done our duty */
567		}
568		trace_wbc_balance_dirty_wait(&wbc, bdi);
569		__set_current_state(TASK_UNINTERRUPTIBLE);
570		io_schedule_timeout(pause);
571
572		/*
573		 * Increase the delay for each loop, up to our previous
574		 * default of taking a 100ms nap.
575		 */
576		pause <<= 1;
577		if (pause > HZ / 10)
578			pause = HZ / 10;
579	}
580
581	if (!dirty_exceeded && bdi->dirty_exceeded)
582		bdi->dirty_exceeded = 0;
583
584	if (writeback_in_progress(bdi))
585		return;
586
587	/*
588	 * In laptop mode, we wait until hitting the higher threshold before
589	 * starting background writeout, and then write out all the way down
590	 * to the lower threshold.  So slow writers cause minimal disk activity.
591	 *
592	 * In normal mode, we start background writeout at the lower
593	 * background_thresh, to keep the amount of dirty memory low.
594	 */
595	if ((laptop_mode && pages_written) ||
596	    (!laptop_mode && (nr_reclaimable > background_thresh)))
597		bdi_start_background_writeback(bdi);
598}
599
600void set_page_dirty_balance(struct page *page, int page_mkwrite)
601{
602	if (set_page_dirty(page) || page_mkwrite) {
603		struct address_space *mapping = page_mapping(page);
604
605		if (mapping)
606			balance_dirty_pages_ratelimited(mapping);
607	}
608}
609
610static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
611
612/**
613 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
614 * @mapping: address_space which was dirtied
615 * @nr_pages_dirtied: number of pages which the caller has just dirtied
616 *
617 * Processes which are dirtying memory should call in here once for each page
618 * which was newly dirtied.  The function will periodically check the system's
619 * dirty state and will initiate writeback if needed.
620 *
621 * On really big machines, get_writeback_state is expensive, so try to avoid
622 * calling it too often (ratelimiting).  But once we're over the dirty memory
623 * limit we decrease the ratelimiting by a lot, to prevent individual processes
624 * from overshooting the limit by (ratelimit_pages) each.
625 */
626void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
627					unsigned long nr_pages_dirtied)
628{
629	unsigned long ratelimit;
630	unsigned long *p;
631
632	ratelimit = ratelimit_pages;
633	if (mapping->backing_dev_info->dirty_exceeded)
634		ratelimit = 8;
635
636	/*
637	 * Check the rate limiting. Also, we do not want to throttle real-time
638	 * tasks in balance_dirty_pages(). Period.
639	 */
640	preempt_disable();
641	p =  &__get_cpu_var(bdp_ratelimits);
642	*p += nr_pages_dirtied;
643	if (unlikely(*p >= ratelimit)) {
644		ratelimit = sync_writeback_pages(*p);
645		*p = 0;
646		preempt_enable();
647		balance_dirty_pages(mapping, ratelimit);
648		return;
649	}
650	preempt_enable();
651}
652EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
653
654void throttle_vm_writeout(gfp_t gfp_mask)
655{
656	unsigned long background_thresh;
657	unsigned long dirty_thresh;
658
659        for ( ; ; ) {
660		global_dirty_limits(&background_thresh, &dirty_thresh);
661
662                /*
663                 * Boost the allowable dirty threshold a bit for page
664                 * allocators so they don't get DoS'ed by heavy writers
665                 */
666                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
667
668                if (global_page_state(NR_UNSTABLE_NFS) +
669			global_page_state(NR_WRITEBACK) <= dirty_thresh)
670                        	break;
671                congestion_wait(BLK_RW_ASYNC, HZ/10);
672
673		/*
674		 * The caller might hold locks which can prevent IO completion
675		 * or progress in the filesystem.  So we cannot just sit here
676		 * waiting for IO to complete.
677		 */
678		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
679			break;
680        }
681}
682
683/*
684 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
685 */
686int dirty_writeback_centisecs_handler(ctl_table *table, int write,
687	void __user *buffer, size_t *length, loff_t *ppos)
688{
689	proc_dointvec(table, write, buffer, length, ppos);
690	bdi_arm_supers_timer();
691	return 0;
692}
693
694#ifdef CONFIG_BLOCK
695void laptop_mode_timer_fn(unsigned long data)
696{
697	struct request_queue *q = (struct request_queue *)data;
698	int nr_pages = global_page_state(NR_FILE_DIRTY) +
699		global_page_state(NR_UNSTABLE_NFS);
700
701	/*
702	 * We want to write everything out, not just down to the dirty
703	 * threshold
704	 */
705	if (bdi_has_dirty_io(&q->backing_dev_info))
706		bdi_start_writeback(&q->backing_dev_info, nr_pages);
707}
708
709/*
710 * We've spun up the disk and we're in laptop mode: schedule writeback
711 * of all dirty data a few seconds from now.  If the flush is already scheduled
712 * then push it back - the user is still using the disk.
713 */
714void laptop_io_completion(struct backing_dev_info *info)
715{
716	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
717}
718
719/*
720 * We're in laptop mode and we've just synced. The sync's writes will have
721 * caused another writeback to be scheduled by laptop_io_completion.
722 * Nothing needs to be written back anymore, so we unschedule the writeback.
723 */
724void laptop_sync_completion(void)
725{
726	struct backing_dev_info *bdi;
727
728	rcu_read_lock();
729
730	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
731		del_timer(&bdi->laptop_mode_wb_timer);
732
733	rcu_read_unlock();
734}
735#endif
736
737/*
738 * If ratelimit_pages is too high then we can get into dirty-data overload
739 * if a large number of processes all perform writes at the same time.
740 * If it is too low then SMP machines will call the (expensive)
741 * get_writeback_state too often.
742 *
743 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
744 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
745 * thresholds before writeback cuts in.
746 *
747 * But the limit should not be set too high.  Because it also controls the
748 * amount of memory which the balance_dirty_pages() caller has to write back.
749 * If this is too large then the caller will block on the IO queue all the
750 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
751 * will write six megabyte chunks, max.
752 */
753
754void writeback_set_ratelimit(void)
755{
756	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
757	if (ratelimit_pages < 16)
758		ratelimit_pages = 16;
759	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
760		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
761}
762
763static int __cpuinit
764ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
765{
766	writeback_set_ratelimit();
767	return NOTIFY_DONE;
768}
769
770static struct notifier_block __cpuinitdata ratelimit_nb = {
771	.notifier_call	= ratelimit_handler,
772	.next		= NULL,
773};
774
775/*
776 * Called early on to tune the page writeback dirty limits.
777 *
778 * We used to scale dirty pages according to how total memory
779 * related to pages that could be allocated for buffers (by
780 * comparing nr_free_buffer_pages() to vm_total_pages.
781 *
782 * However, that was when we used "dirty_ratio" to scale with
783 * all memory, and we don't do that any more. "dirty_ratio"
784 * is now applied to total non-HIGHPAGE memory (by subtracting
785 * totalhigh_pages from vm_total_pages), and as such we can't
786 * get into the old insane situation any more where we had
787 * large amounts of dirty pages compared to a small amount of
788 * non-HIGHMEM memory.
789 *
790 * But we might still want to scale the dirty_ratio by how
791 * much memory the box has..
792 */
793void __init page_writeback_init(void)
794{
795	int shift;
796
797	writeback_set_ratelimit();
798	register_cpu_notifier(&ratelimit_nb);
799
800	shift = calc_period_shift();
801	prop_descriptor_init(&vm_completions, shift);
802	prop_descriptor_init(&vm_dirties, shift);
803}
804
805/**
806 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
807 * @mapping: address space structure to write
808 * @start: starting page index
809 * @end: ending page index (inclusive)
810 *
811 * This function scans the page range from @start to @end (inclusive) and tags
812 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
813 * that write_cache_pages (or whoever calls this function) will then use
814 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
815 * used to avoid livelocking of writeback by a process steadily creating new
816 * dirty pages in the file (thus it is important for this function to be quick
817 * so that it can tag pages faster than a dirtying process can create them).
818 */
819/*
820 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
821 */
822void tag_pages_for_writeback(struct address_space *mapping,
823			     pgoff_t start, pgoff_t end)
824{
825#define WRITEBACK_TAG_BATCH 4096
826	unsigned long tagged;
827
828	do {
829		spin_lock_irq(&mapping->tree_lock);
830		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
831				&start, end, WRITEBACK_TAG_BATCH,
832				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
833		spin_unlock_irq(&mapping->tree_lock);
834		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
835		cond_resched();
836		/* We check 'start' to handle wrapping when end == ~0UL */
837	} while (tagged >= WRITEBACK_TAG_BATCH && start);
838}
839EXPORT_SYMBOL(tag_pages_for_writeback);
840
841/**
842 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
843 * @mapping: address space structure to write
844 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
845 * @writepage: function called for each page
846 * @data: data passed to writepage function
847 *
848 * If a page is already under I/O, write_cache_pages() skips it, even
849 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
850 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
851 * and msync() need to guarantee that all the data which was dirty at the time
852 * the call was made get new I/O started against them.  If wbc->sync_mode is
853 * WB_SYNC_ALL then we were called for data integrity and we must wait for
854 * existing IO to complete.
855 *
856 * To avoid livelocks (when other process dirties new pages), we first tag
857 * pages which should be written back with TOWRITE tag and only then start
858 * writing them. For data-integrity sync we have to be careful so that we do
859 * not miss some pages (e.g., because some other process has cleared TOWRITE
860 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
861 * by the process clearing the DIRTY tag (and submitting the page for IO).
862 */
863int write_cache_pages(struct address_space *mapping,
864		      struct writeback_control *wbc, writepage_t writepage,
865		      void *data)
866{
867	int ret = 0;
868	int done = 0;
869	struct pagevec pvec;
870	int nr_pages;
871	pgoff_t uninitialized_var(writeback_index);
872	pgoff_t index;
873	pgoff_t end;		/* Inclusive */
874	pgoff_t done_index;
875	int cycled;
876	int range_whole = 0;
877	int tag;
878
879	pagevec_init(&pvec, 0);
880	if (wbc->range_cyclic) {
881		writeback_index = mapping->writeback_index; /* prev offset */
882		index = writeback_index;
883		if (index == 0)
884			cycled = 1;
885		else
886			cycled = 0;
887		end = -1;
888	} else {
889		index = wbc->range_start >> PAGE_CACHE_SHIFT;
890		end = wbc->range_end >> PAGE_CACHE_SHIFT;
891		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
892			range_whole = 1;
893		cycled = 1; /* ignore range_cyclic tests */
894	}
895	if (wbc->sync_mode == WB_SYNC_ALL)
896		tag = PAGECACHE_TAG_TOWRITE;
897	else
898		tag = PAGECACHE_TAG_DIRTY;
899retry:
900	if (wbc->sync_mode == WB_SYNC_ALL)
901		tag_pages_for_writeback(mapping, index, end);
902	done_index = index;
903	while (!done && (index <= end)) {
904		int i;
905
906		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
907			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
908		if (nr_pages == 0)
909			break;
910
911		for (i = 0; i < nr_pages; i++) {
912			struct page *page = pvec.pages[i];
913
914			/*
915			 * At this point, the page may be truncated or
916			 * invalidated (changing page->mapping to NULL), or
917			 * even swizzled back from swapper_space to tmpfs file
918			 * mapping. However, page->index will not change
919			 * because we have a reference on the page.
920			 */
921			if (page->index > end) {
922				/*
923				 * can't be range_cyclic (1st pass) because
924				 * end == -1 in that case.
925				 */
926				done = 1;
927				break;
928			}
929
930			done_index = page->index + 1;
931
932			lock_page(page);
933
934			/*
935			 * Page truncated or invalidated. We can freely skip it
936			 * then, even for data integrity operations: the page
937			 * has disappeared concurrently, so there could be no
938			 * real expectation of this data interity operation
939			 * even if there is now a new, dirty page at the same
940			 * pagecache address.
941			 */
942			if (unlikely(page->mapping != mapping)) {
943continue_unlock:
944				unlock_page(page);
945				continue;
946			}
947
948			if (!PageDirty(page)) {
949				/* someone wrote it for us */
950				goto continue_unlock;
951			}
952
953			if (PageWriteback(page)) {
954				if (wbc->sync_mode != WB_SYNC_NONE)
955					wait_on_page_writeback(page);
956				else
957					goto continue_unlock;
958			}
959
960			BUG_ON(PageWriteback(page));
961			if (!clear_page_dirty_for_io(page))
962				goto continue_unlock;
963
964			trace_wbc_writepage(wbc, mapping->backing_dev_info);
965			ret = (*writepage)(page, wbc, data);
966			if (unlikely(ret)) {
967				if (ret == AOP_WRITEPAGE_ACTIVATE) {
968					unlock_page(page);
969					ret = 0;
970				} else {
971					/*
972					 * done_index is set past this page,
973					 * so media errors will not choke
974					 * background writeout for the entire
975					 * file. This has consequences for
976					 * range_cyclic semantics (ie. it may
977					 * not be suitable for data integrity
978					 * writeout).
979					 */
980					done = 1;
981					break;
982				}
983			}
984
985			/*
986			 * We stop writing back only if we are not doing
987			 * integrity sync. In case of integrity sync we have to
988			 * keep going until we have written all the pages
989			 * we tagged for writeback prior to entering this loop.
990			 */
991			if (--wbc->nr_to_write <= 0 &&
992			    wbc->sync_mode == WB_SYNC_NONE) {
993				done = 1;
994				break;
995			}
996		}
997		pagevec_release(&pvec);
998		cond_resched();
999	}
1000	if (!cycled && !done) {
1001		/*
1002		 * range_cyclic:
1003		 * We hit the last page and there is more work to be done: wrap
1004		 * back to the start of the file
1005		 */
1006		cycled = 1;
1007		index = 0;
1008		end = writeback_index - 1;
1009		goto retry;
1010	}
1011	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1012		mapping->writeback_index = done_index;
1013
1014	return ret;
1015}
1016EXPORT_SYMBOL(write_cache_pages);
1017
1018/*
1019 * Function used by generic_writepages to call the real writepage
1020 * function and set the mapping flags on error
1021 */
1022static int __writepage(struct page *page, struct writeback_control *wbc,
1023		       void *data)
1024{
1025	struct address_space *mapping = data;
1026	int ret = mapping->a_ops->writepage(page, wbc);
1027	mapping_set_error(mapping, ret);
1028	return ret;
1029}
1030
1031/**
1032 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1033 * @mapping: address space structure to write
1034 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1035 *
1036 * This is a library function, which implements the writepages()
1037 * address_space_operation.
1038 */
1039int generic_writepages(struct address_space *mapping,
1040		       struct writeback_control *wbc)
1041{
1042	/* deal with chardevs and other special file */
1043	if (!mapping->a_ops->writepage)
1044		return 0;
1045
1046	return write_cache_pages(mapping, wbc, __writepage, mapping);
1047}
1048
1049EXPORT_SYMBOL(generic_writepages);
1050
1051int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1052{
1053	int ret;
1054
1055	if (wbc->nr_to_write <= 0)
1056		return 0;
1057	if (mapping->a_ops->writepages)
1058		ret = mapping->a_ops->writepages(mapping, wbc);
1059	else
1060		ret = generic_writepages(mapping, wbc);
1061	return ret;
1062}
1063
1064/**
1065 * write_one_page - write out a single page and optionally wait on I/O
1066 * @page: the page to write
1067 * @wait: if true, wait on writeout
1068 *
1069 * The page must be locked by the caller and will be unlocked upon return.
1070 *
1071 * write_one_page() returns a negative error code if I/O failed.
1072 */
1073int write_one_page(struct page *page, int wait)
1074{
1075	struct address_space *mapping = page->mapping;
1076	int ret = 0;
1077	struct writeback_control wbc = {
1078		.sync_mode = WB_SYNC_ALL,
1079		.nr_to_write = 1,
1080	};
1081
1082	BUG_ON(!PageLocked(page));
1083
1084	if (wait)
1085		wait_on_page_writeback(page);
1086
1087	if (clear_page_dirty_for_io(page)) {
1088		page_cache_get(page);
1089		ret = mapping->a_ops->writepage(page, &wbc);
1090		if (ret == 0 && wait) {
1091			wait_on_page_writeback(page);
1092			if (PageError(page))
1093				ret = -EIO;
1094		}
1095		page_cache_release(page);
1096	} else {
1097		unlock_page(page);
1098	}
1099	return ret;
1100}
1101EXPORT_SYMBOL(write_one_page);
1102
1103/*
1104 * For address_spaces which do not use buffers nor write back.
1105 */
1106int __set_page_dirty_no_writeback(struct page *page)
1107{
1108	if (!PageDirty(page))
1109		return !TestSetPageDirty(page);
1110	return 0;
1111}
1112
1113/*
1114 * Helper function for set_page_dirty family.
1115 * NOTE: This relies on being atomic wrt interrupts.
1116 */
1117void account_page_dirtied(struct page *page, struct address_space *mapping)
1118{
1119	if (mapping_cap_account_dirty(mapping)) {
1120		__inc_zone_page_state(page, NR_FILE_DIRTY);
1121		__inc_zone_page_state(page, NR_DIRTIED);
1122		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1123		task_dirty_inc(current);
1124		task_io_account_write(PAGE_CACHE_SIZE);
1125	}
1126}
1127EXPORT_SYMBOL(account_page_dirtied);
1128
1129/*
1130 * Helper function for set_page_writeback family.
1131 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1132 * wrt interrupts.
1133 */
1134void account_page_writeback(struct page *page)
1135{
1136	inc_zone_page_state(page, NR_WRITEBACK);
1137	inc_zone_page_state(page, NR_WRITTEN);
1138}
1139EXPORT_SYMBOL(account_page_writeback);
1140
1141/*
1142 * For address_spaces which do not use buffers.  Just tag the page as dirty in
1143 * its radix tree.
1144 *
1145 * This is also used when a single buffer is being dirtied: we want to set the
1146 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1147 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1148 *
1149 * Most callers have locked the page, which pins the address_space in memory.
1150 * But zap_pte_range() does not lock the page, however in that case the
1151 * mapping is pinned by the vma's ->vm_file reference.
1152 *
1153 * We take care to handle the case where the page was truncated from the
1154 * mapping by re-checking page_mapping() inside tree_lock.
1155 */
1156int __set_page_dirty_nobuffers(struct page *page)
1157{
1158	if (!TestSetPageDirty(page)) {
1159		struct address_space *mapping = page_mapping(page);
1160		struct address_space *mapping2;
1161
1162		if (!mapping)
1163			return 1;
1164
1165		spin_lock_irq(&mapping->tree_lock);
1166		mapping2 = page_mapping(page);
1167		if (mapping2) { /* Race with truncate? */
1168			BUG_ON(mapping2 != mapping);
1169			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1170			account_page_dirtied(page, mapping);
1171			radix_tree_tag_set(&mapping->page_tree,
1172				page_index(page), PAGECACHE_TAG_DIRTY);
1173		}
1174		spin_unlock_irq(&mapping->tree_lock);
1175		if (mapping->host) {
1176			/* !PageAnon && !swapper_space */
1177			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1178		}
1179		return 1;
1180	}
1181	return 0;
1182}
1183EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1184
1185/*
1186 * When a writepage implementation decides that it doesn't want to write this
1187 * page for some reason, it should redirty the locked page via
1188 * redirty_page_for_writepage() and it should then unlock the page and return 0
1189 */
1190int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1191{
1192	wbc->pages_skipped++;
1193	return __set_page_dirty_nobuffers(page);
1194}
1195EXPORT_SYMBOL(redirty_page_for_writepage);
1196
1197/*
1198 * Dirty a page.
1199 *
1200 * For pages with a mapping this should be done under the page lock
1201 * for the benefit of asynchronous memory errors who prefer a consistent
1202 * dirty state. This rule can be broken in some special cases,
1203 * but should be better not to.
1204 *
1205 * If the mapping doesn't provide a set_page_dirty a_op, then
1206 * just fall through and assume that it wants buffer_heads.
1207 */
1208int set_page_dirty(struct page *page)
1209{
1210	struct address_space *mapping = page_mapping(page);
1211
1212	if (likely(mapping)) {
1213		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1214#ifdef CONFIG_BLOCK
1215		if (!spd)
1216			spd = __set_page_dirty_buffers;
1217#endif
1218		return (*spd)(page);
1219	}
1220	if (!PageDirty(page)) {
1221		if (!TestSetPageDirty(page))
1222			return 1;
1223	}
1224	return 0;
1225}
1226EXPORT_SYMBOL(set_page_dirty);
1227
1228/*
1229 * set_page_dirty() is racy if the caller has no reference against
1230 * page->mapping->host, and if the page is unlocked.  This is because another
1231 * CPU could truncate the page off the mapping and then free the mapping.
1232 *
1233 * Usually, the page _is_ locked, or the caller is a user-space process which
1234 * holds a reference on the inode by having an open file.
1235 *
1236 * In other cases, the page should be locked before running set_page_dirty().
1237 */
1238int set_page_dirty_lock(struct page *page)
1239{
1240	int ret;
1241
1242	lock_page_nosync(page);
1243	ret = set_page_dirty(page);
1244	unlock_page(page);
1245	return ret;
1246}
1247EXPORT_SYMBOL(set_page_dirty_lock);
1248
1249/*
1250 * Clear a page's dirty flag, while caring for dirty memory accounting.
1251 * Returns true if the page was previously dirty.
1252 *
1253 * This is for preparing to put the page under writeout.  We leave the page
1254 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1255 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1256 * implementation will run either set_page_writeback() or set_page_dirty(),
1257 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1258 * back into sync.
1259 *
1260 * This incoherency between the page's dirty flag and radix-tree tag is
1261 * unfortunate, but it only exists while the page is locked.
1262 */
1263int clear_page_dirty_for_io(struct page *page)
1264{
1265	struct address_space *mapping = page_mapping(page);
1266
1267	BUG_ON(!PageLocked(page));
1268
1269	ClearPageReclaim(page);
1270	if (mapping && mapping_cap_account_dirty(mapping)) {
1271		/*
1272		 * Yes, Virginia, this is indeed insane.
1273		 *
1274		 * We use this sequence to make sure that
1275		 *  (a) we account for dirty stats properly
1276		 *  (b) we tell the low-level filesystem to
1277		 *      mark the whole page dirty if it was
1278		 *      dirty in a pagetable. Only to then
1279		 *  (c) clean the page again and return 1 to
1280		 *      cause the writeback.
1281		 *
1282		 * This way we avoid all nasty races with the
1283		 * dirty bit in multiple places and clearing
1284		 * them concurrently from different threads.
1285		 *
1286		 * Note! Normally the "set_page_dirty(page)"
1287		 * has no effect on the actual dirty bit - since
1288		 * that will already usually be set. But we
1289		 * need the side effects, and it can help us
1290		 * avoid races.
1291		 *
1292		 * We basically use the page "master dirty bit"
1293		 * as a serialization point for all the different
1294		 * threads doing their things.
1295		 */
1296		if (page_mkclean(page))
1297			set_page_dirty(page);
1298		/*
1299		 * We carefully synchronise fault handlers against
1300		 * installing a dirty pte and marking the page dirty
1301		 * at this point. We do this by having them hold the
1302		 * page lock at some point after installing their
1303		 * pte, but before marking the page dirty.
1304		 * Pages are always locked coming in here, so we get
1305		 * the desired exclusion. See mm/memory.c:do_wp_page()
1306		 * for more comments.
1307		 */
1308		if (TestClearPageDirty(page)) {
1309			dec_zone_page_state(page, NR_FILE_DIRTY);
1310			dec_bdi_stat(mapping->backing_dev_info,
1311					BDI_RECLAIMABLE);
1312			return 1;
1313		}
1314		return 0;
1315	}
1316	return TestClearPageDirty(page);
1317}
1318EXPORT_SYMBOL(clear_page_dirty_for_io);
1319
1320int test_clear_page_writeback(struct page *page)
1321{
1322	struct address_space *mapping = page_mapping(page);
1323	int ret;
1324
1325	if (mapping) {
1326		struct backing_dev_info *bdi = mapping->backing_dev_info;
1327		unsigned long flags;
1328
1329		spin_lock_irqsave(&mapping->tree_lock, flags);
1330		ret = TestClearPageWriteback(page);
1331		if (ret) {
1332			radix_tree_tag_clear(&mapping->page_tree,
1333						page_index(page),
1334						PAGECACHE_TAG_WRITEBACK);
1335			if (bdi_cap_account_writeback(bdi)) {
1336				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1337				__bdi_writeout_inc(bdi);
1338			}
1339		}
1340		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1341	} else {
1342		ret = TestClearPageWriteback(page);
1343	}
1344	if (ret)
1345		dec_zone_page_state(page, NR_WRITEBACK);
1346	return ret;
1347}
1348
1349int test_set_page_writeback(struct page *page)
1350{
1351	struct address_space *mapping = page_mapping(page);
1352	int ret;
1353
1354	if (mapping) {
1355		struct backing_dev_info *bdi = mapping->backing_dev_info;
1356		unsigned long flags;
1357
1358		spin_lock_irqsave(&mapping->tree_lock, flags);
1359		ret = TestSetPageWriteback(page);
1360		if (!ret) {
1361			radix_tree_tag_set(&mapping->page_tree,
1362						page_index(page),
1363						PAGECACHE_TAG_WRITEBACK);
1364			if (bdi_cap_account_writeback(bdi))
1365				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1366		}
1367		if (!PageDirty(page))
1368			radix_tree_tag_clear(&mapping->page_tree,
1369						page_index(page),
1370						PAGECACHE_TAG_DIRTY);
1371		radix_tree_tag_clear(&mapping->page_tree,
1372				     page_index(page),
1373				     PAGECACHE_TAG_TOWRITE);
1374		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1375	} else {
1376		ret = TestSetPageWriteback(page);
1377	}
1378	if (!ret)
1379		account_page_writeback(page);
1380	return ret;
1381
1382}
1383EXPORT_SYMBOL(test_set_page_writeback);
1384
1385/*
1386 * Return true if any of the pages in the mapping are marked with the
1387 * passed tag.
1388 */
1389int mapping_tagged(struct address_space *mapping, int tag)
1390{
1391	int ret;
1392	rcu_read_lock();
1393	ret = radix_tree_tagged(&mapping->page_tree, tag);
1394	rcu_read_unlock();
1395	return ret;
1396}
1397EXPORT_SYMBOL(mapping_tagged);
1398