page-writeback.c revision 6f7186562771ec9b629914df328048449ccddf4a
1/*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002	Andrew Morton
11 *		Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
25#include <linux/task_io_accounting_ops.h>
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
28#include <linux/rmap.h>
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
35#include <linux/buffer_head.h>
36#include <linux/pagevec.h>
37#include <trace/events/writeback.h>
38
39/*
40 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41 * will look to see if it needs to force writeback or throttling.
42 */
43static long ratelimit_pages = 32;
44
45/*
46 * When balance_dirty_pages decides that the caller needs to perform some
47 * non-background writeback, this is how many pages it will attempt to write.
48 * It should be somewhat larger than dirtied pages to ensure that reasonably
49 * large amounts of I/O are submitted.
50 */
51static inline long sync_writeback_pages(unsigned long dirtied)
52{
53	if (dirtied < ratelimit_pages)
54		dirtied = ratelimit_pages;
55
56	return dirtied + dirtied / 2;
57}
58
59/* The following parameters are exported via /proc/sys/vm */
60
61/*
62 * Start background writeback (via writeback threads) at this percentage
63 */
64int dirty_background_ratio = 10;
65
66/*
67 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
68 * dirty_background_ratio * the amount of dirtyable memory
69 */
70unsigned long dirty_background_bytes;
71
72/*
73 * free highmem will not be subtracted from the total free memory
74 * for calculating free ratios if vm_highmem_is_dirtyable is true
75 */
76int vm_highmem_is_dirtyable;
77
78/*
79 * The generator of dirty data starts writeback at this percentage
80 */
81int vm_dirty_ratio = 20;
82
83/*
84 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85 * vm_dirty_ratio * the amount of dirtyable memory
86 */
87unsigned long vm_dirty_bytes;
88
89/*
90 * The interval between `kupdate'-style writebacks
91 */
92unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
93
94/*
95 * The longest time for which data is allowed to remain dirty
96 */
97unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
98
99/*
100 * Flag that makes the machine dump writes/reads and block dirtyings.
101 */
102int block_dump;
103
104/*
105 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106 * a full sync is triggered after this time elapses without any disk activity.
107 */
108int laptop_mode;
109
110EXPORT_SYMBOL(laptop_mode);
111
112/* End of sysctl-exported parameters */
113
114
115/*
116 * Scale the writeback cache size proportional to the relative writeout speeds.
117 *
118 * We do this by keeping a floating proportion between BDIs, based on page
119 * writeback completions [end_page_writeback()]. Those devices that write out
120 * pages fastest will get the larger share, while the slower will get a smaller
121 * share.
122 *
123 * We use page writeout completions because we are interested in getting rid of
124 * dirty pages. Having them written out is the primary goal.
125 *
126 * We introduce a concept of time, a period over which we measure these events,
127 * because demand can/will vary over time. The length of this period itself is
128 * measured in page writeback completions.
129 *
130 */
131static struct prop_descriptor vm_completions;
132static struct prop_descriptor vm_dirties;
133
134/*
135 * couple the period to the dirty_ratio:
136 *
137 *   period/2 ~ roundup_pow_of_two(dirty limit)
138 */
139static int calc_period_shift(void)
140{
141	unsigned long dirty_total;
142
143	if (vm_dirty_bytes)
144		dirty_total = vm_dirty_bytes / PAGE_SIZE;
145	else
146		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
147				100;
148	return 2 + ilog2(dirty_total - 1);
149}
150
151/*
152 * update the period when the dirty threshold changes.
153 */
154static void update_completion_period(void)
155{
156	int shift = calc_period_shift();
157	prop_change_shift(&vm_completions, shift);
158	prop_change_shift(&vm_dirties, shift);
159}
160
161int dirty_background_ratio_handler(struct ctl_table *table, int write,
162		void __user *buffer, size_t *lenp,
163		loff_t *ppos)
164{
165	int ret;
166
167	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
168	if (ret == 0 && write)
169		dirty_background_bytes = 0;
170	return ret;
171}
172
173int dirty_background_bytes_handler(struct ctl_table *table, int write,
174		void __user *buffer, size_t *lenp,
175		loff_t *ppos)
176{
177	int ret;
178
179	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
180	if (ret == 0 && write)
181		dirty_background_ratio = 0;
182	return ret;
183}
184
185int dirty_ratio_handler(struct ctl_table *table, int write,
186		void __user *buffer, size_t *lenp,
187		loff_t *ppos)
188{
189	int old_ratio = vm_dirty_ratio;
190	int ret;
191
192	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
193	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
194		update_completion_period();
195		vm_dirty_bytes = 0;
196	}
197	return ret;
198}
199
200
201int dirty_bytes_handler(struct ctl_table *table, int write,
202		void __user *buffer, size_t *lenp,
203		loff_t *ppos)
204{
205	unsigned long old_bytes = vm_dirty_bytes;
206	int ret;
207
208	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
209	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
210		update_completion_period();
211		vm_dirty_ratio = 0;
212	}
213	return ret;
214}
215
216/*
217 * Increment the BDI's writeout completion count and the global writeout
218 * completion count. Called from test_clear_page_writeback().
219 */
220static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
221{
222	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
223			      bdi->max_prop_frac);
224}
225
226void bdi_writeout_inc(struct backing_dev_info *bdi)
227{
228	unsigned long flags;
229
230	local_irq_save(flags);
231	__bdi_writeout_inc(bdi);
232	local_irq_restore(flags);
233}
234EXPORT_SYMBOL_GPL(bdi_writeout_inc);
235
236void task_dirty_inc(struct task_struct *tsk)
237{
238	prop_inc_single(&vm_dirties, &tsk->dirties);
239}
240
241/*
242 * Obtain an accurate fraction of the BDI's portion.
243 */
244static void bdi_writeout_fraction(struct backing_dev_info *bdi,
245		long *numerator, long *denominator)
246{
247	if (bdi_cap_writeback_dirty(bdi)) {
248		prop_fraction_percpu(&vm_completions, &bdi->completions,
249				numerator, denominator);
250	} else {
251		*numerator = 0;
252		*denominator = 1;
253	}
254}
255
256static inline void task_dirties_fraction(struct task_struct *tsk,
257		long *numerator, long *denominator)
258{
259	prop_fraction_single(&vm_dirties, &tsk->dirties,
260				numerator, denominator);
261}
262
263/*
264 * task_dirty_limit - scale down dirty throttling threshold for one task
265 *
266 * task specific dirty limit:
267 *
268 *   dirty -= (dirty/8) * p_{t}
269 *
270 * To protect light/slow dirtying tasks from heavier/fast ones, we start
271 * throttling individual tasks before reaching the bdi dirty limit.
272 * Relatively low thresholds will be allocated to heavy dirtiers. So when
273 * dirty pages grow large, heavy dirtiers will be throttled first, which will
274 * effectively curb the growth of dirty pages. Light dirtiers with high enough
275 * dirty threshold may never get throttled.
276 */
277static unsigned long task_dirty_limit(struct task_struct *tsk,
278				       unsigned long bdi_dirty)
279{
280	long numerator, denominator;
281	unsigned long dirty = bdi_dirty;
282	u64 inv = dirty >> 3;
283
284	task_dirties_fraction(tsk, &numerator, &denominator);
285	inv *= numerator;
286	do_div(inv, denominator);
287
288	dirty -= inv;
289
290	return max(dirty, bdi_dirty/2);
291}
292
293/*
294 *
295 */
296static unsigned int bdi_min_ratio;
297
298int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
299{
300	int ret = 0;
301
302	spin_lock_bh(&bdi_lock);
303	if (min_ratio > bdi->max_ratio) {
304		ret = -EINVAL;
305	} else {
306		min_ratio -= bdi->min_ratio;
307		if (bdi_min_ratio + min_ratio < 100) {
308			bdi_min_ratio += min_ratio;
309			bdi->min_ratio += min_ratio;
310		} else {
311			ret = -EINVAL;
312		}
313	}
314	spin_unlock_bh(&bdi_lock);
315
316	return ret;
317}
318
319int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
320{
321	int ret = 0;
322
323	if (max_ratio > 100)
324		return -EINVAL;
325
326	spin_lock_bh(&bdi_lock);
327	if (bdi->min_ratio > max_ratio) {
328		ret = -EINVAL;
329	} else {
330		bdi->max_ratio = max_ratio;
331		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
332	}
333	spin_unlock_bh(&bdi_lock);
334
335	return ret;
336}
337EXPORT_SYMBOL(bdi_set_max_ratio);
338
339/*
340 * Work out the current dirty-memory clamping and background writeout
341 * thresholds.
342 *
343 * The main aim here is to lower them aggressively if there is a lot of mapped
344 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
345 * pages.  It is better to clamp down on writers than to start swapping, and
346 * performing lots of scanning.
347 *
348 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
349 *
350 * We don't permit the clamping level to fall below 5% - that is getting rather
351 * excessive.
352 *
353 * We make sure that the background writeout level is below the adjusted
354 * clamping level.
355 */
356
357static unsigned long highmem_dirtyable_memory(unsigned long total)
358{
359#ifdef CONFIG_HIGHMEM
360	int node;
361	unsigned long x = 0;
362
363	for_each_node_state(node, N_HIGH_MEMORY) {
364		struct zone *z =
365			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
366
367		x += zone_page_state(z, NR_FREE_PAGES) +
368		     zone_reclaimable_pages(z);
369	}
370	/*
371	 * Make sure that the number of highmem pages is never larger
372	 * than the number of the total dirtyable memory. This can only
373	 * occur in very strange VM situations but we want to make sure
374	 * that this does not occur.
375	 */
376	return min(x, total);
377#else
378	return 0;
379#endif
380}
381
382/**
383 * determine_dirtyable_memory - amount of memory that may be used
384 *
385 * Returns the numebr of pages that can currently be freed and used
386 * by the kernel for direct mappings.
387 */
388unsigned long determine_dirtyable_memory(void)
389{
390	unsigned long x;
391
392	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
393
394	if (!vm_highmem_is_dirtyable)
395		x -= highmem_dirtyable_memory(x);
396
397	return x + 1;	/* Ensure that we never return 0 */
398}
399
400/*
401 * global_dirty_limits - background-writeback and dirty-throttling thresholds
402 *
403 * Calculate the dirty thresholds based on sysctl parameters
404 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
405 * - vm.dirty_ratio             or  vm.dirty_bytes
406 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
407 * real-time tasks.
408 */
409void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
410{
411	unsigned long background;
412	unsigned long dirty;
413	unsigned long uninitialized_var(available_memory);
414	struct task_struct *tsk;
415
416	if (!vm_dirty_bytes || !dirty_background_bytes)
417		available_memory = determine_dirtyable_memory();
418
419	if (vm_dirty_bytes)
420		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
421	else
422		dirty = (vm_dirty_ratio * available_memory) / 100;
423
424	if (dirty_background_bytes)
425		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
426	else
427		background = (dirty_background_ratio * available_memory) / 100;
428
429	if (background >= dirty)
430		background = dirty / 2;
431	tsk = current;
432	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
433		background += background / 4;
434		dirty += dirty / 4;
435	}
436	*pbackground = background;
437	*pdirty = dirty;
438}
439
440/**
441 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
442 * @bdi: the backing_dev_info to query
443 * @dirty: global dirty limit in pages
444 *
445 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
446 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
447 * And the "limit" in the name is not seriously taken as hard limit in
448 * balance_dirty_pages().
449 *
450 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
451 * - starving fast devices
452 * - piling up dirty pages (that will take long time to sync) on slow devices
453 *
454 * The bdi's share of dirty limit will be adapting to its throughput and
455 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
456 */
457unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
458{
459	u64 bdi_dirty;
460	long numerator, denominator;
461
462	/*
463	 * Calculate this BDI's share of the dirty ratio.
464	 */
465	bdi_writeout_fraction(bdi, &numerator, &denominator);
466
467	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
468	bdi_dirty *= numerator;
469	do_div(bdi_dirty, denominator);
470
471	bdi_dirty += (dirty * bdi->min_ratio) / 100;
472	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
473		bdi_dirty = dirty * bdi->max_ratio / 100;
474
475	return bdi_dirty;
476}
477
478/*
479 * balance_dirty_pages() must be called by processes which are generating dirty
480 * data.  It looks at the number of dirty pages in the machine and will force
481 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
482 * If we're over `background_thresh' then the writeback threads are woken to
483 * perform some writeout.
484 */
485static void balance_dirty_pages(struct address_space *mapping,
486				unsigned long write_chunk)
487{
488	long nr_reclaimable, bdi_nr_reclaimable;
489	long nr_writeback, bdi_nr_writeback;
490	unsigned long background_thresh;
491	unsigned long dirty_thresh;
492	unsigned long bdi_thresh;
493	unsigned long pages_written = 0;
494	unsigned long pause = 1;
495	bool dirty_exceeded = false;
496	struct backing_dev_info *bdi = mapping->backing_dev_info;
497
498	for (;;) {
499		struct writeback_control wbc = {
500			.sync_mode	= WB_SYNC_NONE,
501			.older_than_this = NULL,
502			.nr_to_write	= write_chunk,
503			.range_cyclic	= 1,
504		};
505
506		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
507					global_page_state(NR_UNSTABLE_NFS);
508		nr_writeback = global_page_state(NR_WRITEBACK);
509
510		global_dirty_limits(&background_thresh, &dirty_thresh);
511
512		/*
513		 * Throttle it only when the background writeback cannot
514		 * catch-up. This avoids (excessively) small writeouts
515		 * when the bdi limits are ramping up.
516		 */
517		if (nr_reclaimable + nr_writeback <=
518				(background_thresh + dirty_thresh) / 2)
519			break;
520
521		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
522		bdi_thresh = task_dirty_limit(current, bdi_thresh);
523
524		/*
525		 * In order to avoid the stacked BDI deadlock we need
526		 * to ensure we accurately count the 'dirty' pages when
527		 * the threshold is low.
528		 *
529		 * Otherwise it would be possible to get thresh+n pages
530		 * reported dirty, even though there are thresh-m pages
531		 * actually dirty; with m+n sitting in the percpu
532		 * deltas.
533		 */
534		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
535			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
536			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
537		} else {
538			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
539			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
540		}
541
542		/*
543		 * The bdi thresh is somehow "soft" limit derived from the
544		 * global "hard" limit. The former helps to prevent heavy IO
545		 * bdi or process from holding back light ones; The latter is
546		 * the last resort safeguard.
547		 */
548		dirty_exceeded =
549			(bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh)
550			|| (nr_reclaimable + nr_writeback > dirty_thresh);
551
552		if (!dirty_exceeded)
553			break;
554
555		if (!bdi->dirty_exceeded)
556			bdi->dirty_exceeded = 1;
557
558		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
559		 * Unstable writes are a feature of certain networked
560		 * filesystems (i.e. NFS) in which data may have been
561		 * written to the server's write cache, but has not yet
562		 * been flushed to permanent storage.
563		 * Only move pages to writeback if this bdi is over its
564		 * threshold otherwise wait until the disk writes catch
565		 * up.
566		 */
567		trace_wbc_balance_dirty_start(&wbc, bdi);
568		if (bdi_nr_reclaimable > bdi_thresh) {
569			writeback_inodes_wb(&bdi->wb, &wbc);
570			pages_written += write_chunk - wbc.nr_to_write;
571			trace_wbc_balance_dirty_written(&wbc, bdi);
572			if (pages_written >= write_chunk)
573				break;		/* We've done our duty */
574		}
575		trace_wbc_balance_dirty_wait(&wbc, bdi);
576		__set_current_state(TASK_UNINTERRUPTIBLE);
577		io_schedule_timeout(pause);
578
579		/*
580		 * Increase the delay for each loop, up to our previous
581		 * default of taking a 100ms nap.
582		 */
583		pause <<= 1;
584		if (pause > HZ / 10)
585			pause = HZ / 10;
586	}
587
588	if (!dirty_exceeded && bdi->dirty_exceeded)
589		bdi->dirty_exceeded = 0;
590
591	if (writeback_in_progress(bdi))
592		return;
593
594	/*
595	 * In laptop mode, we wait until hitting the higher threshold before
596	 * starting background writeout, and then write out all the way down
597	 * to the lower threshold.  So slow writers cause minimal disk activity.
598	 *
599	 * In normal mode, we start background writeout at the lower
600	 * background_thresh, to keep the amount of dirty memory low.
601	 */
602	if ((laptop_mode && pages_written) ||
603	    (!laptop_mode && (nr_reclaimable > background_thresh)))
604		bdi_start_background_writeback(bdi);
605}
606
607void set_page_dirty_balance(struct page *page, int page_mkwrite)
608{
609	if (set_page_dirty(page) || page_mkwrite) {
610		struct address_space *mapping = page_mapping(page);
611
612		if (mapping)
613			balance_dirty_pages_ratelimited(mapping);
614	}
615}
616
617static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
618
619/**
620 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
621 * @mapping: address_space which was dirtied
622 * @nr_pages_dirtied: number of pages which the caller has just dirtied
623 *
624 * Processes which are dirtying memory should call in here once for each page
625 * which was newly dirtied.  The function will periodically check the system's
626 * dirty state and will initiate writeback if needed.
627 *
628 * On really big machines, get_writeback_state is expensive, so try to avoid
629 * calling it too often (ratelimiting).  But once we're over the dirty memory
630 * limit we decrease the ratelimiting by a lot, to prevent individual processes
631 * from overshooting the limit by (ratelimit_pages) each.
632 */
633void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
634					unsigned long nr_pages_dirtied)
635{
636	unsigned long ratelimit;
637	unsigned long *p;
638
639	ratelimit = ratelimit_pages;
640	if (mapping->backing_dev_info->dirty_exceeded)
641		ratelimit = 8;
642
643	/*
644	 * Check the rate limiting. Also, we do not want to throttle real-time
645	 * tasks in balance_dirty_pages(). Period.
646	 */
647	preempt_disable();
648	p =  &__get_cpu_var(bdp_ratelimits);
649	*p += nr_pages_dirtied;
650	if (unlikely(*p >= ratelimit)) {
651		ratelimit = sync_writeback_pages(*p);
652		*p = 0;
653		preempt_enable();
654		balance_dirty_pages(mapping, ratelimit);
655		return;
656	}
657	preempt_enable();
658}
659EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
660
661void throttle_vm_writeout(gfp_t gfp_mask)
662{
663	unsigned long background_thresh;
664	unsigned long dirty_thresh;
665
666        for ( ; ; ) {
667		global_dirty_limits(&background_thresh, &dirty_thresh);
668
669                /*
670                 * Boost the allowable dirty threshold a bit for page
671                 * allocators so they don't get DoS'ed by heavy writers
672                 */
673                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
674
675                if (global_page_state(NR_UNSTABLE_NFS) +
676			global_page_state(NR_WRITEBACK) <= dirty_thresh)
677                        	break;
678                congestion_wait(BLK_RW_ASYNC, HZ/10);
679
680		/*
681		 * The caller might hold locks which can prevent IO completion
682		 * or progress in the filesystem.  So we cannot just sit here
683		 * waiting for IO to complete.
684		 */
685		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
686			break;
687        }
688}
689
690/*
691 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
692 */
693int dirty_writeback_centisecs_handler(ctl_table *table, int write,
694	void __user *buffer, size_t *length, loff_t *ppos)
695{
696	proc_dointvec(table, write, buffer, length, ppos);
697	bdi_arm_supers_timer();
698	return 0;
699}
700
701#ifdef CONFIG_BLOCK
702void laptop_mode_timer_fn(unsigned long data)
703{
704	struct request_queue *q = (struct request_queue *)data;
705	int nr_pages = global_page_state(NR_FILE_DIRTY) +
706		global_page_state(NR_UNSTABLE_NFS);
707
708	/*
709	 * We want to write everything out, not just down to the dirty
710	 * threshold
711	 */
712	if (bdi_has_dirty_io(&q->backing_dev_info))
713		bdi_start_writeback(&q->backing_dev_info, nr_pages);
714}
715
716/*
717 * We've spun up the disk and we're in laptop mode: schedule writeback
718 * of all dirty data a few seconds from now.  If the flush is already scheduled
719 * then push it back - the user is still using the disk.
720 */
721void laptop_io_completion(struct backing_dev_info *info)
722{
723	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
724}
725
726/*
727 * We're in laptop mode and we've just synced. The sync's writes will have
728 * caused another writeback to be scheduled by laptop_io_completion.
729 * Nothing needs to be written back anymore, so we unschedule the writeback.
730 */
731void laptop_sync_completion(void)
732{
733	struct backing_dev_info *bdi;
734
735	rcu_read_lock();
736
737	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
738		del_timer(&bdi->laptop_mode_wb_timer);
739
740	rcu_read_unlock();
741}
742#endif
743
744/*
745 * If ratelimit_pages is too high then we can get into dirty-data overload
746 * if a large number of processes all perform writes at the same time.
747 * If it is too low then SMP machines will call the (expensive)
748 * get_writeback_state too often.
749 *
750 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
751 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
752 * thresholds before writeback cuts in.
753 *
754 * But the limit should not be set too high.  Because it also controls the
755 * amount of memory which the balance_dirty_pages() caller has to write back.
756 * If this is too large then the caller will block on the IO queue all the
757 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
758 * will write six megabyte chunks, max.
759 */
760
761void writeback_set_ratelimit(void)
762{
763	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
764	if (ratelimit_pages < 16)
765		ratelimit_pages = 16;
766	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
767		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
768}
769
770static int __cpuinit
771ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
772{
773	writeback_set_ratelimit();
774	return NOTIFY_DONE;
775}
776
777static struct notifier_block __cpuinitdata ratelimit_nb = {
778	.notifier_call	= ratelimit_handler,
779	.next		= NULL,
780};
781
782/*
783 * Called early on to tune the page writeback dirty limits.
784 *
785 * We used to scale dirty pages according to how total memory
786 * related to pages that could be allocated for buffers (by
787 * comparing nr_free_buffer_pages() to vm_total_pages.
788 *
789 * However, that was when we used "dirty_ratio" to scale with
790 * all memory, and we don't do that any more. "dirty_ratio"
791 * is now applied to total non-HIGHPAGE memory (by subtracting
792 * totalhigh_pages from vm_total_pages), and as such we can't
793 * get into the old insane situation any more where we had
794 * large amounts of dirty pages compared to a small amount of
795 * non-HIGHMEM memory.
796 *
797 * But we might still want to scale the dirty_ratio by how
798 * much memory the box has..
799 */
800void __init page_writeback_init(void)
801{
802	int shift;
803
804	writeback_set_ratelimit();
805	register_cpu_notifier(&ratelimit_nb);
806
807	shift = calc_period_shift();
808	prop_descriptor_init(&vm_completions, shift);
809	prop_descriptor_init(&vm_dirties, shift);
810}
811
812/**
813 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
814 * @mapping: address space structure to write
815 * @start: starting page index
816 * @end: ending page index (inclusive)
817 *
818 * This function scans the page range from @start to @end (inclusive) and tags
819 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
820 * that write_cache_pages (or whoever calls this function) will then use
821 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
822 * used to avoid livelocking of writeback by a process steadily creating new
823 * dirty pages in the file (thus it is important for this function to be quick
824 * so that it can tag pages faster than a dirtying process can create them).
825 */
826/*
827 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
828 */
829void tag_pages_for_writeback(struct address_space *mapping,
830			     pgoff_t start, pgoff_t end)
831{
832#define WRITEBACK_TAG_BATCH 4096
833	unsigned long tagged;
834
835	do {
836		spin_lock_irq(&mapping->tree_lock);
837		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
838				&start, end, WRITEBACK_TAG_BATCH,
839				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
840		spin_unlock_irq(&mapping->tree_lock);
841		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
842		cond_resched();
843		/* We check 'start' to handle wrapping when end == ~0UL */
844	} while (tagged >= WRITEBACK_TAG_BATCH && start);
845}
846EXPORT_SYMBOL(tag_pages_for_writeback);
847
848/**
849 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
850 * @mapping: address space structure to write
851 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
852 * @writepage: function called for each page
853 * @data: data passed to writepage function
854 *
855 * If a page is already under I/O, write_cache_pages() skips it, even
856 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
857 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
858 * and msync() need to guarantee that all the data which was dirty at the time
859 * the call was made get new I/O started against them.  If wbc->sync_mode is
860 * WB_SYNC_ALL then we were called for data integrity and we must wait for
861 * existing IO to complete.
862 *
863 * To avoid livelocks (when other process dirties new pages), we first tag
864 * pages which should be written back with TOWRITE tag and only then start
865 * writing them. For data-integrity sync we have to be careful so that we do
866 * not miss some pages (e.g., because some other process has cleared TOWRITE
867 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
868 * by the process clearing the DIRTY tag (and submitting the page for IO).
869 */
870int write_cache_pages(struct address_space *mapping,
871		      struct writeback_control *wbc, writepage_t writepage,
872		      void *data)
873{
874	int ret = 0;
875	int done = 0;
876	struct pagevec pvec;
877	int nr_pages;
878	pgoff_t uninitialized_var(writeback_index);
879	pgoff_t index;
880	pgoff_t end;		/* Inclusive */
881	pgoff_t done_index;
882	int cycled;
883	int range_whole = 0;
884	int tag;
885
886	pagevec_init(&pvec, 0);
887	if (wbc->range_cyclic) {
888		writeback_index = mapping->writeback_index; /* prev offset */
889		index = writeback_index;
890		if (index == 0)
891			cycled = 1;
892		else
893			cycled = 0;
894		end = -1;
895	} else {
896		index = wbc->range_start >> PAGE_CACHE_SHIFT;
897		end = wbc->range_end >> PAGE_CACHE_SHIFT;
898		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
899			range_whole = 1;
900		cycled = 1; /* ignore range_cyclic tests */
901	}
902	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
903		tag = PAGECACHE_TAG_TOWRITE;
904	else
905		tag = PAGECACHE_TAG_DIRTY;
906retry:
907	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
908		tag_pages_for_writeback(mapping, index, end);
909	done_index = index;
910	while (!done && (index <= end)) {
911		int i;
912
913		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
914			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
915		if (nr_pages == 0)
916			break;
917
918		for (i = 0; i < nr_pages; i++) {
919			struct page *page = pvec.pages[i];
920
921			/*
922			 * At this point, the page may be truncated or
923			 * invalidated (changing page->mapping to NULL), or
924			 * even swizzled back from swapper_space to tmpfs file
925			 * mapping. However, page->index will not change
926			 * because we have a reference on the page.
927			 */
928			if (page->index > end) {
929				/*
930				 * can't be range_cyclic (1st pass) because
931				 * end == -1 in that case.
932				 */
933				done = 1;
934				break;
935			}
936
937			done_index = page->index;
938
939			lock_page(page);
940
941			/*
942			 * Page truncated or invalidated. We can freely skip it
943			 * then, even for data integrity operations: the page
944			 * has disappeared concurrently, so there could be no
945			 * real expectation of this data interity operation
946			 * even if there is now a new, dirty page at the same
947			 * pagecache address.
948			 */
949			if (unlikely(page->mapping != mapping)) {
950continue_unlock:
951				unlock_page(page);
952				continue;
953			}
954
955			if (!PageDirty(page)) {
956				/* someone wrote it for us */
957				goto continue_unlock;
958			}
959
960			if (PageWriteback(page)) {
961				if (wbc->sync_mode != WB_SYNC_NONE)
962					wait_on_page_writeback(page);
963				else
964					goto continue_unlock;
965			}
966
967			BUG_ON(PageWriteback(page));
968			if (!clear_page_dirty_for_io(page))
969				goto continue_unlock;
970
971			trace_wbc_writepage(wbc, mapping->backing_dev_info);
972			ret = (*writepage)(page, wbc, data);
973			if (unlikely(ret)) {
974				if (ret == AOP_WRITEPAGE_ACTIVATE) {
975					unlock_page(page);
976					ret = 0;
977				} else {
978					/*
979					 * done_index is set past this page,
980					 * so media errors will not choke
981					 * background writeout for the entire
982					 * file. This has consequences for
983					 * range_cyclic semantics (ie. it may
984					 * not be suitable for data integrity
985					 * writeout).
986					 */
987					done_index = page->index + 1;
988					done = 1;
989					break;
990				}
991			}
992
993			/*
994			 * We stop writing back only if we are not doing
995			 * integrity sync. In case of integrity sync we have to
996			 * keep going until we have written all the pages
997			 * we tagged for writeback prior to entering this loop.
998			 */
999			if (--wbc->nr_to_write <= 0 &&
1000			    wbc->sync_mode == WB_SYNC_NONE) {
1001				done = 1;
1002				break;
1003			}
1004		}
1005		pagevec_release(&pvec);
1006		cond_resched();
1007	}
1008	if (!cycled && !done) {
1009		/*
1010		 * range_cyclic:
1011		 * We hit the last page and there is more work to be done: wrap
1012		 * back to the start of the file
1013		 */
1014		cycled = 1;
1015		index = 0;
1016		end = writeback_index - 1;
1017		goto retry;
1018	}
1019	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1020		mapping->writeback_index = done_index;
1021
1022	return ret;
1023}
1024EXPORT_SYMBOL(write_cache_pages);
1025
1026/*
1027 * Function used by generic_writepages to call the real writepage
1028 * function and set the mapping flags on error
1029 */
1030static int __writepage(struct page *page, struct writeback_control *wbc,
1031		       void *data)
1032{
1033	struct address_space *mapping = data;
1034	int ret = mapping->a_ops->writepage(page, wbc);
1035	mapping_set_error(mapping, ret);
1036	return ret;
1037}
1038
1039/**
1040 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1041 * @mapping: address space structure to write
1042 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1043 *
1044 * This is a library function, which implements the writepages()
1045 * address_space_operation.
1046 */
1047int generic_writepages(struct address_space *mapping,
1048		       struct writeback_control *wbc)
1049{
1050	struct blk_plug plug;
1051	int ret;
1052
1053	/* deal with chardevs and other special file */
1054	if (!mapping->a_ops->writepage)
1055		return 0;
1056
1057	blk_start_plug(&plug);
1058	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1059	blk_finish_plug(&plug);
1060	return ret;
1061}
1062
1063EXPORT_SYMBOL(generic_writepages);
1064
1065int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1066{
1067	int ret;
1068
1069	if (wbc->nr_to_write <= 0)
1070		return 0;
1071	if (mapping->a_ops->writepages)
1072		ret = mapping->a_ops->writepages(mapping, wbc);
1073	else
1074		ret = generic_writepages(mapping, wbc);
1075	return ret;
1076}
1077
1078/**
1079 * write_one_page - write out a single page and optionally wait on I/O
1080 * @page: the page to write
1081 * @wait: if true, wait on writeout
1082 *
1083 * The page must be locked by the caller and will be unlocked upon return.
1084 *
1085 * write_one_page() returns a negative error code if I/O failed.
1086 */
1087int write_one_page(struct page *page, int wait)
1088{
1089	struct address_space *mapping = page->mapping;
1090	int ret = 0;
1091	struct writeback_control wbc = {
1092		.sync_mode = WB_SYNC_ALL,
1093		.nr_to_write = 1,
1094	};
1095
1096	BUG_ON(!PageLocked(page));
1097
1098	if (wait)
1099		wait_on_page_writeback(page);
1100
1101	if (clear_page_dirty_for_io(page)) {
1102		page_cache_get(page);
1103		ret = mapping->a_ops->writepage(page, &wbc);
1104		if (ret == 0 && wait) {
1105			wait_on_page_writeback(page);
1106			if (PageError(page))
1107				ret = -EIO;
1108		}
1109		page_cache_release(page);
1110	} else {
1111		unlock_page(page);
1112	}
1113	return ret;
1114}
1115EXPORT_SYMBOL(write_one_page);
1116
1117/*
1118 * For address_spaces which do not use buffers nor write back.
1119 */
1120int __set_page_dirty_no_writeback(struct page *page)
1121{
1122	if (!PageDirty(page))
1123		return !TestSetPageDirty(page);
1124	return 0;
1125}
1126
1127/*
1128 * Helper function for set_page_dirty family.
1129 * NOTE: This relies on being atomic wrt interrupts.
1130 */
1131void account_page_dirtied(struct page *page, struct address_space *mapping)
1132{
1133	if (mapping_cap_account_dirty(mapping)) {
1134		__inc_zone_page_state(page, NR_FILE_DIRTY);
1135		__inc_zone_page_state(page, NR_DIRTIED);
1136		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1137		task_dirty_inc(current);
1138		task_io_account_write(PAGE_CACHE_SIZE);
1139	}
1140}
1141EXPORT_SYMBOL(account_page_dirtied);
1142
1143/*
1144 * Helper function for set_page_writeback family.
1145 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1146 * wrt interrupts.
1147 */
1148void account_page_writeback(struct page *page)
1149{
1150	inc_zone_page_state(page, NR_WRITEBACK);
1151	inc_zone_page_state(page, NR_WRITTEN);
1152}
1153EXPORT_SYMBOL(account_page_writeback);
1154
1155/*
1156 * For address_spaces which do not use buffers.  Just tag the page as dirty in
1157 * its radix tree.
1158 *
1159 * This is also used when a single buffer is being dirtied: we want to set the
1160 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1161 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1162 *
1163 * Most callers have locked the page, which pins the address_space in memory.
1164 * But zap_pte_range() does not lock the page, however in that case the
1165 * mapping is pinned by the vma's ->vm_file reference.
1166 *
1167 * We take care to handle the case where the page was truncated from the
1168 * mapping by re-checking page_mapping() inside tree_lock.
1169 */
1170int __set_page_dirty_nobuffers(struct page *page)
1171{
1172	if (!TestSetPageDirty(page)) {
1173		struct address_space *mapping = page_mapping(page);
1174		struct address_space *mapping2;
1175
1176		if (!mapping)
1177			return 1;
1178
1179		spin_lock_irq(&mapping->tree_lock);
1180		mapping2 = page_mapping(page);
1181		if (mapping2) { /* Race with truncate? */
1182			BUG_ON(mapping2 != mapping);
1183			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1184			account_page_dirtied(page, mapping);
1185			radix_tree_tag_set(&mapping->page_tree,
1186				page_index(page), PAGECACHE_TAG_DIRTY);
1187		}
1188		spin_unlock_irq(&mapping->tree_lock);
1189		if (mapping->host) {
1190			/* !PageAnon && !swapper_space */
1191			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1192		}
1193		return 1;
1194	}
1195	return 0;
1196}
1197EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1198
1199/*
1200 * When a writepage implementation decides that it doesn't want to write this
1201 * page for some reason, it should redirty the locked page via
1202 * redirty_page_for_writepage() and it should then unlock the page and return 0
1203 */
1204int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1205{
1206	wbc->pages_skipped++;
1207	return __set_page_dirty_nobuffers(page);
1208}
1209EXPORT_SYMBOL(redirty_page_for_writepage);
1210
1211/*
1212 * Dirty a page.
1213 *
1214 * For pages with a mapping this should be done under the page lock
1215 * for the benefit of asynchronous memory errors who prefer a consistent
1216 * dirty state. This rule can be broken in some special cases,
1217 * but should be better not to.
1218 *
1219 * If the mapping doesn't provide a set_page_dirty a_op, then
1220 * just fall through and assume that it wants buffer_heads.
1221 */
1222int set_page_dirty(struct page *page)
1223{
1224	struct address_space *mapping = page_mapping(page);
1225
1226	if (likely(mapping)) {
1227		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1228		/*
1229		 * readahead/lru_deactivate_page could remain
1230		 * PG_readahead/PG_reclaim due to race with end_page_writeback
1231		 * About readahead, if the page is written, the flags would be
1232		 * reset. So no problem.
1233		 * About lru_deactivate_page, if the page is redirty, the flag
1234		 * will be reset. So no problem. but if the page is used by readahead
1235		 * it will confuse readahead and make it restart the size rampup
1236		 * process. But it's a trivial problem.
1237		 */
1238		ClearPageReclaim(page);
1239#ifdef CONFIG_BLOCK
1240		if (!spd)
1241			spd = __set_page_dirty_buffers;
1242#endif
1243		return (*spd)(page);
1244	}
1245	if (!PageDirty(page)) {
1246		if (!TestSetPageDirty(page))
1247			return 1;
1248	}
1249	return 0;
1250}
1251EXPORT_SYMBOL(set_page_dirty);
1252
1253/*
1254 * set_page_dirty() is racy if the caller has no reference against
1255 * page->mapping->host, and if the page is unlocked.  This is because another
1256 * CPU could truncate the page off the mapping and then free the mapping.
1257 *
1258 * Usually, the page _is_ locked, or the caller is a user-space process which
1259 * holds a reference on the inode by having an open file.
1260 *
1261 * In other cases, the page should be locked before running set_page_dirty().
1262 */
1263int set_page_dirty_lock(struct page *page)
1264{
1265	int ret;
1266
1267	lock_page(page);
1268	ret = set_page_dirty(page);
1269	unlock_page(page);
1270	return ret;
1271}
1272EXPORT_SYMBOL(set_page_dirty_lock);
1273
1274/*
1275 * Clear a page's dirty flag, while caring for dirty memory accounting.
1276 * Returns true if the page was previously dirty.
1277 *
1278 * This is for preparing to put the page under writeout.  We leave the page
1279 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1280 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1281 * implementation will run either set_page_writeback() or set_page_dirty(),
1282 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1283 * back into sync.
1284 *
1285 * This incoherency between the page's dirty flag and radix-tree tag is
1286 * unfortunate, but it only exists while the page is locked.
1287 */
1288int clear_page_dirty_for_io(struct page *page)
1289{
1290	struct address_space *mapping = page_mapping(page);
1291
1292	BUG_ON(!PageLocked(page));
1293
1294	if (mapping && mapping_cap_account_dirty(mapping)) {
1295		/*
1296		 * Yes, Virginia, this is indeed insane.
1297		 *
1298		 * We use this sequence to make sure that
1299		 *  (a) we account for dirty stats properly
1300		 *  (b) we tell the low-level filesystem to
1301		 *      mark the whole page dirty if it was
1302		 *      dirty in a pagetable. Only to then
1303		 *  (c) clean the page again and return 1 to
1304		 *      cause the writeback.
1305		 *
1306		 * This way we avoid all nasty races with the
1307		 * dirty bit in multiple places and clearing
1308		 * them concurrently from different threads.
1309		 *
1310		 * Note! Normally the "set_page_dirty(page)"
1311		 * has no effect on the actual dirty bit - since
1312		 * that will already usually be set. But we
1313		 * need the side effects, and it can help us
1314		 * avoid races.
1315		 *
1316		 * We basically use the page "master dirty bit"
1317		 * as a serialization point for all the different
1318		 * threads doing their things.
1319		 */
1320		if (page_mkclean(page))
1321			set_page_dirty(page);
1322		/*
1323		 * We carefully synchronise fault handlers against
1324		 * installing a dirty pte and marking the page dirty
1325		 * at this point. We do this by having them hold the
1326		 * page lock at some point after installing their
1327		 * pte, but before marking the page dirty.
1328		 * Pages are always locked coming in here, so we get
1329		 * the desired exclusion. See mm/memory.c:do_wp_page()
1330		 * for more comments.
1331		 */
1332		if (TestClearPageDirty(page)) {
1333			dec_zone_page_state(page, NR_FILE_DIRTY);
1334			dec_bdi_stat(mapping->backing_dev_info,
1335					BDI_RECLAIMABLE);
1336			return 1;
1337		}
1338		return 0;
1339	}
1340	return TestClearPageDirty(page);
1341}
1342EXPORT_SYMBOL(clear_page_dirty_for_io);
1343
1344int test_clear_page_writeback(struct page *page)
1345{
1346	struct address_space *mapping = page_mapping(page);
1347	int ret;
1348
1349	if (mapping) {
1350		struct backing_dev_info *bdi = mapping->backing_dev_info;
1351		unsigned long flags;
1352
1353		spin_lock_irqsave(&mapping->tree_lock, flags);
1354		ret = TestClearPageWriteback(page);
1355		if (ret) {
1356			radix_tree_tag_clear(&mapping->page_tree,
1357						page_index(page),
1358						PAGECACHE_TAG_WRITEBACK);
1359			if (bdi_cap_account_writeback(bdi)) {
1360				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1361				__bdi_writeout_inc(bdi);
1362			}
1363		}
1364		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1365	} else {
1366		ret = TestClearPageWriteback(page);
1367	}
1368	if (ret)
1369		dec_zone_page_state(page, NR_WRITEBACK);
1370	return ret;
1371}
1372
1373int test_set_page_writeback(struct page *page)
1374{
1375	struct address_space *mapping = page_mapping(page);
1376	int ret;
1377
1378	if (mapping) {
1379		struct backing_dev_info *bdi = mapping->backing_dev_info;
1380		unsigned long flags;
1381
1382		spin_lock_irqsave(&mapping->tree_lock, flags);
1383		ret = TestSetPageWriteback(page);
1384		if (!ret) {
1385			radix_tree_tag_set(&mapping->page_tree,
1386						page_index(page),
1387						PAGECACHE_TAG_WRITEBACK);
1388			if (bdi_cap_account_writeback(bdi))
1389				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1390		}
1391		if (!PageDirty(page))
1392			radix_tree_tag_clear(&mapping->page_tree,
1393						page_index(page),
1394						PAGECACHE_TAG_DIRTY);
1395		radix_tree_tag_clear(&mapping->page_tree,
1396				     page_index(page),
1397				     PAGECACHE_TAG_TOWRITE);
1398		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1399	} else {
1400		ret = TestSetPageWriteback(page);
1401	}
1402	if (!ret)
1403		account_page_writeback(page);
1404	return ret;
1405
1406}
1407EXPORT_SYMBOL(test_set_page_writeback);
1408
1409/*
1410 * Return true if any of the pages in the mapping are marked with the
1411 * passed tag.
1412 */
1413int mapping_tagged(struct address_space *mapping, int tag)
1414{
1415	int ret;
1416	rcu_read_lock();
1417	ret = radix_tree_tagged(&mapping->page_tree, tag);
1418	rcu_read_unlock();
1419	return ret;
1420}
1421EXPORT_SYMBOL(mapping_tagged);
1422