page-writeback.c revision 679ceace848e9fd570678396ffe1ef034e00e82d
1/*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002	Andrew Morton
11 *		Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
25#include <linux/task_io_accounting_ops.h>
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
28#include <linux/rmap.h>
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
35#include <linux/buffer_head.h>
36#include <linux/pagevec.h>
37
38/*
39 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
40 * will look to see if it needs to force writeback or throttling.
41 */
42static long ratelimit_pages = 32;
43
44/*
45 * When balance_dirty_pages decides that the caller needs to perform some
46 * non-background writeback, this is how many pages it will attempt to write.
47 * It should be somewhat larger than dirtied pages to ensure that reasonably
48 * large amounts of I/O are submitted.
49 */
50static inline long sync_writeback_pages(unsigned long dirtied)
51{
52	if (dirtied < ratelimit_pages)
53		dirtied = ratelimit_pages;
54
55	return dirtied + dirtied / 2;
56}
57
58/* The following parameters are exported via /proc/sys/vm */
59
60/*
61 * Start background writeback (via writeback threads) at this percentage
62 */
63int dirty_background_ratio = 10;
64
65/*
66 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
67 * dirty_background_ratio * the amount of dirtyable memory
68 */
69unsigned long dirty_background_bytes;
70
71/*
72 * free highmem will not be subtracted from the total free memory
73 * for calculating free ratios if vm_highmem_is_dirtyable is true
74 */
75int vm_highmem_is_dirtyable;
76
77/*
78 * The generator of dirty data starts writeback at this percentage
79 */
80int vm_dirty_ratio = 20;
81
82/*
83 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
84 * vm_dirty_ratio * the amount of dirtyable memory
85 */
86unsigned long vm_dirty_bytes;
87
88/*
89 * The interval between `kupdate'-style writebacks
90 */
91unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
92
93/*
94 * The longest time for which data is allowed to remain dirty
95 */
96unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
97
98/*
99 * Flag that makes the machine dump writes/reads and block dirtyings.
100 */
101int block_dump;
102
103/*
104 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
105 * a full sync is triggered after this time elapses without any disk activity.
106 */
107int laptop_mode;
108
109EXPORT_SYMBOL(laptop_mode);
110
111/* End of sysctl-exported parameters */
112
113
114/*
115 * Scale the writeback cache size proportional to the relative writeout speeds.
116 *
117 * We do this by keeping a floating proportion between BDIs, based on page
118 * writeback completions [end_page_writeback()]. Those devices that write out
119 * pages fastest will get the larger share, while the slower will get a smaller
120 * share.
121 *
122 * We use page writeout completions because we are interested in getting rid of
123 * dirty pages. Having them written out is the primary goal.
124 *
125 * We introduce a concept of time, a period over which we measure these events,
126 * because demand can/will vary over time. The length of this period itself is
127 * measured in page writeback completions.
128 *
129 */
130static struct prop_descriptor vm_completions;
131static struct prop_descriptor vm_dirties;
132
133/*
134 * couple the period to the dirty_ratio:
135 *
136 *   period/2 ~ roundup_pow_of_two(dirty limit)
137 */
138static int calc_period_shift(void)
139{
140	unsigned long dirty_total;
141
142	if (vm_dirty_bytes)
143		dirty_total = vm_dirty_bytes / PAGE_SIZE;
144	else
145		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
146				100;
147	return 2 + ilog2(dirty_total - 1);
148}
149
150/*
151 * update the period when the dirty threshold changes.
152 */
153static void update_completion_period(void)
154{
155	int shift = calc_period_shift();
156	prop_change_shift(&vm_completions, shift);
157	prop_change_shift(&vm_dirties, shift);
158}
159
160int dirty_background_ratio_handler(struct ctl_table *table, int write,
161		void __user *buffer, size_t *lenp,
162		loff_t *ppos)
163{
164	int ret;
165
166	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
167	if (ret == 0 && write)
168		dirty_background_bytes = 0;
169	return ret;
170}
171
172int dirty_background_bytes_handler(struct ctl_table *table, int write,
173		void __user *buffer, size_t *lenp,
174		loff_t *ppos)
175{
176	int ret;
177
178	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
179	if (ret == 0 && write)
180		dirty_background_ratio = 0;
181	return ret;
182}
183
184int dirty_ratio_handler(struct ctl_table *table, int write,
185		void __user *buffer, size_t *lenp,
186		loff_t *ppos)
187{
188	int old_ratio = vm_dirty_ratio;
189	int ret;
190
191	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
192	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
193		update_completion_period();
194		vm_dirty_bytes = 0;
195	}
196	return ret;
197}
198
199
200int dirty_bytes_handler(struct ctl_table *table, int write,
201		void __user *buffer, size_t *lenp,
202		loff_t *ppos)
203{
204	unsigned long old_bytes = vm_dirty_bytes;
205	int ret;
206
207	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
208	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
209		update_completion_period();
210		vm_dirty_ratio = 0;
211	}
212	return ret;
213}
214
215/*
216 * Increment the BDI's writeout completion count and the global writeout
217 * completion count. Called from test_clear_page_writeback().
218 */
219static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
220{
221	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
222			      bdi->max_prop_frac);
223}
224
225void bdi_writeout_inc(struct backing_dev_info *bdi)
226{
227	unsigned long flags;
228
229	local_irq_save(flags);
230	__bdi_writeout_inc(bdi);
231	local_irq_restore(flags);
232}
233EXPORT_SYMBOL_GPL(bdi_writeout_inc);
234
235void task_dirty_inc(struct task_struct *tsk)
236{
237	prop_inc_single(&vm_dirties, &tsk->dirties);
238}
239
240/*
241 * Obtain an accurate fraction of the BDI's portion.
242 */
243static void bdi_writeout_fraction(struct backing_dev_info *bdi,
244		long *numerator, long *denominator)
245{
246	if (bdi_cap_writeback_dirty(bdi)) {
247		prop_fraction_percpu(&vm_completions, &bdi->completions,
248				numerator, denominator);
249	} else {
250		*numerator = 0;
251		*denominator = 1;
252	}
253}
254
255/*
256 * Clip the earned share of dirty pages to that which is actually available.
257 * This avoids exceeding the total dirty_limit when the floating averages
258 * fluctuate too quickly.
259 */
260static void clip_bdi_dirty_limit(struct backing_dev_info *bdi,
261		unsigned long dirty, unsigned long *pbdi_dirty)
262{
263	unsigned long avail_dirty;
264
265	avail_dirty = global_page_state(NR_FILE_DIRTY) +
266		 global_page_state(NR_WRITEBACK) +
267		 global_page_state(NR_UNSTABLE_NFS) +
268		 global_page_state(NR_WRITEBACK_TEMP);
269
270	if (avail_dirty < dirty)
271		avail_dirty = dirty - avail_dirty;
272	else
273		avail_dirty = 0;
274
275	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
276		bdi_stat(bdi, BDI_WRITEBACK);
277
278	*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
279}
280
281static inline void task_dirties_fraction(struct task_struct *tsk,
282		long *numerator, long *denominator)
283{
284	prop_fraction_single(&vm_dirties, &tsk->dirties,
285				numerator, denominator);
286}
287
288/*
289 * scale the dirty limit
290 *
291 * task specific dirty limit:
292 *
293 *   dirty -= (dirty/8) * p_{t}
294 */
295static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty)
296{
297	long numerator, denominator;
298	unsigned long dirty = *pdirty;
299	u64 inv = dirty >> 3;
300
301	task_dirties_fraction(tsk, &numerator, &denominator);
302	inv *= numerator;
303	do_div(inv, denominator);
304
305	dirty -= inv;
306	if (dirty < *pdirty/2)
307		dirty = *pdirty/2;
308
309	*pdirty = dirty;
310}
311
312/*
313 *
314 */
315static unsigned int bdi_min_ratio;
316
317int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
318{
319	int ret = 0;
320
321	spin_lock_bh(&bdi_lock);
322	if (min_ratio > bdi->max_ratio) {
323		ret = -EINVAL;
324	} else {
325		min_ratio -= bdi->min_ratio;
326		if (bdi_min_ratio + min_ratio < 100) {
327			bdi_min_ratio += min_ratio;
328			bdi->min_ratio += min_ratio;
329		} else {
330			ret = -EINVAL;
331		}
332	}
333	spin_unlock_bh(&bdi_lock);
334
335	return ret;
336}
337
338int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
339{
340	int ret = 0;
341
342	if (max_ratio > 100)
343		return -EINVAL;
344
345	spin_lock_bh(&bdi_lock);
346	if (bdi->min_ratio > max_ratio) {
347		ret = -EINVAL;
348	} else {
349		bdi->max_ratio = max_ratio;
350		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
351	}
352	spin_unlock_bh(&bdi_lock);
353
354	return ret;
355}
356EXPORT_SYMBOL(bdi_set_max_ratio);
357
358/*
359 * Work out the current dirty-memory clamping and background writeout
360 * thresholds.
361 *
362 * The main aim here is to lower them aggressively if there is a lot of mapped
363 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
364 * pages.  It is better to clamp down on writers than to start swapping, and
365 * performing lots of scanning.
366 *
367 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
368 *
369 * We don't permit the clamping level to fall below 5% - that is getting rather
370 * excessive.
371 *
372 * We make sure that the background writeout level is below the adjusted
373 * clamping level.
374 */
375
376static unsigned long highmem_dirtyable_memory(unsigned long total)
377{
378#ifdef CONFIG_HIGHMEM
379	int node;
380	unsigned long x = 0;
381
382	for_each_node_state(node, N_HIGH_MEMORY) {
383		struct zone *z =
384			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
385
386		x += zone_page_state(z, NR_FREE_PAGES) +
387		     zone_reclaimable_pages(z);
388	}
389	/*
390	 * Make sure that the number of highmem pages is never larger
391	 * than the number of the total dirtyable memory. This can only
392	 * occur in very strange VM situations but we want to make sure
393	 * that this does not occur.
394	 */
395	return min(x, total);
396#else
397	return 0;
398#endif
399}
400
401/**
402 * determine_dirtyable_memory - amount of memory that may be used
403 *
404 * Returns the numebr of pages that can currently be freed and used
405 * by the kernel for direct mappings.
406 */
407unsigned long determine_dirtyable_memory(void)
408{
409	unsigned long x;
410
411	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
412
413	if (!vm_highmem_is_dirtyable)
414		x -= highmem_dirtyable_memory(x);
415
416	return x + 1;	/* Ensure that we never return 0 */
417}
418
419void
420get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
421		 unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
422{
423	unsigned long background;
424	unsigned long dirty;
425	unsigned long available_memory = determine_dirtyable_memory();
426	struct task_struct *tsk;
427
428	if (vm_dirty_bytes)
429		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
430	else {
431		int dirty_ratio;
432
433		dirty_ratio = vm_dirty_ratio;
434		if (dirty_ratio < 5)
435			dirty_ratio = 5;
436		dirty = (dirty_ratio * available_memory) / 100;
437	}
438
439	if (dirty_background_bytes)
440		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
441	else
442		background = (dirty_background_ratio * available_memory) / 100;
443
444	if (background >= dirty)
445		background = dirty / 2;
446	tsk = current;
447	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
448		background += background / 4;
449		dirty += dirty / 4;
450	}
451	*pbackground = background;
452	*pdirty = dirty;
453
454	if (bdi) {
455		u64 bdi_dirty;
456		long numerator, denominator;
457
458		/*
459		 * Calculate this BDI's share of the dirty ratio.
460		 */
461		bdi_writeout_fraction(bdi, &numerator, &denominator);
462
463		bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
464		bdi_dirty *= numerator;
465		do_div(bdi_dirty, denominator);
466		bdi_dirty += (dirty * bdi->min_ratio) / 100;
467		if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
468			bdi_dirty = dirty * bdi->max_ratio / 100;
469
470		*pbdi_dirty = bdi_dirty;
471		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
472		task_dirty_limit(current, pbdi_dirty);
473	}
474}
475
476/*
477 * balance_dirty_pages() must be called by processes which are generating dirty
478 * data.  It looks at the number of dirty pages in the machine and will force
479 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
480 * If we're over `background_thresh' then the writeback threads are woken to
481 * perform some writeout.
482 */
483static void balance_dirty_pages(struct address_space *mapping,
484				unsigned long write_chunk)
485{
486	long nr_reclaimable, bdi_nr_reclaimable;
487	long nr_writeback, bdi_nr_writeback;
488	unsigned long background_thresh;
489	unsigned long dirty_thresh;
490	unsigned long bdi_thresh;
491	unsigned long pages_written = 0;
492	unsigned long pause = 1;
493
494	struct backing_dev_info *bdi = mapping->backing_dev_info;
495
496	for (;;) {
497		struct writeback_control wbc = {
498			.sync_mode	= WB_SYNC_NONE,
499			.older_than_this = NULL,
500			.nr_to_write	= write_chunk,
501			.range_cyclic	= 1,
502		};
503
504		get_dirty_limits(&background_thresh, &dirty_thresh,
505				&bdi_thresh, bdi);
506
507		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
508					global_page_state(NR_UNSTABLE_NFS);
509		nr_writeback = global_page_state(NR_WRITEBACK);
510
511		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
512		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
513
514		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
515			break;
516
517		/*
518		 * Throttle it only when the background writeback cannot
519		 * catch-up. This avoids (excessively) small writeouts
520		 * when the bdi limits are ramping up.
521		 */
522		if (nr_reclaimable + nr_writeback <
523				(background_thresh + dirty_thresh) / 2)
524			break;
525
526		if (!bdi->dirty_exceeded)
527			bdi->dirty_exceeded = 1;
528
529		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
530		 * Unstable writes are a feature of certain networked
531		 * filesystems (i.e. NFS) in which data may have been
532		 * written to the server's write cache, but has not yet
533		 * been flushed to permanent storage.
534		 * Only move pages to writeback if this bdi is over its
535		 * threshold otherwise wait until the disk writes catch
536		 * up.
537		 */
538		if (bdi_nr_reclaimable > bdi_thresh) {
539			writeback_inodes_wb(&bdi->wb, &wbc);
540			pages_written += write_chunk - wbc.nr_to_write;
541			get_dirty_limits(&background_thresh, &dirty_thresh,
542				       &bdi_thresh, bdi);
543		}
544
545		/*
546		 * In order to avoid the stacked BDI deadlock we need
547		 * to ensure we accurately count the 'dirty' pages when
548		 * the threshold is low.
549		 *
550		 * Otherwise it would be possible to get thresh+n pages
551		 * reported dirty, even though there are thresh-m pages
552		 * actually dirty; with m+n sitting in the percpu
553		 * deltas.
554		 */
555		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
556			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
557			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
558		} else if (bdi_nr_reclaimable) {
559			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
560			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
561		}
562
563		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
564			break;
565		if (pages_written >= write_chunk)
566			break;		/* We've done our duty */
567
568		__set_current_state(TASK_INTERRUPTIBLE);
569		io_schedule_timeout(pause);
570
571		/*
572		 * Increase the delay for each loop, up to our previous
573		 * default of taking a 100ms nap.
574		 */
575		pause <<= 1;
576		if (pause > HZ / 10)
577			pause = HZ / 10;
578	}
579
580	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
581			bdi->dirty_exceeded)
582		bdi->dirty_exceeded = 0;
583
584	if (writeback_in_progress(bdi))
585		return;
586
587	/*
588	 * In laptop mode, we wait until hitting the higher threshold before
589	 * starting background writeout, and then write out all the way down
590	 * to the lower threshold.  So slow writers cause minimal disk activity.
591	 *
592	 * In normal mode, we start background writeout at the lower
593	 * background_thresh, to keep the amount of dirty memory low.
594	 */
595	if ((laptop_mode && pages_written) ||
596	    (!laptop_mode && ((global_page_state(NR_FILE_DIRTY)
597			       + global_page_state(NR_UNSTABLE_NFS))
598					  > background_thresh)))
599		bdi_start_background_writeback(bdi);
600}
601
602void set_page_dirty_balance(struct page *page, int page_mkwrite)
603{
604	if (set_page_dirty(page) || page_mkwrite) {
605		struct address_space *mapping = page_mapping(page);
606
607		if (mapping)
608			balance_dirty_pages_ratelimited(mapping);
609	}
610}
611
612static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
613
614/**
615 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
616 * @mapping: address_space which was dirtied
617 * @nr_pages_dirtied: number of pages which the caller has just dirtied
618 *
619 * Processes which are dirtying memory should call in here once for each page
620 * which was newly dirtied.  The function will periodically check the system's
621 * dirty state and will initiate writeback if needed.
622 *
623 * On really big machines, get_writeback_state is expensive, so try to avoid
624 * calling it too often (ratelimiting).  But once we're over the dirty memory
625 * limit we decrease the ratelimiting by a lot, to prevent individual processes
626 * from overshooting the limit by (ratelimit_pages) each.
627 */
628void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
629					unsigned long nr_pages_dirtied)
630{
631	unsigned long ratelimit;
632	unsigned long *p;
633
634	ratelimit = ratelimit_pages;
635	if (mapping->backing_dev_info->dirty_exceeded)
636		ratelimit = 8;
637
638	/*
639	 * Check the rate limiting. Also, we do not want to throttle real-time
640	 * tasks in balance_dirty_pages(). Period.
641	 */
642	preempt_disable();
643	p =  &__get_cpu_var(bdp_ratelimits);
644	*p += nr_pages_dirtied;
645	if (unlikely(*p >= ratelimit)) {
646		ratelimit = sync_writeback_pages(*p);
647		*p = 0;
648		preempt_enable();
649		balance_dirty_pages(mapping, ratelimit);
650		return;
651	}
652	preempt_enable();
653}
654EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
655
656void throttle_vm_writeout(gfp_t gfp_mask)
657{
658	unsigned long background_thresh;
659	unsigned long dirty_thresh;
660
661        for ( ; ; ) {
662		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
663
664                /*
665                 * Boost the allowable dirty threshold a bit for page
666                 * allocators so they don't get DoS'ed by heavy writers
667                 */
668                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
669
670                if (global_page_state(NR_UNSTABLE_NFS) +
671			global_page_state(NR_WRITEBACK) <= dirty_thresh)
672                        	break;
673                congestion_wait(BLK_RW_ASYNC, HZ/10);
674
675		/*
676		 * The caller might hold locks which can prevent IO completion
677		 * or progress in the filesystem.  So we cannot just sit here
678		 * waiting for IO to complete.
679		 */
680		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
681			break;
682        }
683}
684
685/*
686 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
687 */
688int dirty_writeback_centisecs_handler(ctl_table *table, int write,
689	void __user *buffer, size_t *length, loff_t *ppos)
690{
691	proc_dointvec(table, write, buffer, length, ppos);
692	bdi_arm_supers_timer();
693	return 0;
694}
695
696#ifdef CONFIG_BLOCK
697void laptop_mode_timer_fn(unsigned long data)
698{
699	struct request_queue *q = (struct request_queue *)data;
700	int nr_pages = global_page_state(NR_FILE_DIRTY) +
701		global_page_state(NR_UNSTABLE_NFS);
702
703	/*
704	 * We want to write everything out, not just down to the dirty
705	 * threshold
706	 */
707	if (bdi_has_dirty_io(&q->backing_dev_info))
708		bdi_start_writeback(&q->backing_dev_info, nr_pages);
709}
710
711/*
712 * We've spun up the disk and we're in laptop mode: schedule writeback
713 * of all dirty data a few seconds from now.  If the flush is already scheduled
714 * then push it back - the user is still using the disk.
715 */
716void laptop_io_completion(struct backing_dev_info *info)
717{
718	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
719}
720
721/*
722 * We're in laptop mode and we've just synced. The sync's writes will have
723 * caused another writeback to be scheduled by laptop_io_completion.
724 * Nothing needs to be written back anymore, so we unschedule the writeback.
725 */
726void laptop_sync_completion(void)
727{
728	struct backing_dev_info *bdi;
729
730	rcu_read_lock();
731
732	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
733		del_timer(&bdi->laptop_mode_wb_timer);
734
735	rcu_read_unlock();
736}
737#endif
738
739/*
740 * If ratelimit_pages is too high then we can get into dirty-data overload
741 * if a large number of processes all perform writes at the same time.
742 * If it is too low then SMP machines will call the (expensive)
743 * get_writeback_state too often.
744 *
745 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
746 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
747 * thresholds before writeback cuts in.
748 *
749 * But the limit should not be set too high.  Because it also controls the
750 * amount of memory which the balance_dirty_pages() caller has to write back.
751 * If this is too large then the caller will block on the IO queue all the
752 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
753 * will write six megabyte chunks, max.
754 */
755
756void writeback_set_ratelimit(void)
757{
758	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
759	if (ratelimit_pages < 16)
760		ratelimit_pages = 16;
761	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
762		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
763}
764
765static int __cpuinit
766ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
767{
768	writeback_set_ratelimit();
769	return NOTIFY_DONE;
770}
771
772static struct notifier_block __cpuinitdata ratelimit_nb = {
773	.notifier_call	= ratelimit_handler,
774	.next		= NULL,
775};
776
777/*
778 * Called early on to tune the page writeback dirty limits.
779 *
780 * We used to scale dirty pages according to how total memory
781 * related to pages that could be allocated for buffers (by
782 * comparing nr_free_buffer_pages() to vm_total_pages.
783 *
784 * However, that was when we used "dirty_ratio" to scale with
785 * all memory, and we don't do that any more. "dirty_ratio"
786 * is now applied to total non-HIGHPAGE memory (by subtracting
787 * totalhigh_pages from vm_total_pages), and as such we can't
788 * get into the old insane situation any more where we had
789 * large amounts of dirty pages compared to a small amount of
790 * non-HIGHMEM memory.
791 *
792 * But we might still want to scale the dirty_ratio by how
793 * much memory the box has..
794 */
795void __init page_writeback_init(void)
796{
797	int shift;
798
799	writeback_set_ratelimit();
800	register_cpu_notifier(&ratelimit_nb);
801
802	shift = calc_period_shift();
803	prop_descriptor_init(&vm_completions, shift);
804	prop_descriptor_init(&vm_dirties, shift);
805}
806
807/**
808 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
809 * @mapping: address space structure to write
810 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
811 * @writepage: function called for each page
812 * @data: data passed to writepage function
813 *
814 * If a page is already under I/O, write_cache_pages() skips it, even
815 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
816 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
817 * and msync() need to guarantee that all the data which was dirty at the time
818 * the call was made get new I/O started against them.  If wbc->sync_mode is
819 * WB_SYNC_ALL then we were called for data integrity and we must wait for
820 * existing IO to complete.
821 */
822int write_cache_pages(struct address_space *mapping,
823		      struct writeback_control *wbc, writepage_t writepage,
824		      void *data)
825{
826	int ret = 0;
827	int done = 0;
828	struct pagevec pvec;
829	int nr_pages;
830	pgoff_t uninitialized_var(writeback_index);
831	pgoff_t index;
832	pgoff_t end;		/* Inclusive */
833	pgoff_t done_index;
834	int cycled;
835	int range_whole = 0;
836
837	pagevec_init(&pvec, 0);
838	if (wbc->range_cyclic) {
839		writeback_index = mapping->writeback_index; /* prev offset */
840		index = writeback_index;
841		if (index == 0)
842			cycled = 1;
843		else
844			cycled = 0;
845		end = -1;
846	} else {
847		index = wbc->range_start >> PAGE_CACHE_SHIFT;
848		end = wbc->range_end >> PAGE_CACHE_SHIFT;
849		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
850			range_whole = 1;
851		cycled = 1; /* ignore range_cyclic tests */
852
853		/*
854		 * If this is a data integrity sync, cap the writeback to the
855		 * current end of file. Any extension to the file that occurs
856		 * after this is a new write and we don't need to write those
857		 * pages out to fulfil our data integrity requirements. If we
858		 * try to write them out, we can get stuck in this scan until
859		 * the concurrent writer stops adding dirty pages and extending
860		 * EOF.
861		 */
862		if (wbc->sync_mode == WB_SYNC_ALL &&
863		    wbc->range_end == LLONG_MAX) {
864			end = i_size_read(mapping->host) >> PAGE_CACHE_SHIFT;
865		}
866	}
867
868retry:
869	done_index = index;
870	while (!done && (index <= end)) {
871		int i;
872
873		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
874			      PAGECACHE_TAG_DIRTY,
875			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
876		if (nr_pages == 0)
877			break;
878
879		for (i = 0; i < nr_pages; i++) {
880			struct page *page = pvec.pages[i];
881
882			/*
883			 * At this point, the page may be truncated or
884			 * invalidated (changing page->mapping to NULL), or
885			 * even swizzled back from swapper_space to tmpfs file
886			 * mapping. However, page->index will not change
887			 * because we have a reference on the page.
888			 */
889			if (page->index > end) {
890				/*
891				 * can't be range_cyclic (1st pass) because
892				 * end == -1 in that case.
893				 */
894				done = 1;
895				break;
896			}
897
898			done_index = page->index + 1;
899
900			lock_page(page);
901
902			/*
903			 * Page truncated or invalidated. We can freely skip it
904			 * then, even for data integrity operations: the page
905			 * has disappeared concurrently, so there could be no
906			 * real expectation of this data interity operation
907			 * even if there is now a new, dirty page at the same
908			 * pagecache address.
909			 */
910			if (unlikely(page->mapping != mapping)) {
911continue_unlock:
912				unlock_page(page);
913				continue;
914			}
915
916			if (!PageDirty(page)) {
917				/* someone wrote it for us */
918				goto continue_unlock;
919			}
920
921			if (PageWriteback(page)) {
922				if (wbc->sync_mode != WB_SYNC_NONE)
923					wait_on_page_writeback(page);
924				else
925					goto continue_unlock;
926			}
927
928			BUG_ON(PageWriteback(page));
929			if (!clear_page_dirty_for_io(page))
930				goto continue_unlock;
931
932			ret = (*writepage)(page, wbc, data);
933			if (unlikely(ret)) {
934				if (ret == AOP_WRITEPAGE_ACTIVATE) {
935					unlock_page(page);
936					ret = 0;
937				} else {
938					/*
939					 * done_index is set past this page,
940					 * so media errors will not choke
941					 * background writeout for the entire
942					 * file. This has consequences for
943					 * range_cyclic semantics (ie. it may
944					 * not be suitable for data integrity
945					 * writeout).
946					 */
947					done = 1;
948					break;
949				}
950			}
951
952			if (wbc->nr_to_write > 0) {
953				if (--wbc->nr_to_write == 0 &&
954				    wbc->sync_mode == WB_SYNC_NONE) {
955					/*
956					 * We stop writing back only if we are
957					 * not doing integrity sync. In case of
958					 * integrity sync we have to keep going
959					 * because someone may be concurrently
960					 * dirtying pages, and we might have
961					 * synced a lot of newly appeared dirty
962					 * pages, but have not synced all of the
963					 * old dirty pages.
964					 */
965					done = 1;
966					break;
967				}
968			}
969		}
970		pagevec_release(&pvec);
971		cond_resched();
972	}
973	if (!cycled && !done) {
974		/*
975		 * range_cyclic:
976		 * We hit the last page and there is more work to be done: wrap
977		 * back to the start of the file
978		 */
979		cycled = 1;
980		index = 0;
981		end = writeback_index - 1;
982		goto retry;
983	}
984	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
985		mapping->writeback_index = done_index;
986
987	return ret;
988}
989EXPORT_SYMBOL(write_cache_pages);
990
991/*
992 * Function used by generic_writepages to call the real writepage
993 * function and set the mapping flags on error
994 */
995static int __writepage(struct page *page, struct writeback_control *wbc,
996		       void *data)
997{
998	struct address_space *mapping = data;
999	int ret = mapping->a_ops->writepage(page, wbc);
1000	mapping_set_error(mapping, ret);
1001	return ret;
1002}
1003
1004/**
1005 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1006 * @mapping: address space structure to write
1007 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1008 *
1009 * This is a library function, which implements the writepages()
1010 * address_space_operation.
1011 */
1012int generic_writepages(struct address_space *mapping,
1013		       struct writeback_control *wbc)
1014{
1015	/* deal with chardevs and other special file */
1016	if (!mapping->a_ops->writepage)
1017		return 0;
1018
1019	return write_cache_pages(mapping, wbc, __writepage, mapping);
1020}
1021
1022EXPORT_SYMBOL(generic_writepages);
1023
1024int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1025{
1026	int ret;
1027
1028	if (wbc->nr_to_write <= 0)
1029		return 0;
1030	if (mapping->a_ops->writepages)
1031		ret = mapping->a_ops->writepages(mapping, wbc);
1032	else
1033		ret = generic_writepages(mapping, wbc);
1034	return ret;
1035}
1036
1037/**
1038 * write_one_page - write out a single page and optionally wait on I/O
1039 * @page: the page to write
1040 * @wait: if true, wait on writeout
1041 *
1042 * The page must be locked by the caller and will be unlocked upon return.
1043 *
1044 * write_one_page() returns a negative error code if I/O failed.
1045 */
1046int write_one_page(struct page *page, int wait)
1047{
1048	struct address_space *mapping = page->mapping;
1049	int ret = 0;
1050	struct writeback_control wbc = {
1051		.sync_mode = WB_SYNC_ALL,
1052		.nr_to_write = 1,
1053	};
1054
1055	BUG_ON(!PageLocked(page));
1056
1057	if (wait)
1058		wait_on_page_writeback(page);
1059
1060	if (clear_page_dirty_for_io(page)) {
1061		page_cache_get(page);
1062		ret = mapping->a_ops->writepage(page, &wbc);
1063		if (ret == 0 && wait) {
1064			wait_on_page_writeback(page);
1065			if (PageError(page))
1066				ret = -EIO;
1067		}
1068		page_cache_release(page);
1069	} else {
1070		unlock_page(page);
1071	}
1072	return ret;
1073}
1074EXPORT_SYMBOL(write_one_page);
1075
1076/*
1077 * For address_spaces which do not use buffers nor write back.
1078 */
1079int __set_page_dirty_no_writeback(struct page *page)
1080{
1081	if (!PageDirty(page))
1082		SetPageDirty(page);
1083	return 0;
1084}
1085
1086/*
1087 * Helper function for set_page_dirty family.
1088 * NOTE: This relies on being atomic wrt interrupts.
1089 */
1090void account_page_dirtied(struct page *page, struct address_space *mapping)
1091{
1092	if (mapping_cap_account_dirty(mapping)) {
1093		__inc_zone_page_state(page, NR_FILE_DIRTY);
1094		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1095		task_dirty_inc(current);
1096		task_io_account_write(PAGE_CACHE_SIZE);
1097	}
1098}
1099EXPORT_SYMBOL(account_page_dirtied);
1100
1101/*
1102 * For address_spaces which do not use buffers.  Just tag the page as dirty in
1103 * its radix tree.
1104 *
1105 * This is also used when a single buffer is being dirtied: we want to set the
1106 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1107 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1108 *
1109 * Most callers have locked the page, which pins the address_space in memory.
1110 * But zap_pte_range() does not lock the page, however in that case the
1111 * mapping is pinned by the vma's ->vm_file reference.
1112 *
1113 * We take care to handle the case where the page was truncated from the
1114 * mapping by re-checking page_mapping() inside tree_lock.
1115 */
1116int __set_page_dirty_nobuffers(struct page *page)
1117{
1118	if (!TestSetPageDirty(page)) {
1119		struct address_space *mapping = page_mapping(page);
1120		struct address_space *mapping2;
1121
1122		if (!mapping)
1123			return 1;
1124
1125		spin_lock_irq(&mapping->tree_lock);
1126		mapping2 = page_mapping(page);
1127		if (mapping2) { /* Race with truncate? */
1128			BUG_ON(mapping2 != mapping);
1129			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1130			account_page_dirtied(page, mapping);
1131			radix_tree_tag_set(&mapping->page_tree,
1132				page_index(page), PAGECACHE_TAG_DIRTY);
1133		}
1134		spin_unlock_irq(&mapping->tree_lock);
1135		if (mapping->host) {
1136			/* !PageAnon && !swapper_space */
1137			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1138		}
1139		return 1;
1140	}
1141	return 0;
1142}
1143EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1144
1145/*
1146 * When a writepage implementation decides that it doesn't want to write this
1147 * page for some reason, it should redirty the locked page via
1148 * redirty_page_for_writepage() and it should then unlock the page and return 0
1149 */
1150int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1151{
1152	wbc->pages_skipped++;
1153	return __set_page_dirty_nobuffers(page);
1154}
1155EXPORT_SYMBOL(redirty_page_for_writepage);
1156
1157/*
1158 * Dirty a page.
1159 *
1160 * For pages with a mapping this should be done under the page lock
1161 * for the benefit of asynchronous memory errors who prefer a consistent
1162 * dirty state. This rule can be broken in some special cases,
1163 * but should be better not to.
1164 *
1165 * If the mapping doesn't provide a set_page_dirty a_op, then
1166 * just fall through and assume that it wants buffer_heads.
1167 */
1168int set_page_dirty(struct page *page)
1169{
1170	struct address_space *mapping = page_mapping(page);
1171
1172	if (likely(mapping)) {
1173		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1174#ifdef CONFIG_BLOCK
1175		if (!spd)
1176			spd = __set_page_dirty_buffers;
1177#endif
1178		return (*spd)(page);
1179	}
1180	if (!PageDirty(page)) {
1181		if (!TestSetPageDirty(page))
1182			return 1;
1183	}
1184	return 0;
1185}
1186EXPORT_SYMBOL(set_page_dirty);
1187
1188/*
1189 * set_page_dirty() is racy if the caller has no reference against
1190 * page->mapping->host, and if the page is unlocked.  This is because another
1191 * CPU could truncate the page off the mapping and then free the mapping.
1192 *
1193 * Usually, the page _is_ locked, or the caller is a user-space process which
1194 * holds a reference on the inode by having an open file.
1195 *
1196 * In other cases, the page should be locked before running set_page_dirty().
1197 */
1198int set_page_dirty_lock(struct page *page)
1199{
1200	int ret;
1201
1202	lock_page_nosync(page);
1203	ret = set_page_dirty(page);
1204	unlock_page(page);
1205	return ret;
1206}
1207EXPORT_SYMBOL(set_page_dirty_lock);
1208
1209/*
1210 * Clear a page's dirty flag, while caring for dirty memory accounting.
1211 * Returns true if the page was previously dirty.
1212 *
1213 * This is for preparing to put the page under writeout.  We leave the page
1214 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1215 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1216 * implementation will run either set_page_writeback() or set_page_dirty(),
1217 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1218 * back into sync.
1219 *
1220 * This incoherency between the page's dirty flag and radix-tree tag is
1221 * unfortunate, but it only exists while the page is locked.
1222 */
1223int clear_page_dirty_for_io(struct page *page)
1224{
1225	struct address_space *mapping = page_mapping(page);
1226
1227	BUG_ON(!PageLocked(page));
1228
1229	ClearPageReclaim(page);
1230	if (mapping && mapping_cap_account_dirty(mapping)) {
1231		/*
1232		 * Yes, Virginia, this is indeed insane.
1233		 *
1234		 * We use this sequence to make sure that
1235		 *  (a) we account for dirty stats properly
1236		 *  (b) we tell the low-level filesystem to
1237		 *      mark the whole page dirty if it was
1238		 *      dirty in a pagetable. Only to then
1239		 *  (c) clean the page again and return 1 to
1240		 *      cause the writeback.
1241		 *
1242		 * This way we avoid all nasty races with the
1243		 * dirty bit in multiple places and clearing
1244		 * them concurrently from different threads.
1245		 *
1246		 * Note! Normally the "set_page_dirty(page)"
1247		 * has no effect on the actual dirty bit - since
1248		 * that will already usually be set. But we
1249		 * need the side effects, and it can help us
1250		 * avoid races.
1251		 *
1252		 * We basically use the page "master dirty bit"
1253		 * as a serialization point for all the different
1254		 * threads doing their things.
1255		 */
1256		if (page_mkclean(page))
1257			set_page_dirty(page);
1258		/*
1259		 * We carefully synchronise fault handlers against
1260		 * installing a dirty pte and marking the page dirty
1261		 * at this point. We do this by having them hold the
1262		 * page lock at some point after installing their
1263		 * pte, but before marking the page dirty.
1264		 * Pages are always locked coming in here, so we get
1265		 * the desired exclusion. See mm/memory.c:do_wp_page()
1266		 * for more comments.
1267		 */
1268		if (TestClearPageDirty(page)) {
1269			dec_zone_page_state(page, NR_FILE_DIRTY);
1270			dec_bdi_stat(mapping->backing_dev_info,
1271					BDI_RECLAIMABLE);
1272			return 1;
1273		}
1274		return 0;
1275	}
1276	return TestClearPageDirty(page);
1277}
1278EXPORT_SYMBOL(clear_page_dirty_for_io);
1279
1280int test_clear_page_writeback(struct page *page)
1281{
1282	struct address_space *mapping = page_mapping(page);
1283	int ret;
1284
1285	if (mapping) {
1286		struct backing_dev_info *bdi = mapping->backing_dev_info;
1287		unsigned long flags;
1288
1289		spin_lock_irqsave(&mapping->tree_lock, flags);
1290		ret = TestClearPageWriteback(page);
1291		if (ret) {
1292			radix_tree_tag_clear(&mapping->page_tree,
1293						page_index(page),
1294						PAGECACHE_TAG_WRITEBACK);
1295			if (bdi_cap_account_writeback(bdi)) {
1296				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1297				__bdi_writeout_inc(bdi);
1298			}
1299		}
1300		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1301	} else {
1302		ret = TestClearPageWriteback(page);
1303	}
1304	if (ret)
1305		dec_zone_page_state(page, NR_WRITEBACK);
1306	return ret;
1307}
1308
1309int test_set_page_writeback(struct page *page)
1310{
1311	struct address_space *mapping = page_mapping(page);
1312	int ret;
1313
1314	if (mapping) {
1315		struct backing_dev_info *bdi = mapping->backing_dev_info;
1316		unsigned long flags;
1317
1318		spin_lock_irqsave(&mapping->tree_lock, flags);
1319		ret = TestSetPageWriteback(page);
1320		if (!ret) {
1321			radix_tree_tag_set(&mapping->page_tree,
1322						page_index(page),
1323						PAGECACHE_TAG_WRITEBACK);
1324			if (bdi_cap_account_writeback(bdi))
1325				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1326		}
1327		if (!PageDirty(page))
1328			radix_tree_tag_clear(&mapping->page_tree,
1329						page_index(page),
1330						PAGECACHE_TAG_DIRTY);
1331		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1332	} else {
1333		ret = TestSetPageWriteback(page);
1334	}
1335	if (!ret)
1336		inc_zone_page_state(page, NR_WRITEBACK);
1337	return ret;
1338
1339}
1340EXPORT_SYMBOL(test_set_page_writeback);
1341
1342/*
1343 * Return true if any of the pages in the mapping are marked with the
1344 * passed tag.
1345 */
1346int mapping_tagged(struct address_space *mapping, int tag)
1347{
1348	int ret;
1349	rcu_read_lock();
1350	ret = radix_tree_tagged(&mapping->page_tree, tag);
1351	rcu_read_unlock();
1352	return ret;
1353}
1354EXPORT_SYMBOL(mapping_tagged);
1355