page-writeback.c revision 7762741e3af69720186802e945229b6a5afd5c49
1/*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002	Andrew Morton
11 *		Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
25#include <linux/task_io_accounting_ops.h>
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
28#include <linux/rmap.h>
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
35#include <linux/buffer_head.h>
36#include <linux/pagevec.h>
37#include <trace/events/writeback.h>
38
39/*
40 * Estimate write bandwidth at 200ms intervals.
41 */
42#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
43
44/*
45 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
46 * will look to see if it needs to force writeback or throttling.
47 */
48static long ratelimit_pages = 32;
49
50/*
51 * When balance_dirty_pages decides that the caller needs to perform some
52 * non-background writeback, this is how many pages it will attempt to write.
53 * It should be somewhat larger than dirtied pages to ensure that reasonably
54 * large amounts of I/O are submitted.
55 */
56static inline long sync_writeback_pages(unsigned long dirtied)
57{
58	if (dirtied < ratelimit_pages)
59		dirtied = ratelimit_pages;
60
61	return dirtied + dirtied / 2;
62}
63
64/* The following parameters are exported via /proc/sys/vm */
65
66/*
67 * Start background writeback (via writeback threads) at this percentage
68 */
69int dirty_background_ratio = 10;
70
71/*
72 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
73 * dirty_background_ratio * the amount of dirtyable memory
74 */
75unsigned long dirty_background_bytes;
76
77/*
78 * free highmem will not be subtracted from the total free memory
79 * for calculating free ratios if vm_highmem_is_dirtyable is true
80 */
81int vm_highmem_is_dirtyable;
82
83/*
84 * The generator of dirty data starts writeback at this percentage
85 */
86int vm_dirty_ratio = 20;
87
88/*
89 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
90 * vm_dirty_ratio * the amount of dirtyable memory
91 */
92unsigned long vm_dirty_bytes;
93
94/*
95 * The interval between `kupdate'-style writebacks
96 */
97unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
98
99/*
100 * The longest time for which data is allowed to remain dirty
101 */
102unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
103
104/*
105 * Flag that makes the machine dump writes/reads and block dirtyings.
106 */
107int block_dump;
108
109/*
110 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
111 * a full sync is triggered after this time elapses without any disk activity.
112 */
113int laptop_mode;
114
115EXPORT_SYMBOL(laptop_mode);
116
117/* End of sysctl-exported parameters */
118
119
120/*
121 * Scale the writeback cache size proportional to the relative writeout speeds.
122 *
123 * We do this by keeping a floating proportion between BDIs, based on page
124 * writeback completions [end_page_writeback()]. Those devices that write out
125 * pages fastest will get the larger share, while the slower will get a smaller
126 * share.
127 *
128 * We use page writeout completions because we are interested in getting rid of
129 * dirty pages. Having them written out is the primary goal.
130 *
131 * We introduce a concept of time, a period over which we measure these events,
132 * because demand can/will vary over time. The length of this period itself is
133 * measured in page writeback completions.
134 *
135 */
136static struct prop_descriptor vm_completions;
137static struct prop_descriptor vm_dirties;
138
139/*
140 * couple the period to the dirty_ratio:
141 *
142 *   period/2 ~ roundup_pow_of_two(dirty limit)
143 */
144static int calc_period_shift(void)
145{
146	unsigned long dirty_total;
147
148	if (vm_dirty_bytes)
149		dirty_total = vm_dirty_bytes / PAGE_SIZE;
150	else
151		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
152				100;
153	return 2 + ilog2(dirty_total - 1);
154}
155
156/*
157 * update the period when the dirty threshold changes.
158 */
159static void update_completion_period(void)
160{
161	int shift = calc_period_shift();
162	prop_change_shift(&vm_completions, shift);
163	prop_change_shift(&vm_dirties, shift);
164}
165
166int dirty_background_ratio_handler(struct ctl_table *table, int write,
167		void __user *buffer, size_t *lenp,
168		loff_t *ppos)
169{
170	int ret;
171
172	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
173	if (ret == 0 && write)
174		dirty_background_bytes = 0;
175	return ret;
176}
177
178int dirty_background_bytes_handler(struct ctl_table *table, int write,
179		void __user *buffer, size_t *lenp,
180		loff_t *ppos)
181{
182	int ret;
183
184	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
185	if (ret == 0 && write)
186		dirty_background_ratio = 0;
187	return ret;
188}
189
190int dirty_ratio_handler(struct ctl_table *table, int write,
191		void __user *buffer, size_t *lenp,
192		loff_t *ppos)
193{
194	int old_ratio = vm_dirty_ratio;
195	int ret;
196
197	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
198	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
199		update_completion_period();
200		vm_dirty_bytes = 0;
201	}
202	return ret;
203}
204
205
206int dirty_bytes_handler(struct ctl_table *table, int write,
207		void __user *buffer, size_t *lenp,
208		loff_t *ppos)
209{
210	unsigned long old_bytes = vm_dirty_bytes;
211	int ret;
212
213	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
214	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
215		update_completion_period();
216		vm_dirty_ratio = 0;
217	}
218	return ret;
219}
220
221/*
222 * Increment the BDI's writeout completion count and the global writeout
223 * completion count. Called from test_clear_page_writeback().
224 */
225static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
226{
227	__inc_bdi_stat(bdi, BDI_WRITTEN);
228	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
229			      bdi->max_prop_frac);
230}
231
232void bdi_writeout_inc(struct backing_dev_info *bdi)
233{
234	unsigned long flags;
235
236	local_irq_save(flags);
237	__bdi_writeout_inc(bdi);
238	local_irq_restore(flags);
239}
240EXPORT_SYMBOL_GPL(bdi_writeout_inc);
241
242void task_dirty_inc(struct task_struct *tsk)
243{
244	prop_inc_single(&vm_dirties, &tsk->dirties);
245}
246
247/*
248 * Obtain an accurate fraction of the BDI's portion.
249 */
250static void bdi_writeout_fraction(struct backing_dev_info *bdi,
251		long *numerator, long *denominator)
252{
253	prop_fraction_percpu(&vm_completions, &bdi->completions,
254				numerator, denominator);
255}
256
257static inline void task_dirties_fraction(struct task_struct *tsk,
258		long *numerator, long *denominator)
259{
260	prop_fraction_single(&vm_dirties, &tsk->dirties,
261				numerator, denominator);
262}
263
264/*
265 * task_dirty_limit - scale down dirty throttling threshold for one task
266 *
267 * task specific dirty limit:
268 *
269 *   dirty -= (dirty/8) * p_{t}
270 *
271 * To protect light/slow dirtying tasks from heavier/fast ones, we start
272 * throttling individual tasks before reaching the bdi dirty limit.
273 * Relatively low thresholds will be allocated to heavy dirtiers. So when
274 * dirty pages grow large, heavy dirtiers will be throttled first, which will
275 * effectively curb the growth of dirty pages. Light dirtiers with high enough
276 * dirty threshold may never get throttled.
277 */
278static unsigned long task_dirty_limit(struct task_struct *tsk,
279				       unsigned long bdi_dirty)
280{
281	long numerator, denominator;
282	unsigned long dirty = bdi_dirty;
283	u64 inv = dirty >> 3;
284
285	task_dirties_fraction(tsk, &numerator, &denominator);
286	inv *= numerator;
287	do_div(inv, denominator);
288
289	dirty -= inv;
290
291	return max(dirty, bdi_dirty/2);
292}
293
294/*
295 *
296 */
297static unsigned int bdi_min_ratio;
298
299int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
300{
301	int ret = 0;
302
303	spin_lock_bh(&bdi_lock);
304	if (min_ratio > bdi->max_ratio) {
305		ret = -EINVAL;
306	} else {
307		min_ratio -= bdi->min_ratio;
308		if (bdi_min_ratio + min_ratio < 100) {
309			bdi_min_ratio += min_ratio;
310			bdi->min_ratio += min_ratio;
311		} else {
312			ret = -EINVAL;
313		}
314	}
315	spin_unlock_bh(&bdi_lock);
316
317	return ret;
318}
319
320int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
321{
322	int ret = 0;
323
324	if (max_ratio > 100)
325		return -EINVAL;
326
327	spin_lock_bh(&bdi_lock);
328	if (bdi->min_ratio > max_ratio) {
329		ret = -EINVAL;
330	} else {
331		bdi->max_ratio = max_ratio;
332		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
333	}
334	spin_unlock_bh(&bdi_lock);
335
336	return ret;
337}
338EXPORT_SYMBOL(bdi_set_max_ratio);
339
340/*
341 * Work out the current dirty-memory clamping and background writeout
342 * thresholds.
343 *
344 * The main aim here is to lower them aggressively if there is a lot of mapped
345 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
346 * pages.  It is better to clamp down on writers than to start swapping, and
347 * performing lots of scanning.
348 *
349 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
350 *
351 * We don't permit the clamping level to fall below 5% - that is getting rather
352 * excessive.
353 *
354 * We make sure that the background writeout level is below the adjusted
355 * clamping level.
356 */
357
358static unsigned long highmem_dirtyable_memory(unsigned long total)
359{
360#ifdef CONFIG_HIGHMEM
361	int node;
362	unsigned long x = 0;
363
364	for_each_node_state(node, N_HIGH_MEMORY) {
365		struct zone *z =
366			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
367
368		x += zone_page_state(z, NR_FREE_PAGES) +
369		     zone_reclaimable_pages(z);
370	}
371	/*
372	 * Make sure that the number of highmem pages is never larger
373	 * than the number of the total dirtyable memory. This can only
374	 * occur in very strange VM situations but we want to make sure
375	 * that this does not occur.
376	 */
377	return min(x, total);
378#else
379	return 0;
380#endif
381}
382
383/**
384 * determine_dirtyable_memory - amount of memory that may be used
385 *
386 * Returns the numebr of pages that can currently be freed and used
387 * by the kernel for direct mappings.
388 */
389unsigned long determine_dirtyable_memory(void)
390{
391	unsigned long x;
392
393	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
394
395	if (!vm_highmem_is_dirtyable)
396		x -= highmem_dirtyable_memory(x);
397
398	return x + 1;	/* Ensure that we never return 0 */
399}
400
401/*
402 * global_dirty_limits - background-writeback and dirty-throttling thresholds
403 *
404 * Calculate the dirty thresholds based on sysctl parameters
405 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
406 * - vm.dirty_ratio             or  vm.dirty_bytes
407 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
408 * real-time tasks.
409 */
410void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
411{
412	unsigned long background;
413	unsigned long dirty;
414	unsigned long uninitialized_var(available_memory);
415	struct task_struct *tsk;
416
417	if (!vm_dirty_bytes || !dirty_background_bytes)
418		available_memory = determine_dirtyable_memory();
419
420	if (vm_dirty_bytes)
421		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
422	else
423		dirty = (vm_dirty_ratio * available_memory) / 100;
424
425	if (dirty_background_bytes)
426		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
427	else
428		background = (dirty_background_ratio * available_memory) / 100;
429
430	if (background >= dirty)
431		background = dirty / 2;
432	tsk = current;
433	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
434		background += background / 4;
435		dirty += dirty / 4;
436	}
437	*pbackground = background;
438	*pdirty = dirty;
439}
440
441/**
442 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
443 * @bdi: the backing_dev_info to query
444 * @dirty: global dirty limit in pages
445 *
446 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
447 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
448 * And the "limit" in the name is not seriously taken as hard limit in
449 * balance_dirty_pages().
450 *
451 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
452 * - starving fast devices
453 * - piling up dirty pages (that will take long time to sync) on slow devices
454 *
455 * The bdi's share of dirty limit will be adapting to its throughput and
456 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
457 */
458unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
459{
460	u64 bdi_dirty;
461	long numerator, denominator;
462
463	/*
464	 * Calculate this BDI's share of the dirty ratio.
465	 */
466	bdi_writeout_fraction(bdi, &numerator, &denominator);
467
468	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
469	bdi_dirty *= numerator;
470	do_div(bdi_dirty, denominator);
471
472	bdi_dirty += (dirty * bdi->min_ratio) / 100;
473	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
474		bdi_dirty = dirty * bdi->max_ratio / 100;
475
476	return bdi_dirty;
477}
478
479static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
480				       unsigned long elapsed,
481				       unsigned long written)
482{
483	const unsigned long period = roundup_pow_of_two(3 * HZ);
484	unsigned long avg = bdi->avg_write_bandwidth;
485	unsigned long old = bdi->write_bandwidth;
486	u64 bw;
487
488	/*
489	 * bw = written * HZ / elapsed
490	 *
491	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
492	 * write_bandwidth = ---------------------------------------------------
493	 *                                          period
494	 */
495	bw = written - bdi->written_stamp;
496	bw *= HZ;
497	if (unlikely(elapsed > period)) {
498		do_div(bw, elapsed);
499		avg = bw;
500		goto out;
501	}
502	bw += (u64)bdi->write_bandwidth * (period - elapsed);
503	bw >>= ilog2(period);
504
505	/*
506	 * one more level of smoothing, for filtering out sudden spikes
507	 */
508	if (avg > old && old >= (unsigned long)bw)
509		avg -= (avg - old) >> 3;
510
511	if (avg < old && old <= (unsigned long)bw)
512		avg += (old - avg) >> 3;
513
514out:
515	bdi->write_bandwidth = bw;
516	bdi->avg_write_bandwidth = avg;
517}
518
519void __bdi_update_bandwidth(struct backing_dev_info *bdi,
520			    unsigned long start_time)
521{
522	unsigned long now = jiffies;
523	unsigned long elapsed = now - bdi->bw_time_stamp;
524	unsigned long written;
525
526	/*
527	 * rate-limit, only update once every 200ms.
528	 */
529	if (elapsed < BANDWIDTH_INTERVAL)
530		return;
531
532	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
533
534	/*
535	 * Skip quiet periods when disk bandwidth is under-utilized.
536	 * (at least 1s idle time between two flusher runs)
537	 */
538	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
539		goto snapshot;
540
541	bdi_update_write_bandwidth(bdi, elapsed, written);
542
543snapshot:
544	bdi->written_stamp = written;
545	bdi->bw_time_stamp = now;
546}
547
548static void bdi_update_bandwidth(struct backing_dev_info *bdi,
549				 unsigned long start_time)
550{
551	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
552		return;
553	spin_lock(&bdi->wb.list_lock);
554	__bdi_update_bandwidth(bdi, start_time);
555	spin_unlock(&bdi->wb.list_lock);
556}
557
558/*
559 * balance_dirty_pages() must be called by processes which are generating dirty
560 * data.  It looks at the number of dirty pages in the machine and will force
561 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
562 * If we're over `background_thresh' then the writeback threads are woken to
563 * perform some writeout.
564 */
565static void balance_dirty_pages(struct address_space *mapping,
566				unsigned long write_chunk)
567{
568	unsigned long nr_reclaimable, bdi_nr_reclaimable;
569	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
570	unsigned long bdi_dirty;
571	unsigned long background_thresh;
572	unsigned long dirty_thresh;
573	unsigned long bdi_thresh;
574	unsigned long pages_written = 0;
575	unsigned long pause = 1;
576	bool dirty_exceeded = false;
577	struct backing_dev_info *bdi = mapping->backing_dev_info;
578	unsigned long start_time = jiffies;
579
580	for (;;) {
581		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
582					global_page_state(NR_UNSTABLE_NFS);
583		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
584
585		global_dirty_limits(&background_thresh, &dirty_thresh);
586
587		/*
588		 * Throttle it only when the background writeback cannot
589		 * catch-up. This avoids (excessively) small writeouts
590		 * when the bdi limits are ramping up.
591		 */
592		if (nr_dirty <= (background_thresh + dirty_thresh) / 2)
593			break;
594
595		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
596		bdi_thresh = task_dirty_limit(current, bdi_thresh);
597
598		/*
599		 * In order to avoid the stacked BDI deadlock we need
600		 * to ensure we accurately count the 'dirty' pages when
601		 * the threshold is low.
602		 *
603		 * Otherwise it would be possible to get thresh+n pages
604		 * reported dirty, even though there are thresh-m pages
605		 * actually dirty; with m+n sitting in the percpu
606		 * deltas.
607		 */
608		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
609			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
610			bdi_dirty = bdi_nr_reclaimable +
611				    bdi_stat_sum(bdi, BDI_WRITEBACK);
612		} else {
613			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
614			bdi_dirty = bdi_nr_reclaimable +
615				    bdi_stat(bdi, BDI_WRITEBACK);
616		}
617
618		/*
619		 * The bdi thresh is somehow "soft" limit derived from the
620		 * global "hard" limit. The former helps to prevent heavy IO
621		 * bdi or process from holding back light ones; The latter is
622		 * the last resort safeguard.
623		 */
624		dirty_exceeded = (bdi_dirty > bdi_thresh) ||
625				  (nr_dirty > dirty_thresh);
626
627		if (!dirty_exceeded)
628			break;
629
630		if (!bdi->dirty_exceeded)
631			bdi->dirty_exceeded = 1;
632
633		bdi_update_bandwidth(bdi, start_time);
634
635		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
636		 * Unstable writes are a feature of certain networked
637		 * filesystems (i.e. NFS) in which data may have been
638		 * written to the server's write cache, but has not yet
639		 * been flushed to permanent storage.
640		 * Only move pages to writeback if this bdi is over its
641		 * threshold otherwise wait until the disk writes catch
642		 * up.
643		 */
644		trace_balance_dirty_start(bdi);
645		if (bdi_nr_reclaimable > bdi_thresh) {
646			pages_written += writeback_inodes_wb(&bdi->wb,
647							     write_chunk);
648			trace_balance_dirty_written(bdi, pages_written);
649			if (pages_written >= write_chunk)
650				break;		/* We've done our duty */
651		}
652		__set_current_state(TASK_UNINTERRUPTIBLE);
653		io_schedule_timeout(pause);
654		trace_balance_dirty_wait(bdi);
655
656		/*
657		 * Increase the delay for each loop, up to our previous
658		 * default of taking a 100ms nap.
659		 */
660		pause <<= 1;
661		if (pause > HZ / 10)
662			pause = HZ / 10;
663	}
664
665	if (!dirty_exceeded && bdi->dirty_exceeded)
666		bdi->dirty_exceeded = 0;
667
668	if (writeback_in_progress(bdi))
669		return;
670
671	/*
672	 * In laptop mode, we wait until hitting the higher threshold before
673	 * starting background writeout, and then write out all the way down
674	 * to the lower threshold.  So slow writers cause minimal disk activity.
675	 *
676	 * In normal mode, we start background writeout at the lower
677	 * background_thresh, to keep the amount of dirty memory low.
678	 */
679	if ((laptop_mode && pages_written) ||
680	    (!laptop_mode && (nr_reclaimable > background_thresh)))
681		bdi_start_background_writeback(bdi);
682}
683
684void set_page_dirty_balance(struct page *page, int page_mkwrite)
685{
686	if (set_page_dirty(page) || page_mkwrite) {
687		struct address_space *mapping = page_mapping(page);
688
689		if (mapping)
690			balance_dirty_pages_ratelimited(mapping);
691	}
692}
693
694static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
695
696/**
697 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
698 * @mapping: address_space which was dirtied
699 * @nr_pages_dirtied: number of pages which the caller has just dirtied
700 *
701 * Processes which are dirtying memory should call in here once for each page
702 * which was newly dirtied.  The function will periodically check the system's
703 * dirty state and will initiate writeback if needed.
704 *
705 * On really big machines, get_writeback_state is expensive, so try to avoid
706 * calling it too often (ratelimiting).  But once we're over the dirty memory
707 * limit we decrease the ratelimiting by a lot, to prevent individual processes
708 * from overshooting the limit by (ratelimit_pages) each.
709 */
710void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
711					unsigned long nr_pages_dirtied)
712{
713	struct backing_dev_info *bdi = mapping->backing_dev_info;
714	unsigned long ratelimit;
715	unsigned long *p;
716
717	if (!bdi_cap_account_dirty(bdi))
718		return;
719
720	ratelimit = ratelimit_pages;
721	if (mapping->backing_dev_info->dirty_exceeded)
722		ratelimit = 8;
723
724	/*
725	 * Check the rate limiting. Also, we do not want to throttle real-time
726	 * tasks in balance_dirty_pages(). Period.
727	 */
728	preempt_disable();
729	p =  &__get_cpu_var(bdp_ratelimits);
730	*p += nr_pages_dirtied;
731	if (unlikely(*p >= ratelimit)) {
732		ratelimit = sync_writeback_pages(*p);
733		*p = 0;
734		preempt_enable();
735		balance_dirty_pages(mapping, ratelimit);
736		return;
737	}
738	preempt_enable();
739}
740EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
741
742void throttle_vm_writeout(gfp_t gfp_mask)
743{
744	unsigned long background_thresh;
745	unsigned long dirty_thresh;
746
747        for ( ; ; ) {
748		global_dirty_limits(&background_thresh, &dirty_thresh);
749
750                /*
751                 * Boost the allowable dirty threshold a bit for page
752                 * allocators so they don't get DoS'ed by heavy writers
753                 */
754                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
755
756                if (global_page_state(NR_UNSTABLE_NFS) +
757			global_page_state(NR_WRITEBACK) <= dirty_thresh)
758                        	break;
759                congestion_wait(BLK_RW_ASYNC, HZ/10);
760
761		/*
762		 * The caller might hold locks which can prevent IO completion
763		 * or progress in the filesystem.  So we cannot just sit here
764		 * waiting for IO to complete.
765		 */
766		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
767			break;
768        }
769}
770
771/*
772 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
773 */
774int dirty_writeback_centisecs_handler(ctl_table *table, int write,
775	void __user *buffer, size_t *length, loff_t *ppos)
776{
777	proc_dointvec(table, write, buffer, length, ppos);
778	bdi_arm_supers_timer();
779	return 0;
780}
781
782#ifdef CONFIG_BLOCK
783void laptop_mode_timer_fn(unsigned long data)
784{
785	struct request_queue *q = (struct request_queue *)data;
786	int nr_pages = global_page_state(NR_FILE_DIRTY) +
787		global_page_state(NR_UNSTABLE_NFS);
788
789	/*
790	 * We want to write everything out, not just down to the dirty
791	 * threshold
792	 */
793	if (bdi_has_dirty_io(&q->backing_dev_info))
794		bdi_start_writeback(&q->backing_dev_info, nr_pages);
795}
796
797/*
798 * We've spun up the disk and we're in laptop mode: schedule writeback
799 * of all dirty data a few seconds from now.  If the flush is already scheduled
800 * then push it back - the user is still using the disk.
801 */
802void laptop_io_completion(struct backing_dev_info *info)
803{
804	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
805}
806
807/*
808 * We're in laptop mode and we've just synced. The sync's writes will have
809 * caused another writeback to be scheduled by laptop_io_completion.
810 * Nothing needs to be written back anymore, so we unschedule the writeback.
811 */
812void laptop_sync_completion(void)
813{
814	struct backing_dev_info *bdi;
815
816	rcu_read_lock();
817
818	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
819		del_timer(&bdi->laptop_mode_wb_timer);
820
821	rcu_read_unlock();
822}
823#endif
824
825/*
826 * If ratelimit_pages is too high then we can get into dirty-data overload
827 * if a large number of processes all perform writes at the same time.
828 * If it is too low then SMP machines will call the (expensive)
829 * get_writeback_state too often.
830 *
831 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
832 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
833 * thresholds before writeback cuts in.
834 *
835 * But the limit should not be set too high.  Because it also controls the
836 * amount of memory which the balance_dirty_pages() caller has to write back.
837 * If this is too large then the caller will block on the IO queue all the
838 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
839 * will write six megabyte chunks, max.
840 */
841
842void writeback_set_ratelimit(void)
843{
844	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
845	if (ratelimit_pages < 16)
846		ratelimit_pages = 16;
847	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
848		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
849}
850
851static int __cpuinit
852ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
853{
854	writeback_set_ratelimit();
855	return NOTIFY_DONE;
856}
857
858static struct notifier_block __cpuinitdata ratelimit_nb = {
859	.notifier_call	= ratelimit_handler,
860	.next		= NULL,
861};
862
863/*
864 * Called early on to tune the page writeback dirty limits.
865 *
866 * We used to scale dirty pages according to how total memory
867 * related to pages that could be allocated for buffers (by
868 * comparing nr_free_buffer_pages() to vm_total_pages.
869 *
870 * However, that was when we used "dirty_ratio" to scale with
871 * all memory, and we don't do that any more. "dirty_ratio"
872 * is now applied to total non-HIGHPAGE memory (by subtracting
873 * totalhigh_pages from vm_total_pages), and as such we can't
874 * get into the old insane situation any more where we had
875 * large amounts of dirty pages compared to a small amount of
876 * non-HIGHMEM memory.
877 *
878 * But we might still want to scale the dirty_ratio by how
879 * much memory the box has..
880 */
881void __init page_writeback_init(void)
882{
883	int shift;
884
885	writeback_set_ratelimit();
886	register_cpu_notifier(&ratelimit_nb);
887
888	shift = calc_period_shift();
889	prop_descriptor_init(&vm_completions, shift);
890	prop_descriptor_init(&vm_dirties, shift);
891}
892
893/**
894 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
895 * @mapping: address space structure to write
896 * @start: starting page index
897 * @end: ending page index (inclusive)
898 *
899 * This function scans the page range from @start to @end (inclusive) and tags
900 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
901 * that write_cache_pages (or whoever calls this function) will then use
902 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
903 * used to avoid livelocking of writeback by a process steadily creating new
904 * dirty pages in the file (thus it is important for this function to be quick
905 * so that it can tag pages faster than a dirtying process can create them).
906 */
907/*
908 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
909 */
910void tag_pages_for_writeback(struct address_space *mapping,
911			     pgoff_t start, pgoff_t end)
912{
913#define WRITEBACK_TAG_BATCH 4096
914	unsigned long tagged;
915
916	do {
917		spin_lock_irq(&mapping->tree_lock);
918		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
919				&start, end, WRITEBACK_TAG_BATCH,
920				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
921		spin_unlock_irq(&mapping->tree_lock);
922		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
923		cond_resched();
924		/* We check 'start' to handle wrapping when end == ~0UL */
925	} while (tagged >= WRITEBACK_TAG_BATCH && start);
926}
927EXPORT_SYMBOL(tag_pages_for_writeback);
928
929/**
930 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
931 * @mapping: address space structure to write
932 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
933 * @writepage: function called for each page
934 * @data: data passed to writepage function
935 *
936 * If a page is already under I/O, write_cache_pages() skips it, even
937 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
938 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
939 * and msync() need to guarantee that all the data which was dirty at the time
940 * the call was made get new I/O started against them.  If wbc->sync_mode is
941 * WB_SYNC_ALL then we were called for data integrity and we must wait for
942 * existing IO to complete.
943 *
944 * To avoid livelocks (when other process dirties new pages), we first tag
945 * pages which should be written back with TOWRITE tag and only then start
946 * writing them. For data-integrity sync we have to be careful so that we do
947 * not miss some pages (e.g., because some other process has cleared TOWRITE
948 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
949 * by the process clearing the DIRTY tag (and submitting the page for IO).
950 */
951int write_cache_pages(struct address_space *mapping,
952		      struct writeback_control *wbc, writepage_t writepage,
953		      void *data)
954{
955	int ret = 0;
956	int done = 0;
957	struct pagevec pvec;
958	int nr_pages;
959	pgoff_t uninitialized_var(writeback_index);
960	pgoff_t index;
961	pgoff_t end;		/* Inclusive */
962	pgoff_t done_index;
963	int cycled;
964	int range_whole = 0;
965	int tag;
966
967	pagevec_init(&pvec, 0);
968	if (wbc->range_cyclic) {
969		writeback_index = mapping->writeback_index; /* prev offset */
970		index = writeback_index;
971		if (index == 0)
972			cycled = 1;
973		else
974			cycled = 0;
975		end = -1;
976	} else {
977		index = wbc->range_start >> PAGE_CACHE_SHIFT;
978		end = wbc->range_end >> PAGE_CACHE_SHIFT;
979		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
980			range_whole = 1;
981		cycled = 1; /* ignore range_cyclic tests */
982	}
983	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
984		tag = PAGECACHE_TAG_TOWRITE;
985	else
986		tag = PAGECACHE_TAG_DIRTY;
987retry:
988	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
989		tag_pages_for_writeback(mapping, index, end);
990	done_index = index;
991	while (!done && (index <= end)) {
992		int i;
993
994		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
995			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
996		if (nr_pages == 0)
997			break;
998
999		for (i = 0; i < nr_pages; i++) {
1000			struct page *page = pvec.pages[i];
1001
1002			/*
1003			 * At this point, the page may be truncated or
1004			 * invalidated (changing page->mapping to NULL), or
1005			 * even swizzled back from swapper_space to tmpfs file
1006			 * mapping. However, page->index will not change
1007			 * because we have a reference on the page.
1008			 */
1009			if (page->index > end) {
1010				/*
1011				 * can't be range_cyclic (1st pass) because
1012				 * end == -1 in that case.
1013				 */
1014				done = 1;
1015				break;
1016			}
1017
1018			done_index = page->index;
1019
1020			lock_page(page);
1021
1022			/*
1023			 * Page truncated or invalidated. We can freely skip it
1024			 * then, even for data integrity operations: the page
1025			 * has disappeared concurrently, so there could be no
1026			 * real expectation of this data interity operation
1027			 * even if there is now a new, dirty page at the same
1028			 * pagecache address.
1029			 */
1030			if (unlikely(page->mapping != mapping)) {
1031continue_unlock:
1032				unlock_page(page);
1033				continue;
1034			}
1035
1036			if (!PageDirty(page)) {
1037				/* someone wrote it for us */
1038				goto continue_unlock;
1039			}
1040
1041			if (PageWriteback(page)) {
1042				if (wbc->sync_mode != WB_SYNC_NONE)
1043					wait_on_page_writeback(page);
1044				else
1045					goto continue_unlock;
1046			}
1047
1048			BUG_ON(PageWriteback(page));
1049			if (!clear_page_dirty_for_io(page))
1050				goto continue_unlock;
1051
1052			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1053			ret = (*writepage)(page, wbc, data);
1054			if (unlikely(ret)) {
1055				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1056					unlock_page(page);
1057					ret = 0;
1058				} else {
1059					/*
1060					 * done_index is set past this page,
1061					 * so media errors will not choke
1062					 * background writeout for the entire
1063					 * file. This has consequences for
1064					 * range_cyclic semantics (ie. it may
1065					 * not be suitable for data integrity
1066					 * writeout).
1067					 */
1068					done_index = page->index + 1;
1069					done = 1;
1070					break;
1071				}
1072			}
1073
1074			/*
1075			 * We stop writing back only if we are not doing
1076			 * integrity sync. In case of integrity sync we have to
1077			 * keep going until we have written all the pages
1078			 * we tagged for writeback prior to entering this loop.
1079			 */
1080			if (--wbc->nr_to_write <= 0 &&
1081			    wbc->sync_mode == WB_SYNC_NONE) {
1082				done = 1;
1083				break;
1084			}
1085		}
1086		pagevec_release(&pvec);
1087		cond_resched();
1088	}
1089	if (!cycled && !done) {
1090		/*
1091		 * range_cyclic:
1092		 * We hit the last page and there is more work to be done: wrap
1093		 * back to the start of the file
1094		 */
1095		cycled = 1;
1096		index = 0;
1097		end = writeback_index - 1;
1098		goto retry;
1099	}
1100	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1101		mapping->writeback_index = done_index;
1102
1103	return ret;
1104}
1105EXPORT_SYMBOL(write_cache_pages);
1106
1107/*
1108 * Function used by generic_writepages to call the real writepage
1109 * function and set the mapping flags on error
1110 */
1111static int __writepage(struct page *page, struct writeback_control *wbc,
1112		       void *data)
1113{
1114	struct address_space *mapping = data;
1115	int ret = mapping->a_ops->writepage(page, wbc);
1116	mapping_set_error(mapping, ret);
1117	return ret;
1118}
1119
1120/**
1121 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1122 * @mapping: address space structure to write
1123 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1124 *
1125 * This is a library function, which implements the writepages()
1126 * address_space_operation.
1127 */
1128int generic_writepages(struct address_space *mapping,
1129		       struct writeback_control *wbc)
1130{
1131	struct blk_plug plug;
1132	int ret;
1133
1134	/* deal with chardevs and other special file */
1135	if (!mapping->a_ops->writepage)
1136		return 0;
1137
1138	blk_start_plug(&plug);
1139	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1140	blk_finish_plug(&plug);
1141	return ret;
1142}
1143
1144EXPORT_SYMBOL(generic_writepages);
1145
1146int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1147{
1148	int ret;
1149
1150	if (wbc->nr_to_write <= 0)
1151		return 0;
1152	if (mapping->a_ops->writepages)
1153		ret = mapping->a_ops->writepages(mapping, wbc);
1154	else
1155		ret = generic_writepages(mapping, wbc);
1156	return ret;
1157}
1158
1159/**
1160 * write_one_page - write out a single page and optionally wait on I/O
1161 * @page: the page to write
1162 * @wait: if true, wait on writeout
1163 *
1164 * The page must be locked by the caller and will be unlocked upon return.
1165 *
1166 * write_one_page() returns a negative error code if I/O failed.
1167 */
1168int write_one_page(struct page *page, int wait)
1169{
1170	struct address_space *mapping = page->mapping;
1171	int ret = 0;
1172	struct writeback_control wbc = {
1173		.sync_mode = WB_SYNC_ALL,
1174		.nr_to_write = 1,
1175	};
1176
1177	BUG_ON(!PageLocked(page));
1178
1179	if (wait)
1180		wait_on_page_writeback(page);
1181
1182	if (clear_page_dirty_for_io(page)) {
1183		page_cache_get(page);
1184		ret = mapping->a_ops->writepage(page, &wbc);
1185		if (ret == 0 && wait) {
1186			wait_on_page_writeback(page);
1187			if (PageError(page))
1188				ret = -EIO;
1189		}
1190		page_cache_release(page);
1191	} else {
1192		unlock_page(page);
1193	}
1194	return ret;
1195}
1196EXPORT_SYMBOL(write_one_page);
1197
1198/*
1199 * For address_spaces which do not use buffers nor write back.
1200 */
1201int __set_page_dirty_no_writeback(struct page *page)
1202{
1203	if (!PageDirty(page))
1204		return !TestSetPageDirty(page);
1205	return 0;
1206}
1207
1208/*
1209 * Helper function for set_page_dirty family.
1210 * NOTE: This relies on being atomic wrt interrupts.
1211 */
1212void account_page_dirtied(struct page *page, struct address_space *mapping)
1213{
1214	if (mapping_cap_account_dirty(mapping)) {
1215		__inc_zone_page_state(page, NR_FILE_DIRTY);
1216		__inc_zone_page_state(page, NR_DIRTIED);
1217		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1218		task_dirty_inc(current);
1219		task_io_account_write(PAGE_CACHE_SIZE);
1220	}
1221}
1222EXPORT_SYMBOL(account_page_dirtied);
1223
1224/*
1225 * Helper function for set_page_writeback family.
1226 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1227 * wrt interrupts.
1228 */
1229void account_page_writeback(struct page *page)
1230{
1231	inc_zone_page_state(page, NR_WRITEBACK);
1232	inc_zone_page_state(page, NR_WRITTEN);
1233}
1234EXPORT_SYMBOL(account_page_writeback);
1235
1236/*
1237 * For address_spaces which do not use buffers.  Just tag the page as dirty in
1238 * its radix tree.
1239 *
1240 * This is also used when a single buffer is being dirtied: we want to set the
1241 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1242 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1243 *
1244 * Most callers have locked the page, which pins the address_space in memory.
1245 * But zap_pte_range() does not lock the page, however in that case the
1246 * mapping is pinned by the vma's ->vm_file reference.
1247 *
1248 * We take care to handle the case where the page was truncated from the
1249 * mapping by re-checking page_mapping() inside tree_lock.
1250 */
1251int __set_page_dirty_nobuffers(struct page *page)
1252{
1253	if (!TestSetPageDirty(page)) {
1254		struct address_space *mapping = page_mapping(page);
1255		struct address_space *mapping2;
1256
1257		if (!mapping)
1258			return 1;
1259
1260		spin_lock_irq(&mapping->tree_lock);
1261		mapping2 = page_mapping(page);
1262		if (mapping2) { /* Race with truncate? */
1263			BUG_ON(mapping2 != mapping);
1264			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1265			account_page_dirtied(page, mapping);
1266			radix_tree_tag_set(&mapping->page_tree,
1267				page_index(page), PAGECACHE_TAG_DIRTY);
1268		}
1269		spin_unlock_irq(&mapping->tree_lock);
1270		if (mapping->host) {
1271			/* !PageAnon && !swapper_space */
1272			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1273		}
1274		return 1;
1275	}
1276	return 0;
1277}
1278EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1279
1280/*
1281 * When a writepage implementation decides that it doesn't want to write this
1282 * page for some reason, it should redirty the locked page via
1283 * redirty_page_for_writepage() and it should then unlock the page and return 0
1284 */
1285int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1286{
1287	wbc->pages_skipped++;
1288	return __set_page_dirty_nobuffers(page);
1289}
1290EXPORT_SYMBOL(redirty_page_for_writepage);
1291
1292/*
1293 * Dirty a page.
1294 *
1295 * For pages with a mapping this should be done under the page lock
1296 * for the benefit of asynchronous memory errors who prefer a consistent
1297 * dirty state. This rule can be broken in some special cases,
1298 * but should be better not to.
1299 *
1300 * If the mapping doesn't provide a set_page_dirty a_op, then
1301 * just fall through and assume that it wants buffer_heads.
1302 */
1303int set_page_dirty(struct page *page)
1304{
1305	struct address_space *mapping = page_mapping(page);
1306
1307	if (likely(mapping)) {
1308		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1309		/*
1310		 * readahead/lru_deactivate_page could remain
1311		 * PG_readahead/PG_reclaim due to race with end_page_writeback
1312		 * About readahead, if the page is written, the flags would be
1313		 * reset. So no problem.
1314		 * About lru_deactivate_page, if the page is redirty, the flag
1315		 * will be reset. So no problem. but if the page is used by readahead
1316		 * it will confuse readahead and make it restart the size rampup
1317		 * process. But it's a trivial problem.
1318		 */
1319		ClearPageReclaim(page);
1320#ifdef CONFIG_BLOCK
1321		if (!spd)
1322			spd = __set_page_dirty_buffers;
1323#endif
1324		return (*spd)(page);
1325	}
1326	if (!PageDirty(page)) {
1327		if (!TestSetPageDirty(page))
1328			return 1;
1329	}
1330	return 0;
1331}
1332EXPORT_SYMBOL(set_page_dirty);
1333
1334/*
1335 * set_page_dirty() is racy if the caller has no reference against
1336 * page->mapping->host, and if the page is unlocked.  This is because another
1337 * CPU could truncate the page off the mapping and then free the mapping.
1338 *
1339 * Usually, the page _is_ locked, or the caller is a user-space process which
1340 * holds a reference on the inode by having an open file.
1341 *
1342 * In other cases, the page should be locked before running set_page_dirty().
1343 */
1344int set_page_dirty_lock(struct page *page)
1345{
1346	int ret;
1347
1348	lock_page(page);
1349	ret = set_page_dirty(page);
1350	unlock_page(page);
1351	return ret;
1352}
1353EXPORT_SYMBOL(set_page_dirty_lock);
1354
1355/*
1356 * Clear a page's dirty flag, while caring for dirty memory accounting.
1357 * Returns true if the page was previously dirty.
1358 *
1359 * This is for preparing to put the page under writeout.  We leave the page
1360 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1361 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1362 * implementation will run either set_page_writeback() or set_page_dirty(),
1363 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1364 * back into sync.
1365 *
1366 * This incoherency between the page's dirty flag and radix-tree tag is
1367 * unfortunate, but it only exists while the page is locked.
1368 */
1369int clear_page_dirty_for_io(struct page *page)
1370{
1371	struct address_space *mapping = page_mapping(page);
1372
1373	BUG_ON(!PageLocked(page));
1374
1375	if (mapping && mapping_cap_account_dirty(mapping)) {
1376		/*
1377		 * Yes, Virginia, this is indeed insane.
1378		 *
1379		 * We use this sequence to make sure that
1380		 *  (a) we account for dirty stats properly
1381		 *  (b) we tell the low-level filesystem to
1382		 *      mark the whole page dirty if it was
1383		 *      dirty in a pagetable. Only to then
1384		 *  (c) clean the page again and return 1 to
1385		 *      cause the writeback.
1386		 *
1387		 * This way we avoid all nasty races with the
1388		 * dirty bit in multiple places and clearing
1389		 * them concurrently from different threads.
1390		 *
1391		 * Note! Normally the "set_page_dirty(page)"
1392		 * has no effect on the actual dirty bit - since
1393		 * that will already usually be set. But we
1394		 * need the side effects, and it can help us
1395		 * avoid races.
1396		 *
1397		 * We basically use the page "master dirty bit"
1398		 * as a serialization point for all the different
1399		 * threads doing their things.
1400		 */
1401		if (page_mkclean(page))
1402			set_page_dirty(page);
1403		/*
1404		 * We carefully synchronise fault handlers against
1405		 * installing a dirty pte and marking the page dirty
1406		 * at this point. We do this by having them hold the
1407		 * page lock at some point after installing their
1408		 * pte, but before marking the page dirty.
1409		 * Pages are always locked coming in here, so we get
1410		 * the desired exclusion. See mm/memory.c:do_wp_page()
1411		 * for more comments.
1412		 */
1413		if (TestClearPageDirty(page)) {
1414			dec_zone_page_state(page, NR_FILE_DIRTY);
1415			dec_bdi_stat(mapping->backing_dev_info,
1416					BDI_RECLAIMABLE);
1417			return 1;
1418		}
1419		return 0;
1420	}
1421	return TestClearPageDirty(page);
1422}
1423EXPORT_SYMBOL(clear_page_dirty_for_io);
1424
1425int test_clear_page_writeback(struct page *page)
1426{
1427	struct address_space *mapping = page_mapping(page);
1428	int ret;
1429
1430	if (mapping) {
1431		struct backing_dev_info *bdi = mapping->backing_dev_info;
1432		unsigned long flags;
1433
1434		spin_lock_irqsave(&mapping->tree_lock, flags);
1435		ret = TestClearPageWriteback(page);
1436		if (ret) {
1437			radix_tree_tag_clear(&mapping->page_tree,
1438						page_index(page),
1439						PAGECACHE_TAG_WRITEBACK);
1440			if (bdi_cap_account_writeback(bdi)) {
1441				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1442				__bdi_writeout_inc(bdi);
1443			}
1444		}
1445		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1446	} else {
1447		ret = TestClearPageWriteback(page);
1448	}
1449	if (ret)
1450		dec_zone_page_state(page, NR_WRITEBACK);
1451	return ret;
1452}
1453
1454int test_set_page_writeback(struct page *page)
1455{
1456	struct address_space *mapping = page_mapping(page);
1457	int ret;
1458
1459	if (mapping) {
1460		struct backing_dev_info *bdi = mapping->backing_dev_info;
1461		unsigned long flags;
1462
1463		spin_lock_irqsave(&mapping->tree_lock, flags);
1464		ret = TestSetPageWriteback(page);
1465		if (!ret) {
1466			radix_tree_tag_set(&mapping->page_tree,
1467						page_index(page),
1468						PAGECACHE_TAG_WRITEBACK);
1469			if (bdi_cap_account_writeback(bdi))
1470				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1471		}
1472		if (!PageDirty(page))
1473			radix_tree_tag_clear(&mapping->page_tree,
1474						page_index(page),
1475						PAGECACHE_TAG_DIRTY);
1476		radix_tree_tag_clear(&mapping->page_tree,
1477				     page_index(page),
1478				     PAGECACHE_TAG_TOWRITE);
1479		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1480	} else {
1481		ret = TestSetPageWriteback(page);
1482	}
1483	if (!ret)
1484		account_page_writeback(page);
1485	return ret;
1486
1487}
1488EXPORT_SYMBOL(test_set_page_writeback);
1489
1490/*
1491 * Return true if any of the pages in the mapping are marked with the
1492 * passed tag.
1493 */
1494int mapping_tagged(struct address_space *mapping, int tag)
1495{
1496	int ret;
1497	rcu_read_lock();
1498	ret = radix_tree_tagged(&mapping->page_tree, tag);
1499	rcu_read_unlock();
1500	return ret;
1501}
1502EXPORT_SYMBOL(mapping_tagged);
1503