page-writeback.c revision 245b2e70eabd797932adb263a65da0bab3711753
1/*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002	Andrew Morton
11 *		Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
25#include <linux/task_io_accounting_ops.h>
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
28#include <linux/rmap.h>
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
35#include <linux/buffer_head.h>
36#include <linux/pagevec.h>
37
38/*
39 * The maximum number of pages to writeout in a single bdflush/kupdate
40 * operation.  We do this so we don't hold I_SYNC against an inode for
41 * enormous amounts of time, which would block a userspace task which has
42 * been forced to throttle against that inode.  Also, the code reevaluates
43 * the dirty each time it has written this many pages.
44 */
45#define MAX_WRITEBACK_PAGES	1024
46
47/*
48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49 * will look to see if it needs to force writeback or throttling.
50 */
51static long ratelimit_pages = 32;
52
53/*
54 * When balance_dirty_pages decides that the caller needs to perform some
55 * non-background writeback, this is how many pages it will attempt to write.
56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57 * large amounts of I/O are submitted.
58 */
59static inline long sync_writeback_pages(void)
60{
61	return ratelimit_pages + ratelimit_pages / 2;
62}
63
64/* The following parameters are exported via /proc/sys/vm */
65
66/*
67 * Start background writeback (via pdflush) at this percentage
68 */
69int dirty_background_ratio = 10;
70
71/*
72 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
73 * dirty_background_ratio * the amount of dirtyable memory
74 */
75unsigned long dirty_background_bytes;
76
77/*
78 * free highmem will not be subtracted from the total free memory
79 * for calculating free ratios if vm_highmem_is_dirtyable is true
80 */
81int vm_highmem_is_dirtyable;
82
83/*
84 * The generator of dirty data starts writeback at this percentage
85 */
86int vm_dirty_ratio = 20;
87
88/*
89 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
90 * vm_dirty_ratio * the amount of dirtyable memory
91 */
92unsigned long vm_dirty_bytes;
93
94/*
95 * The interval between `kupdate'-style writebacks
96 */
97unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
98
99/*
100 * The longest time for which data is allowed to remain dirty
101 */
102unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
103
104/*
105 * Flag that makes the machine dump writes/reads and block dirtyings.
106 */
107int block_dump;
108
109/*
110 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
111 * a full sync is triggered after this time elapses without any disk activity.
112 */
113int laptop_mode;
114
115EXPORT_SYMBOL(laptop_mode);
116
117/* End of sysctl-exported parameters */
118
119
120static void background_writeout(unsigned long _min_pages);
121
122/*
123 * Scale the writeback cache size proportional to the relative writeout speeds.
124 *
125 * We do this by keeping a floating proportion between BDIs, based on page
126 * writeback completions [end_page_writeback()]. Those devices that write out
127 * pages fastest will get the larger share, while the slower will get a smaller
128 * share.
129 *
130 * We use page writeout completions because we are interested in getting rid of
131 * dirty pages. Having them written out is the primary goal.
132 *
133 * We introduce a concept of time, a period over which we measure these events,
134 * because demand can/will vary over time. The length of this period itself is
135 * measured in page writeback completions.
136 *
137 */
138static struct prop_descriptor vm_completions;
139static struct prop_descriptor vm_dirties;
140
141/*
142 * couple the period to the dirty_ratio:
143 *
144 *   period/2 ~ roundup_pow_of_two(dirty limit)
145 */
146static int calc_period_shift(void)
147{
148	unsigned long dirty_total;
149
150	if (vm_dirty_bytes)
151		dirty_total = vm_dirty_bytes / PAGE_SIZE;
152	else
153		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
154				100;
155	return 2 + ilog2(dirty_total - 1);
156}
157
158/*
159 * update the period when the dirty threshold changes.
160 */
161static void update_completion_period(void)
162{
163	int shift = calc_period_shift();
164	prop_change_shift(&vm_completions, shift);
165	prop_change_shift(&vm_dirties, shift);
166}
167
168int dirty_background_ratio_handler(struct ctl_table *table, int write,
169		struct file *filp, void __user *buffer, size_t *lenp,
170		loff_t *ppos)
171{
172	int ret;
173
174	ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
175	if (ret == 0 && write)
176		dirty_background_bytes = 0;
177	return ret;
178}
179
180int dirty_background_bytes_handler(struct ctl_table *table, int write,
181		struct file *filp, void __user *buffer, size_t *lenp,
182		loff_t *ppos)
183{
184	int ret;
185
186	ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
187	if (ret == 0 && write)
188		dirty_background_ratio = 0;
189	return ret;
190}
191
192int dirty_ratio_handler(struct ctl_table *table, int write,
193		struct file *filp, void __user *buffer, size_t *lenp,
194		loff_t *ppos)
195{
196	int old_ratio = vm_dirty_ratio;
197	int ret;
198
199	ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
200	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
201		update_completion_period();
202		vm_dirty_bytes = 0;
203	}
204	return ret;
205}
206
207
208int dirty_bytes_handler(struct ctl_table *table, int write,
209		struct file *filp, void __user *buffer, size_t *lenp,
210		loff_t *ppos)
211{
212	unsigned long old_bytes = vm_dirty_bytes;
213	int ret;
214
215	ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
216	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
217		update_completion_period();
218		vm_dirty_ratio = 0;
219	}
220	return ret;
221}
222
223/*
224 * Increment the BDI's writeout completion count and the global writeout
225 * completion count. Called from test_clear_page_writeback().
226 */
227static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
228{
229	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
230			      bdi->max_prop_frac);
231}
232
233void bdi_writeout_inc(struct backing_dev_info *bdi)
234{
235	unsigned long flags;
236
237	local_irq_save(flags);
238	__bdi_writeout_inc(bdi);
239	local_irq_restore(flags);
240}
241EXPORT_SYMBOL_GPL(bdi_writeout_inc);
242
243void task_dirty_inc(struct task_struct *tsk)
244{
245	prop_inc_single(&vm_dirties, &tsk->dirties);
246}
247
248/*
249 * Obtain an accurate fraction of the BDI's portion.
250 */
251static void bdi_writeout_fraction(struct backing_dev_info *bdi,
252		long *numerator, long *denominator)
253{
254	if (bdi_cap_writeback_dirty(bdi)) {
255		prop_fraction_percpu(&vm_completions, &bdi->completions,
256				numerator, denominator);
257	} else {
258		*numerator = 0;
259		*denominator = 1;
260	}
261}
262
263/*
264 * Clip the earned share of dirty pages to that which is actually available.
265 * This avoids exceeding the total dirty_limit when the floating averages
266 * fluctuate too quickly.
267 */
268static void clip_bdi_dirty_limit(struct backing_dev_info *bdi,
269		unsigned long dirty, unsigned long *pbdi_dirty)
270{
271	unsigned long avail_dirty;
272
273	avail_dirty = global_page_state(NR_FILE_DIRTY) +
274		 global_page_state(NR_WRITEBACK) +
275		 global_page_state(NR_UNSTABLE_NFS) +
276		 global_page_state(NR_WRITEBACK_TEMP);
277
278	if (avail_dirty < dirty)
279		avail_dirty = dirty - avail_dirty;
280	else
281		avail_dirty = 0;
282
283	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
284		bdi_stat(bdi, BDI_WRITEBACK);
285
286	*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
287}
288
289static inline void task_dirties_fraction(struct task_struct *tsk,
290		long *numerator, long *denominator)
291{
292	prop_fraction_single(&vm_dirties, &tsk->dirties,
293				numerator, denominator);
294}
295
296/*
297 * scale the dirty limit
298 *
299 * task specific dirty limit:
300 *
301 *   dirty -= (dirty/8) * p_{t}
302 */
303static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty)
304{
305	long numerator, denominator;
306	unsigned long dirty = *pdirty;
307	u64 inv = dirty >> 3;
308
309	task_dirties_fraction(tsk, &numerator, &denominator);
310	inv *= numerator;
311	do_div(inv, denominator);
312
313	dirty -= inv;
314	if (dirty < *pdirty/2)
315		dirty = *pdirty/2;
316
317	*pdirty = dirty;
318}
319
320/*
321 *
322 */
323static DEFINE_SPINLOCK(bdi_lock);
324static unsigned int bdi_min_ratio;
325
326int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
327{
328	int ret = 0;
329	unsigned long flags;
330
331	spin_lock_irqsave(&bdi_lock, flags);
332	if (min_ratio > bdi->max_ratio) {
333		ret = -EINVAL;
334	} else {
335		min_ratio -= bdi->min_ratio;
336		if (bdi_min_ratio + min_ratio < 100) {
337			bdi_min_ratio += min_ratio;
338			bdi->min_ratio += min_ratio;
339		} else {
340			ret = -EINVAL;
341		}
342	}
343	spin_unlock_irqrestore(&bdi_lock, flags);
344
345	return ret;
346}
347
348int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
349{
350	unsigned long flags;
351	int ret = 0;
352
353	if (max_ratio > 100)
354		return -EINVAL;
355
356	spin_lock_irqsave(&bdi_lock, flags);
357	if (bdi->min_ratio > max_ratio) {
358		ret = -EINVAL;
359	} else {
360		bdi->max_ratio = max_ratio;
361		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
362	}
363	spin_unlock_irqrestore(&bdi_lock, flags);
364
365	return ret;
366}
367EXPORT_SYMBOL(bdi_set_max_ratio);
368
369/*
370 * Work out the current dirty-memory clamping and background writeout
371 * thresholds.
372 *
373 * The main aim here is to lower them aggressively if there is a lot of mapped
374 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
375 * pages.  It is better to clamp down on writers than to start swapping, and
376 * performing lots of scanning.
377 *
378 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
379 *
380 * We don't permit the clamping level to fall below 5% - that is getting rather
381 * excessive.
382 *
383 * We make sure that the background writeout level is below the adjusted
384 * clamping level.
385 */
386
387static unsigned long highmem_dirtyable_memory(unsigned long total)
388{
389#ifdef CONFIG_HIGHMEM
390	int node;
391	unsigned long x = 0;
392
393	for_each_node_state(node, N_HIGH_MEMORY) {
394		struct zone *z =
395			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
396
397		x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z);
398	}
399	/*
400	 * Make sure that the number of highmem pages is never larger
401	 * than the number of the total dirtyable memory. This can only
402	 * occur in very strange VM situations but we want to make sure
403	 * that this does not occur.
404	 */
405	return min(x, total);
406#else
407	return 0;
408#endif
409}
410
411/**
412 * determine_dirtyable_memory - amount of memory that may be used
413 *
414 * Returns the numebr of pages that can currently be freed and used
415 * by the kernel for direct mappings.
416 */
417unsigned long determine_dirtyable_memory(void)
418{
419	unsigned long x;
420
421	x = global_page_state(NR_FREE_PAGES) + global_lru_pages();
422
423	if (!vm_highmem_is_dirtyable)
424		x -= highmem_dirtyable_memory(x);
425
426	return x + 1;	/* Ensure that we never return 0 */
427}
428
429void
430get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
431		 unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
432{
433	unsigned long background;
434	unsigned long dirty;
435	unsigned long available_memory = determine_dirtyable_memory();
436	struct task_struct *tsk;
437
438	if (vm_dirty_bytes)
439		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
440	else {
441		int dirty_ratio;
442
443		dirty_ratio = vm_dirty_ratio;
444		if (dirty_ratio < 5)
445			dirty_ratio = 5;
446		dirty = (dirty_ratio * available_memory) / 100;
447	}
448
449	if (dirty_background_bytes)
450		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
451	else
452		background = (dirty_background_ratio * available_memory) / 100;
453
454	if (background >= dirty)
455		background = dirty / 2;
456	tsk = current;
457	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
458		background += background / 4;
459		dirty += dirty / 4;
460	}
461	*pbackground = background;
462	*pdirty = dirty;
463
464	if (bdi) {
465		u64 bdi_dirty;
466		long numerator, denominator;
467
468		/*
469		 * Calculate this BDI's share of the dirty ratio.
470		 */
471		bdi_writeout_fraction(bdi, &numerator, &denominator);
472
473		bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
474		bdi_dirty *= numerator;
475		do_div(bdi_dirty, denominator);
476		bdi_dirty += (dirty * bdi->min_ratio) / 100;
477		if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
478			bdi_dirty = dirty * bdi->max_ratio / 100;
479
480		*pbdi_dirty = bdi_dirty;
481		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
482		task_dirty_limit(current, pbdi_dirty);
483	}
484}
485
486/*
487 * balance_dirty_pages() must be called by processes which are generating dirty
488 * data.  It looks at the number of dirty pages in the machine and will force
489 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
490 * If we're over `background_thresh' then pdflush is woken to perform some
491 * writeout.
492 */
493static void balance_dirty_pages(struct address_space *mapping)
494{
495	long nr_reclaimable, bdi_nr_reclaimable;
496	long nr_writeback, bdi_nr_writeback;
497	unsigned long background_thresh;
498	unsigned long dirty_thresh;
499	unsigned long bdi_thresh;
500	unsigned long pages_written = 0;
501	unsigned long write_chunk = sync_writeback_pages();
502
503	struct backing_dev_info *bdi = mapping->backing_dev_info;
504
505	for (;;) {
506		struct writeback_control wbc = {
507			.bdi		= bdi,
508			.sync_mode	= WB_SYNC_NONE,
509			.older_than_this = NULL,
510			.nr_to_write	= write_chunk,
511			.range_cyclic	= 1,
512		};
513
514		get_dirty_limits(&background_thresh, &dirty_thresh,
515				&bdi_thresh, bdi);
516
517		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
518					global_page_state(NR_UNSTABLE_NFS);
519		nr_writeback = global_page_state(NR_WRITEBACK);
520
521		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
522		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
523
524		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
525			break;
526
527		/*
528		 * Throttle it only when the background writeback cannot
529		 * catch-up. This avoids (excessively) small writeouts
530		 * when the bdi limits are ramping up.
531		 */
532		if (nr_reclaimable + nr_writeback <
533				(background_thresh + dirty_thresh) / 2)
534			break;
535
536		if (!bdi->dirty_exceeded)
537			bdi->dirty_exceeded = 1;
538
539		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
540		 * Unstable writes are a feature of certain networked
541		 * filesystems (i.e. NFS) in which data may have been
542		 * written to the server's write cache, but has not yet
543		 * been flushed to permanent storage.
544		 */
545		if (bdi_nr_reclaimable) {
546			writeback_inodes(&wbc);
547			pages_written += write_chunk - wbc.nr_to_write;
548			get_dirty_limits(&background_thresh, &dirty_thresh,
549				       &bdi_thresh, bdi);
550		}
551
552		/*
553		 * In order to avoid the stacked BDI deadlock we need
554		 * to ensure we accurately count the 'dirty' pages when
555		 * the threshold is low.
556		 *
557		 * Otherwise it would be possible to get thresh+n pages
558		 * reported dirty, even though there are thresh-m pages
559		 * actually dirty; with m+n sitting in the percpu
560		 * deltas.
561		 */
562		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
563			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
564			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
565		} else if (bdi_nr_reclaimable) {
566			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
567			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
568		}
569
570		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
571			break;
572		if (pages_written >= write_chunk)
573			break;		/* We've done our duty */
574
575		congestion_wait(WRITE, HZ/10);
576	}
577
578	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
579			bdi->dirty_exceeded)
580		bdi->dirty_exceeded = 0;
581
582	if (writeback_in_progress(bdi))
583		return;		/* pdflush is already working this queue */
584
585	/*
586	 * In laptop mode, we wait until hitting the higher threshold before
587	 * starting background writeout, and then write out all the way down
588	 * to the lower threshold.  So slow writers cause minimal disk activity.
589	 *
590	 * In normal mode, we start background writeout at the lower
591	 * background_thresh, to keep the amount of dirty memory low.
592	 */
593	if ((laptop_mode && pages_written) ||
594			(!laptop_mode && (global_page_state(NR_FILE_DIRTY)
595					  + global_page_state(NR_UNSTABLE_NFS)
596					  > background_thresh)))
597		pdflush_operation(background_writeout, 0);
598}
599
600void set_page_dirty_balance(struct page *page, int page_mkwrite)
601{
602	if (set_page_dirty(page) || page_mkwrite) {
603		struct address_space *mapping = page_mapping(page);
604
605		if (mapping)
606			balance_dirty_pages_ratelimited(mapping);
607	}
608}
609
610static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
611
612/**
613 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
614 * @mapping: address_space which was dirtied
615 * @nr_pages_dirtied: number of pages which the caller has just dirtied
616 *
617 * Processes which are dirtying memory should call in here once for each page
618 * which was newly dirtied.  The function will periodically check the system's
619 * dirty state and will initiate writeback if needed.
620 *
621 * On really big machines, get_writeback_state is expensive, so try to avoid
622 * calling it too often (ratelimiting).  But once we're over the dirty memory
623 * limit we decrease the ratelimiting by a lot, to prevent individual processes
624 * from overshooting the limit by (ratelimit_pages) each.
625 */
626void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
627					unsigned long nr_pages_dirtied)
628{
629	unsigned long ratelimit;
630	unsigned long *p;
631
632	ratelimit = ratelimit_pages;
633	if (mapping->backing_dev_info->dirty_exceeded)
634		ratelimit = 8;
635
636	/*
637	 * Check the rate limiting. Also, we do not want to throttle real-time
638	 * tasks in balance_dirty_pages(). Period.
639	 */
640	preempt_disable();
641	p =  &__get_cpu_var(bdp_ratelimits);
642	*p += nr_pages_dirtied;
643	if (unlikely(*p >= ratelimit)) {
644		*p = 0;
645		preempt_enable();
646		balance_dirty_pages(mapping);
647		return;
648	}
649	preempt_enable();
650}
651EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
652
653void throttle_vm_writeout(gfp_t gfp_mask)
654{
655	unsigned long background_thresh;
656	unsigned long dirty_thresh;
657
658        for ( ; ; ) {
659		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
660
661                /*
662                 * Boost the allowable dirty threshold a bit for page
663                 * allocators so they don't get DoS'ed by heavy writers
664                 */
665                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
666
667                if (global_page_state(NR_UNSTABLE_NFS) +
668			global_page_state(NR_WRITEBACK) <= dirty_thresh)
669                        	break;
670                congestion_wait(WRITE, HZ/10);
671
672		/*
673		 * The caller might hold locks which can prevent IO completion
674		 * or progress in the filesystem.  So we cannot just sit here
675		 * waiting for IO to complete.
676		 */
677		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
678			break;
679        }
680}
681
682/*
683 * writeback at least _min_pages, and keep writing until the amount of dirty
684 * memory is less than the background threshold, or until we're all clean.
685 */
686static void background_writeout(unsigned long _min_pages)
687{
688	long min_pages = _min_pages;
689	struct writeback_control wbc = {
690		.bdi		= NULL,
691		.sync_mode	= WB_SYNC_NONE,
692		.older_than_this = NULL,
693		.nr_to_write	= 0,
694		.nonblocking	= 1,
695		.range_cyclic	= 1,
696	};
697
698	for ( ; ; ) {
699		unsigned long background_thresh;
700		unsigned long dirty_thresh;
701
702		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
703		if (global_page_state(NR_FILE_DIRTY) +
704			global_page_state(NR_UNSTABLE_NFS) < background_thresh
705				&& min_pages <= 0)
706			break;
707		wbc.more_io = 0;
708		wbc.encountered_congestion = 0;
709		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
710		wbc.pages_skipped = 0;
711		writeback_inodes(&wbc);
712		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
713		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
714			/* Wrote less than expected */
715			if (wbc.encountered_congestion || wbc.more_io)
716				congestion_wait(WRITE, HZ/10);
717			else
718				break;
719		}
720	}
721}
722
723/*
724 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
725 * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
726 * -1 if all pdflush threads were busy.
727 */
728int wakeup_pdflush(long nr_pages)
729{
730	if (nr_pages == 0)
731		nr_pages = global_page_state(NR_FILE_DIRTY) +
732				global_page_state(NR_UNSTABLE_NFS);
733	return pdflush_operation(background_writeout, nr_pages);
734}
735
736static void wb_timer_fn(unsigned long unused);
737static void laptop_timer_fn(unsigned long unused);
738
739static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
740static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
741
742/*
743 * Periodic writeback of "old" data.
744 *
745 * Define "old": the first time one of an inode's pages is dirtied, we mark the
746 * dirtying-time in the inode's address_space.  So this periodic writeback code
747 * just walks the superblock inode list, writing back any inodes which are
748 * older than a specific point in time.
749 *
750 * Try to run once per dirty_writeback_interval.  But if a writeback event
751 * takes longer than a dirty_writeback_interval interval, then leave a
752 * one-second gap.
753 *
754 * older_than_this takes precedence over nr_to_write.  So we'll only write back
755 * all dirty pages if they are all attached to "old" mappings.
756 */
757static void wb_kupdate(unsigned long arg)
758{
759	unsigned long oldest_jif;
760	unsigned long start_jif;
761	unsigned long next_jif;
762	long nr_to_write;
763	struct writeback_control wbc = {
764		.bdi		= NULL,
765		.sync_mode	= WB_SYNC_NONE,
766		.older_than_this = &oldest_jif,
767		.nr_to_write	= 0,
768		.nonblocking	= 1,
769		.for_kupdate	= 1,
770		.range_cyclic	= 1,
771	};
772
773	sync_supers();
774
775	oldest_jif = jiffies - msecs_to_jiffies(dirty_expire_interval * 10);
776	start_jif = jiffies;
777	next_jif = start_jif + msecs_to_jiffies(dirty_writeback_interval * 10);
778	nr_to_write = global_page_state(NR_FILE_DIRTY) +
779			global_page_state(NR_UNSTABLE_NFS) +
780			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
781	while (nr_to_write > 0) {
782		wbc.more_io = 0;
783		wbc.encountered_congestion = 0;
784		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
785		writeback_inodes(&wbc);
786		if (wbc.nr_to_write > 0) {
787			if (wbc.encountered_congestion || wbc.more_io)
788				congestion_wait(WRITE, HZ/10);
789			else
790				break;	/* All the old data is written */
791		}
792		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
793	}
794	if (time_before(next_jif, jiffies + HZ))
795		next_jif = jiffies + HZ;
796	if (dirty_writeback_interval)
797		mod_timer(&wb_timer, next_jif);
798}
799
800/*
801 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
802 */
803int dirty_writeback_centisecs_handler(ctl_table *table, int write,
804	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
805{
806	proc_dointvec(table, write, file, buffer, length, ppos);
807	if (dirty_writeback_interval)
808		mod_timer(&wb_timer, jiffies +
809			msecs_to_jiffies(dirty_writeback_interval * 10));
810	else
811		del_timer(&wb_timer);
812	return 0;
813}
814
815static void wb_timer_fn(unsigned long unused)
816{
817	if (pdflush_operation(wb_kupdate, 0) < 0)
818		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
819}
820
821static void laptop_flush(unsigned long unused)
822{
823	sys_sync();
824}
825
826static void laptop_timer_fn(unsigned long unused)
827{
828	pdflush_operation(laptop_flush, 0);
829}
830
831/*
832 * We've spun up the disk and we're in laptop mode: schedule writeback
833 * of all dirty data a few seconds from now.  If the flush is already scheduled
834 * then push it back - the user is still using the disk.
835 */
836void laptop_io_completion(void)
837{
838	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
839}
840
841/*
842 * We're in laptop mode and we've just synced. The sync's writes will have
843 * caused another writeback to be scheduled by laptop_io_completion.
844 * Nothing needs to be written back anymore, so we unschedule the writeback.
845 */
846void laptop_sync_completion(void)
847{
848	del_timer(&laptop_mode_wb_timer);
849}
850
851/*
852 * If ratelimit_pages is too high then we can get into dirty-data overload
853 * if a large number of processes all perform writes at the same time.
854 * If it is too low then SMP machines will call the (expensive)
855 * get_writeback_state too often.
856 *
857 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
858 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
859 * thresholds before writeback cuts in.
860 *
861 * But the limit should not be set too high.  Because it also controls the
862 * amount of memory which the balance_dirty_pages() caller has to write back.
863 * If this is too large then the caller will block on the IO queue all the
864 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
865 * will write six megabyte chunks, max.
866 */
867
868void writeback_set_ratelimit(void)
869{
870	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
871	if (ratelimit_pages < 16)
872		ratelimit_pages = 16;
873	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
874		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
875}
876
877static int __cpuinit
878ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
879{
880	writeback_set_ratelimit();
881	return NOTIFY_DONE;
882}
883
884static struct notifier_block __cpuinitdata ratelimit_nb = {
885	.notifier_call	= ratelimit_handler,
886	.next		= NULL,
887};
888
889/*
890 * Called early on to tune the page writeback dirty limits.
891 *
892 * We used to scale dirty pages according to how total memory
893 * related to pages that could be allocated for buffers (by
894 * comparing nr_free_buffer_pages() to vm_total_pages.
895 *
896 * However, that was when we used "dirty_ratio" to scale with
897 * all memory, and we don't do that any more. "dirty_ratio"
898 * is now applied to total non-HIGHPAGE memory (by subtracting
899 * totalhigh_pages from vm_total_pages), and as such we can't
900 * get into the old insane situation any more where we had
901 * large amounts of dirty pages compared to a small amount of
902 * non-HIGHMEM memory.
903 *
904 * But we might still want to scale the dirty_ratio by how
905 * much memory the box has..
906 */
907void __init page_writeback_init(void)
908{
909	int shift;
910
911	mod_timer(&wb_timer,
912		  jiffies + msecs_to_jiffies(dirty_writeback_interval * 10));
913	writeback_set_ratelimit();
914	register_cpu_notifier(&ratelimit_nb);
915
916	shift = calc_period_shift();
917	prop_descriptor_init(&vm_completions, shift);
918	prop_descriptor_init(&vm_dirties, shift);
919}
920
921/**
922 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
923 * @mapping: address space structure to write
924 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
925 * @writepage: function called for each page
926 * @data: data passed to writepage function
927 *
928 * If a page is already under I/O, write_cache_pages() skips it, even
929 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
930 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
931 * and msync() need to guarantee that all the data which was dirty at the time
932 * the call was made get new I/O started against them.  If wbc->sync_mode is
933 * WB_SYNC_ALL then we were called for data integrity and we must wait for
934 * existing IO to complete.
935 */
936int write_cache_pages(struct address_space *mapping,
937		      struct writeback_control *wbc, writepage_t writepage,
938		      void *data)
939{
940	struct backing_dev_info *bdi = mapping->backing_dev_info;
941	int ret = 0;
942	int done = 0;
943	struct pagevec pvec;
944	int nr_pages;
945	pgoff_t uninitialized_var(writeback_index);
946	pgoff_t index;
947	pgoff_t end;		/* Inclusive */
948	pgoff_t done_index;
949	int cycled;
950	int range_whole = 0;
951	long nr_to_write = wbc->nr_to_write;
952
953	if (wbc->nonblocking && bdi_write_congested(bdi)) {
954		wbc->encountered_congestion = 1;
955		return 0;
956	}
957
958	pagevec_init(&pvec, 0);
959	if (wbc->range_cyclic) {
960		writeback_index = mapping->writeback_index; /* prev offset */
961		index = writeback_index;
962		if (index == 0)
963			cycled = 1;
964		else
965			cycled = 0;
966		end = -1;
967	} else {
968		index = wbc->range_start >> PAGE_CACHE_SHIFT;
969		end = wbc->range_end >> PAGE_CACHE_SHIFT;
970		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
971			range_whole = 1;
972		cycled = 1; /* ignore range_cyclic tests */
973	}
974retry:
975	done_index = index;
976	while (!done && (index <= end)) {
977		int i;
978
979		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
980			      PAGECACHE_TAG_DIRTY,
981			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
982		if (nr_pages == 0)
983			break;
984
985		for (i = 0; i < nr_pages; i++) {
986			struct page *page = pvec.pages[i];
987
988			/*
989			 * At this point, the page may be truncated or
990			 * invalidated (changing page->mapping to NULL), or
991			 * even swizzled back from swapper_space to tmpfs file
992			 * mapping. However, page->index will not change
993			 * because we have a reference on the page.
994			 */
995			if (page->index > end) {
996				/*
997				 * can't be range_cyclic (1st pass) because
998				 * end == -1 in that case.
999				 */
1000				done = 1;
1001				break;
1002			}
1003
1004			done_index = page->index + 1;
1005
1006			lock_page(page);
1007
1008			/*
1009			 * Page truncated or invalidated. We can freely skip it
1010			 * then, even for data integrity operations: the page
1011			 * has disappeared concurrently, so there could be no
1012			 * real expectation of this data interity operation
1013			 * even if there is now a new, dirty page at the same
1014			 * pagecache address.
1015			 */
1016			if (unlikely(page->mapping != mapping)) {
1017continue_unlock:
1018				unlock_page(page);
1019				continue;
1020			}
1021
1022			if (!PageDirty(page)) {
1023				/* someone wrote it for us */
1024				goto continue_unlock;
1025			}
1026
1027			if (PageWriteback(page)) {
1028				if (wbc->sync_mode != WB_SYNC_NONE)
1029					wait_on_page_writeback(page);
1030				else
1031					goto continue_unlock;
1032			}
1033
1034			BUG_ON(PageWriteback(page));
1035			if (!clear_page_dirty_for_io(page))
1036				goto continue_unlock;
1037
1038			ret = (*writepage)(page, wbc, data);
1039			if (unlikely(ret)) {
1040				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1041					unlock_page(page);
1042					ret = 0;
1043				} else {
1044					/*
1045					 * done_index is set past this page,
1046					 * so media errors will not choke
1047					 * background writeout for the entire
1048					 * file. This has consequences for
1049					 * range_cyclic semantics (ie. it may
1050					 * not be suitable for data integrity
1051					 * writeout).
1052					 */
1053					done = 1;
1054					break;
1055				}
1056 			}
1057
1058			if (nr_to_write > 0) {
1059				nr_to_write--;
1060				if (nr_to_write == 0 &&
1061				    wbc->sync_mode == WB_SYNC_NONE) {
1062					/*
1063					 * We stop writing back only if we are
1064					 * not doing integrity sync. In case of
1065					 * integrity sync we have to keep going
1066					 * because someone may be concurrently
1067					 * dirtying pages, and we might have
1068					 * synced a lot of newly appeared dirty
1069					 * pages, but have not synced all of the
1070					 * old dirty pages.
1071					 */
1072					done = 1;
1073					break;
1074				}
1075			}
1076
1077			if (wbc->nonblocking && bdi_write_congested(bdi)) {
1078				wbc->encountered_congestion = 1;
1079				done = 1;
1080				break;
1081			}
1082		}
1083		pagevec_release(&pvec);
1084		cond_resched();
1085	}
1086	if (!cycled && !done) {
1087		/*
1088		 * range_cyclic:
1089		 * We hit the last page and there is more work to be done: wrap
1090		 * back to the start of the file
1091		 */
1092		cycled = 1;
1093		index = 0;
1094		end = writeback_index - 1;
1095		goto retry;
1096	}
1097	if (!wbc->no_nrwrite_index_update) {
1098		if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
1099			mapping->writeback_index = done_index;
1100		wbc->nr_to_write = nr_to_write;
1101	}
1102
1103	return ret;
1104}
1105EXPORT_SYMBOL(write_cache_pages);
1106
1107/*
1108 * Function used by generic_writepages to call the real writepage
1109 * function and set the mapping flags on error
1110 */
1111static int __writepage(struct page *page, struct writeback_control *wbc,
1112		       void *data)
1113{
1114	struct address_space *mapping = data;
1115	int ret = mapping->a_ops->writepage(page, wbc);
1116	mapping_set_error(mapping, ret);
1117	return ret;
1118}
1119
1120/**
1121 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1122 * @mapping: address space structure to write
1123 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1124 *
1125 * This is a library function, which implements the writepages()
1126 * address_space_operation.
1127 */
1128int generic_writepages(struct address_space *mapping,
1129		       struct writeback_control *wbc)
1130{
1131	/* deal with chardevs and other special file */
1132	if (!mapping->a_ops->writepage)
1133		return 0;
1134
1135	return write_cache_pages(mapping, wbc, __writepage, mapping);
1136}
1137
1138EXPORT_SYMBOL(generic_writepages);
1139
1140int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1141{
1142	int ret;
1143
1144	if (wbc->nr_to_write <= 0)
1145		return 0;
1146	wbc->for_writepages = 1;
1147	if (mapping->a_ops->writepages)
1148		ret = mapping->a_ops->writepages(mapping, wbc);
1149	else
1150		ret = generic_writepages(mapping, wbc);
1151	wbc->for_writepages = 0;
1152	return ret;
1153}
1154
1155/**
1156 * write_one_page - write out a single page and optionally wait on I/O
1157 * @page: the page to write
1158 * @wait: if true, wait on writeout
1159 *
1160 * The page must be locked by the caller and will be unlocked upon return.
1161 *
1162 * write_one_page() returns a negative error code if I/O failed.
1163 */
1164int write_one_page(struct page *page, int wait)
1165{
1166	struct address_space *mapping = page->mapping;
1167	int ret = 0;
1168	struct writeback_control wbc = {
1169		.sync_mode = WB_SYNC_ALL,
1170		.nr_to_write = 1,
1171	};
1172
1173	BUG_ON(!PageLocked(page));
1174
1175	if (wait)
1176		wait_on_page_writeback(page);
1177
1178	if (clear_page_dirty_for_io(page)) {
1179		page_cache_get(page);
1180		ret = mapping->a_ops->writepage(page, &wbc);
1181		if (ret == 0 && wait) {
1182			wait_on_page_writeback(page);
1183			if (PageError(page))
1184				ret = -EIO;
1185		}
1186		page_cache_release(page);
1187	} else {
1188		unlock_page(page);
1189	}
1190	return ret;
1191}
1192EXPORT_SYMBOL(write_one_page);
1193
1194/*
1195 * For address_spaces which do not use buffers nor write back.
1196 */
1197int __set_page_dirty_no_writeback(struct page *page)
1198{
1199	if (!PageDirty(page))
1200		SetPageDirty(page);
1201	return 0;
1202}
1203
1204/*
1205 * Helper function for set_page_dirty family.
1206 * NOTE: This relies on being atomic wrt interrupts.
1207 */
1208void account_page_dirtied(struct page *page, struct address_space *mapping)
1209{
1210	if (mapping_cap_account_dirty(mapping)) {
1211		__inc_zone_page_state(page, NR_FILE_DIRTY);
1212		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1213		task_dirty_inc(current);
1214		task_io_account_write(PAGE_CACHE_SIZE);
1215	}
1216}
1217
1218/*
1219 * For address_spaces which do not use buffers.  Just tag the page as dirty in
1220 * its radix tree.
1221 *
1222 * This is also used when a single buffer is being dirtied: we want to set the
1223 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1224 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1225 *
1226 * Most callers have locked the page, which pins the address_space in memory.
1227 * But zap_pte_range() does not lock the page, however in that case the
1228 * mapping is pinned by the vma's ->vm_file reference.
1229 *
1230 * We take care to handle the case where the page was truncated from the
1231 * mapping by re-checking page_mapping() inside tree_lock.
1232 */
1233int __set_page_dirty_nobuffers(struct page *page)
1234{
1235	if (!TestSetPageDirty(page)) {
1236		struct address_space *mapping = page_mapping(page);
1237		struct address_space *mapping2;
1238
1239		if (!mapping)
1240			return 1;
1241
1242		spin_lock_irq(&mapping->tree_lock);
1243		mapping2 = page_mapping(page);
1244		if (mapping2) { /* Race with truncate? */
1245			BUG_ON(mapping2 != mapping);
1246			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1247			account_page_dirtied(page, mapping);
1248			radix_tree_tag_set(&mapping->page_tree,
1249				page_index(page), PAGECACHE_TAG_DIRTY);
1250		}
1251		spin_unlock_irq(&mapping->tree_lock);
1252		if (mapping->host) {
1253			/* !PageAnon && !swapper_space */
1254			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1255		}
1256		return 1;
1257	}
1258	return 0;
1259}
1260EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1261
1262/*
1263 * When a writepage implementation decides that it doesn't want to write this
1264 * page for some reason, it should redirty the locked page via
1265 * redirty_page_for_writepage() and it should then unlock the page and return 0
1266 */
1267int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1268{
1269	wbc->pages_skipped++;
1270	return __set_page_dirty_nobuffers(page);
1271}
1272EXPORT_SYMBOL(redirty_page_for_writepage);
1273
1274/*
1275 * If the mapping doesn't provide a set_page_dirty a_op, then
1276 * just fall through and assume that it wants buffer_heads.
1277 */
1278int set_page_dirty(struct page *page)
1279{
1280	struct address_space *mapping = page_mapping(page);
1281
1282	if (likely(mapping)) {
1283		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1284#ifdef CONFIG_BLOCK
1285		if (!spd)
1286			spd = __set_page_dirty_buffers;
1287#endif
1288		return (*spd)(page);
1289	}
1290	if (!PageDirty(page)) {
1291		if (!TestSetPageDirty(page))
1292			return 1;
1293	}
1294	return 0;
1295}
1296EXPORT_SYMBOL(set_page_dirty);
1297
1298/*
1299 * set_page_dirty() is racy if the caller has no reference against
1300 * page->mapping->host, and if the page is unlocked.  This is because another
1301 * CPU could truncate the page off the mapping and then free the mapping.
1302 *
1303 * Usually, the page _is_ locked, or the caller is a user-space process which
1304 * holds a reference on the inode by having an open file.
1305 *
1306 * In other cases, the page should be locked before running set_page_dirty().
1307 */
1308int set_page_dirty_lock(struct page *page)
1309{
1310	int ret;
1311
1312	lock_page_nosync(page);
1313	ret = set_page_dirty(page);
1314	unlock_page(page);
1315	return ret;
1316}
1317EXPORT_SYMBOL(set_page_dirty_lock);
1318
1319/*
1320 * Clear a page's dirty flag, while caring for dirty memory accounting.
1321 * Returns true if the page was previously dirty.
1322 *
1323 * This is for preparing to put the page under writeout.  We leave the page
1324 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1325 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1326 * implementation will run either set_page_writeback() or set_page_dirty(),
1327 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1328 * back into sync.
1329 *
1330 * This incoherency between the page's dirty flag and radix-tree tag is
1331 * unfortunate, but it only exists while the page is locked.
1332 */
1333int clear_page_dirty_for_io(struct page *page)
1334{
1335	struct address_space *mapping = page_mapping(page);
1336
1337	BUG_ON(!PageLocked(page));
1338
1339	ClearPageReclaim(page);
1340	if (mapping && mapping_cap_account_dirty(mapping)) {
1341		/*
1342		 * Yes, Virginia, this is indeed insane.
1343		 *
1344		 * We use this sequence to make sure that
1345		 *  (a) we account for dirty stats properly
1346		 *  (b) we tell the low-level filesystem to
1347		 *      mark the whole page dirty if it was
1348		 *      dirty in a pagetable. Only to then
1349		 *  (c) clean the page again and return 1 to
1350		 *      cause the writeback.
1351		 *
1352		 * This way we avoid all nasty races with the
1353		 * dirty bit in multiple places and clearing
1354		 * them concurrently from different threads.
1355		 *
1356		 * Note! Normally the "set_page_dirty(page)"
1357		 * has no effect on the actual dirty bit - since
1358		 * that will already usually be set. But we
1359		 * need the side effects, and it can help us
1360		 * avoid races.
1361		 *
1362		 * We basically use the page "master dirty bit"
1363		 * as a serialization point for all the different
1364		 * threads doing their things.
1365		 */
1366		if (page_mkclean(page))
1367			set_page_dirty(page);
1368		/*
1369		 * We carefully synchronise fault handlers against
1370		 * installing a dirty pte and marking the page dirty
1371		 * at this point. We do this by having them hold the
1372		 * page lock at some point after installing their
1373		 * pte, but before marking the page dirty.
1374		 * Pages are always locked coming in here, so we get
1375		 * the desired exclusion. See mm/memory.c:do_wp_page()
1376		 * for more comments.
1377		 */
1378		if (TestClearPageDirty(page)) {
1379			dec_zone_page_state(page, NR_FILE_DIRTY);
1380			dec_bdi_stat(mapping->backing_dev_info,
1381					BDI_RECLAIMABLE);
1382			return 1;
1383		}
1384		return 0;
1385	}
1386	return TestClearPageDirty(page);
1387}
1388EXPORT_SYMBOL(clear_page_dirty_for_io);
1389
1390int test_clear_page_writeback(struct page *page)
1391{
1392	struct address_space *mapping = page_mapping(page);
1393	int ret;
1394
1395	if (mapping) {
1396		struct backing_dev_info *bdi = mapping->backing_dev_info;
1397		unsigned long flags;
1398
1399		spin_lock_irqsave(&mapping->tree_lock, flags);
1400		ret = TestClearPageWriteback(page);
1401		if (ret) {
1402			radix_tree_tag_clear(&mapping->page_tree,
1403						page_index(page),
1404						PAGECACHE_TAG_WRITEBACK);
1405			if (bdi_cap_account_writeback(bdi)) {
1406				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1407				__bdi_writeout_inc(bdi);
1408			}
1409		}
1410		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1411	} else {
1412		ret = TestClearPageWriteback(page);
1413	}
1414	if (ret)
1415		dec_zone_page_state(page, NR_WRITEBACK);
1416	return ret;
1417}
1418
1419int test_set_page_writeback(struct page *page)
1420{
1421	struct address_space *mapping = page_mapping(page);
1422	int ret;
1423
1424	if (mapping) {
1425		struct backing_dev_info *bdi = mapping->backing_dev_info;
1426		unsigned long flags;
1427
1428		spin_lock_irqsave(&mapping->tree_lock, flags);
1429		ret = TestSetPageWriteback(page);
1430		if (!ret) {
1431			radix_tree_tag_set(&mapping->page_tree,
1432						page_index(page),
1433						PAGECACHE_TAG_WRITEBACK);
1434			if (bdi_cap_account_writeback(bdi))
1435				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1436		}
1437		if (!PageDirty(page))
1438			radix_tree_tag_clear(&mapping->page_tree,
1439						page_index(page),
1440						PAGECACHE_TAG_DIRTY);
1441		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1442	} else {
1443		ret = TestSetPageWriteback(page);
1444	}
1445	if (!ret)
1446		inc_zone_page_state(page, NR_WRITEBACK);
1447	return ret;
1448
1449}
1450EXPORT_SYMBOL(test_set_page_writeback);
1451
1452/*
1453 * Return true if any of the pages in the mapping are marked with the
1454 * passed tag.
1455 */
1456int mapping_tagged(struct address_space *mapping, int tag)
1457{
1458	int ret;
1459	rcu_read_lock();
1460	ret = radix_tree_tagged(&mapping->page_tree, tag);
1461	rcu_read_unlock();
1462	return ret;
1463}
1464EXPORT_SYMBOL(mapping_tagged);
1465