page-writeback.c revision d688abf50bd5a30d2c44dea2a72dd59052cd3cce
1/*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains functions related to writing back dirty pages at the
7 * address_space level.
8 *
9 * 10Apr2002	akpm@zip.com.au
10 *		Initial version
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/spinlock.h>
16#include <linux/fs.h>
17#include <linux/mm.h>
18#include <linux/swap.h>
19#include <linux/slab.h>
20#include <linux/pagemap.h>
21#include <linux/writeback.h>
22#include <linux/init.h>
23#include <linux/backing-dev.h>
24#include <linux/task_io_accounting_ops.h>
25#include <linux/blkdev.h>
26#include <linux/mpage.h>
27#include <linux/rmap.h>
28#include <linux/percpu.h>
29#include <linux/notifier.h>
30#include <linux/smp.h>
31#include <linux/sysctl.h>
32#include <linux/cpu.h>
33#include <linux/syscalls.h>
34#include <linux/buffer_head.h>
35#include <linux/pagevec.h>
36
37/*
38 * The maximum number of pages to writeout in a single bdflush/kupdate
39 * operation.  We do this so we don't hold I_LOCK against an inode for
40 * enormous amounts of time, which would block a userspace task which has
41 * been forced to throttle against that inode.  Also, the code reevaluates
42 * the dirty each time it has written this many pages.
43 */
44#define MAX_WRITEBACK_PAGES	1024
45
46/*
47 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
48 * will look to see if it needs to force writeback or throttling.
49 */
50static long ratelimit_pages = 32;
51
52static int dirty_exceeded __cacheline_aligned_in_smp;	/* Dirty mem may be over limit */
53
54/*
55 * When balance_dirty_pages decides that the caller needs to perform some
56 * non-background writeback, this is how many pages it will attempt to write.
57 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
58 * large amounts of I/O are submitted.
59 */
60static inline long sync_writeback_pages(void)
61{
62	return ratelimit_pages + ratelimit_pages / 2;
63}
64
65/* The following parameters are exported via /proc/sys/vm */
66
67/*
68 * Start background writeback (via pdflush) at this percentage
69 */
70int dirty_background_ratio = 5;
71
72/*
73 * The generator of dirty data starts writeback at this percentage
74 */
75int vm_dirty_ratio = 10;
76
77/*
78 * The interval between `kupdate'-style writebacks, in jiffies
79 */
80int dirty_writeback_interval = 5 * HZ;
81
82/*
83 * The longest number of jiffies for which data is allowed to remain dirty
84 */
85int dirty_expire_interval = 30 * HZ;
86
87/*
88 * Flag that makes the machine dump writes/reads and block dirtyings.
89 */
90int block_dump;
91
92/*
93 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
94 * a full sync is triggered after this time elapses without any disk activity.
95 */
96int laptop_mode;
97
98EXPORT_SYMBOL(laptop_mode);
99
100/* End of sysctl-exported parameters */
101
102
103static void background_writeout(unsigned long _min_pages);
104
105/*
106 * Work out the current dirty-memory clamping and background writeout
107 * thresholds.
108 *
109 * The main aim here is to lower them aggressively if there is a lot of mapped
110 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
111 * pages.  It is better to clamp down on writers than to start swapping, and
112 * performing lots of scanning.
113 *
114 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
115 *
116 * We don't permit the clamping level to fall below 5% - that is getting rather
117 * excessive.
118 *
119 * We make sure that the background writeout level is below the adjusted
120 * clamping level.
121 */
122
123static unsigned long highmem_dirtyable_memory(unsigned long total)
124{
125#ifdef CONFIG_HIGHMEM
126	int node;
127	unsigned long x = 0;
128
129	for_each_online_node(node) {
130		struct zone *z =
131			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
132
133		x += zone_page_state(z, NR_FREE_PAGES)
134			+ zone_page_state(z, NR_INACTIVE)
135			+ zone_page_state(z, NR_ACTIVE);
136	}
137	/*
138	 * Make sure that the number of highmem pages is never larger
139	 * than the number of the total dirtyable memory. This can only
140	 * occur in very strange VM situations but we want to make sure
141	 * that this does not occur.
142	 */
143	return min(x, total);
144#else
145	return 0;
146#endif
147}
148
149static unsigned long determine_dirtyable_memory(void)
150{
151	unsigned long x;
152
153	x = global_page_state(NR_FREE_PAGES)
154		+ global_page_state(NR_INACTIVE)
155		+ global_page_state(NR_ACTIVE);
156	x -= highmem_dirtyable_memory(x);
157	return x + 1;	/* Ensure that we never return 0 */
158}
159
160static void
161get_dirty_limits(long *pbackground, long *pdirty,
162					struct address_space *mapping)
163{
164	int background_ratio;		/* Percentages */
165	int dirty_ratio;
166	int unmapped_ratio;
167	long background;
168	long dirty;
169	unsigned long available_memory = determine_dirtyable_memory();
170	struct task_struct *tsk;
171
172	unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) +
173				global_page_state(NR_ANON_PAGES)) * 100) /
174					available_memory;
175
176	dirty_ratio = vm_dirty_ratio;
177	if (dirty_ratio > unmapped_ratio / 2)
178		dirty_ratio = unmapped_ratio / 2;
179
180	if (dirty_ratio < 5)
181		dirty_ratio = 5;
182
183	background_ratio = dirty_background_ratio;
184	if (background_ratio >= dirty_ratio)
185		background_ratio = dirty_ratio / 2;
186
187	background = (background_ratio * available_memory) / 100;
188	dirty = (dirty_ratio * available_memory) / 100;
189	tsk = current;
190	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
191		background += background / 4;
192		dirty += dirty / 4;
193	}
194	*pbackground = background;
195	*pdirty = dirty;
196}
197
198/*
199 * balance_dirty_pages() must be called by processes which are generating dirty
200 * data.  It looks at the number of dirty pages in the machine and will force
201 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
202 * If we're over `background_thresh' then pdflush is woken to perform some
203 * writeout.
204 */
205static void balance_dirty_pages(struct address_space *mapping)
206{
207	long nr_reclaimable;
208	long background_thresh;
209	long dirty_thresh;
210	unsigned long pages_written = 0;
211	unsigned long write_chunk = sync_writeback_pages();
212
213	struct backing_dev_info *bdi = mapping->backing_dev_info;
214
215	for (;;) {
216		struct writeback_control wbc = {
217			.bdi		= bdi,
218			.sync_mode	= WB_SYNC_NONE,
219			.older_than_this = NULL,
220			.nr_to_write	= write_chunk,
221			.range_cyclic	= 1,
222		};
223
224		get_dirty_limits(&background_thresh, &dirty_thresh, mapping);
225		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
226					global_page_state(NR_UNSTABLE_NFS);
227		if (nr_reclaimable + global_page_state(NR_WRITEBACK) <=
228			dirty_thresh)
229				break;
230
231		if (!dirty_exceeded)
232			dirty_exceeded = 1;
233
234		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
235		 * Unstable writes are a feature of certain networked
236		 * filesystems (i.e. NFS) in which data may have been
237		 * written to the server's write cache, but has not yet
238		 * been flushed to permanent storage.
239		 */
240		if (nr_reclaimable) {
241			writeback_inodes(&wbc);
242			get_dirty_limits(&background_thresh,
243					 	&dirty_thresh, mapping);
244			nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
245					global_page_state(NR_UNSTABLE_NFS);
246			if (nr_reclaimable +
247				global_page_state(NR_WRITEBACK)
248					<= dirty_thresh)
249						break;
250			pages_written += write_chunk - wbc.nr_to_write;
251			if (pages_written >= write_chunk)
252				break;		/* We've done our duty */
253		}
254		congestion_wait(WRITE, HZ/10);
255	}
256
257	if (nr_reclaimable + global_page_state(NR_WRITEBACK)
258		<= dirty_thresh && dirty_exceeded)
259			dirty_exceeded = 0;
260
261	if (writeback_in_progress(bdi))
262		return;		/* pdflush is already working this queue */
263
264	/*
265	 * In laptop mode, we wait until hitting the higher threshold before
266	 * starting background writeout, and then write out all the way down
267	 * to the lower threshold.  So slow writers cause minimal disk activity.
268	 *
269	 * In normal mode, we start background writeout at the lower
270	 * background_thresh, to keep the amount of dirty memory low.
271	 */
272	if ((laptop_mode && pages_written) ||
273	     (!laptop_mode && (nr_reclaimable > background_thresh)))
274		pdflush_operation(background_writeout, 0);
275}
276
277void set_page_dirty_balance(struct page *page)
278{
279	if (set_page_dirty(page)) {
280		struct address_space *mapping = page_mapping(page);
281
282		if (mapping)
283			balance_dirty_pages_ratelimited(mapping);
284	}
285}
286
287/**
288 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
289 * @mapping: address_space which was dirtied
290 * @nr_pages_dirtied: number of pages which the caller has just dirtied
291 *
292 * Processes which are dirtying memory should call in here once for each page
293 * which was newly dirtied.  The function will periodically check the system's
294 * dirty state and will initiate writeback if needed.
295 *
296 * On really big machines, get_writeback_state is expensive, so try to avoid
297 * calling it too often (ratelimiting).  But once we're over the dirty memory
298 * limit we decrease the ratelimiting by a lot, to prevent individual processes
299 * from overshooting the limit by (ratelimit_pages) each.
300 */
301void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
302					unsigned long nr_pages_dirtied)
303{
304	static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
305	unsigned long ratelimit;
306	unsigned long *p;
307
308	ratelimit = ratelimit_pages;
309	if (dirty_exceeded)
310		ratelimit = 8;
311
312	/*
313	 * Check the rate limiting. Also, we do not want to throttle real-time
314	 * tasks in balance_dirty_pages(). Period.
315	 */
316	preempt_disable();
317	p =  &__get_cpu_var(ratelimits);
318	*p += nr_pages_dirtied;
319	if (unlikely(*p >= ratelimit)) {
320		*p = 0;
321		preempt_enable();
322		balance_dirty_pages(mapping);
323		return;
324	}
325	preempt_enable();
326}
327EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
328
329void throttle_vm_writeout(gfp_t gfp_mask)
330{
331	long background_thresh;
332	long dirty_thresh;
333
334	if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) {
335		/*
336		 * The caller might hold locks which can prevent IO completion
337		 * or progress in the filesystem.  So we cannot just sit here
338		 * waiting for IO to complete.
339		 */
340		congestion_wait(WRITE, HZ/10);
341		return;
342	}
343
344        for ( ; ; ) {
345		get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
346
347                /*
348                 * Boost the allowable dirty threshold a bit for page
349                 * allocators so they don't get DoS'ed by heavy writers
350                 */
351                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
352
353                if (global_page_state(NR_UNSTABLE_NFS) +
354			global_page_state(NR_WRITEBACK) <= dirty_thresh)
355                        	break;
356                congestion_wait(WRITE, HZ/10);
357        }
358}
359
360/*
361 * writeback at least _min_pages, and keep writing until the amount of dirty
362 * memory is less than the background threshold, or until we're all clean.
363 */
364static void background_writeout(unsigned long _min_pages)
365{
366	long min_pages = _min_pages;
367	struct writeback_control wbc = {
368		.bdi		= NULL,
369		.sync_mode	= WB_SYNC_NONE,
370		.older_than_this = NULL,
371		.nr_to_write	= 0,
372		.nonblocking	= 1,
373		.range_cyclic	= 1,
374	};
375
376	for ( ; ; ) {
377		long background_thresh;
378		long dirty_thresh;
379
380		get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
381		if (global_page_state(NR_FILE_DIRTY) +
382			global_page_state(NR_UNSTABLE_NFS) < background_thresh
383				&& min_pages <= 0)
384			break;
385		wbc.encountered_congestion = 0;
386		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
387		wbc.pages_skipped = 0;
388		writeback_inodes(&wbc);
389		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
390		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
391			/* Wrote less than expected */
392			congestion_wait(WRITE, HZ/10);
393			if (!wbc.encountered_congestion)
394				break;
395		}
396	}
397}
398
399/*
400 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
401 * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
402 * -1 if all pdflush threads were busy.
403 */
404int wakeup_pdflush(long nr_pages)
405{
406	if (nr_pages == 0)
407		nr_pages = global_page_state(NR_FILE_DIRTY) +
408				global_page_state(NR_UNSTABLE_NFS);
409	return pdflush_operation(background_writeout, nr_pages);
410}
411
412static void wb_timer_fn(unsigned long unused);
413static void laptop_timer_fn(unsigned long unused);
414
415static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
416static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
417
418/*
419 * Periodic writeback of "old" data.
420 *
421 * Define "old": the first time one of an inode's pages is dirtied, we mark the
422 * dirtying-time in the inode's address_space.  So this periodic writeback code
423 * just walks the superblock inode list, writing back any inodes which are
424 * older than a specific point in time.
425 *
426 * Try to run once per dirty_writeback_interval.  But if a writeback event
427 * takes longer than a dirty_writeback_interval interval, then leave a
428 * one-second gap.
429 *
430 * older_than_this takes precedence over nr_to_write.  So we'll only write back
431 * all dirty pages if they are all attached to "old" mappings.
432 */
433static void wb_kupdate(unsigned long arg)
434{
435	unsigned long oldest_jif;
436	unsigned long start_jif;
437	unsigned long next_jif;
438	long nr_to_write;
439	struct writeback_control wbc = {
440		.bdi		= NULL,
441		.sync_mode	= WB_SYNC_NONE,
442		.older_than_this = &oldest_jif,
443		.nr_to_write	= 0,
444		.nonblocking	= 1,
445		.for_kupdate	= 1,
446		.range_cyclic	= 1,
447	};
448
449	sync_supers();
450
451	oldest_jif = jiffies - dirty_expire_interval;
452	start_jif = jiffies;
453	next_jif = start_jif + dirty_writeback_interval;
454	nr_to_write = global_page_state(NR_FILE_DIRTY) +
455			global_page_state(NR_UNSTABLE_NFS) +
456			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
457	while (nr_to_write > 0) {
458		wbc.encountered_congestion = 0;
459		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
460		writeback_inodes(&wbc);
461		if (wbc.nr_to_write > 0) {
462			if (wbc.encountered_congestion)
463				congestion_wait(WRITE, HZ/10);
464			else
465				break;	/* All the old data is written */
466		}
467		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
468	}
469	if (time_before(next_jif, jiffies + HZ))
470		next_jif = jiffies + HZ;
471	if (dirty_writeback_interval)
472		mod_timer(&wb_timer, next_jif);
473}
474
475/*
476 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
477 */
478int dirty_writeback_centisecs_handler(ctl_table *table, int write,
479	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
480{
481	proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
482	if (dirty_writeback_interval)
483		mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
484	else
485		del_timer(&wb_timer);
486	return 0;
487}
488
489static void wb_timer_fn(unsigned long unused)
490{
491	if (pdflush_operation(wb_kupdate, 0) < 0)
492		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
493}
494
495static void laptop_flush(unsigned long unused)
496{
497	sys_sync();
498}
499
500static void laptop_timer_fn(unsigned long unused)
501{
502	pdflush_operation(laptop_flush, 0);
503}
504
505/*
506 * We've spun up the disk and we're in laptop mode: schedule writeback
507 * of all dirty data a few seconds from now.  If the flush is already scheduled
508 * then push it back - the user is still using the disk.
509 */
510void laptop_io_completion(void)
511{
512	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
513}
514
515/*
516 * We're in laptop mode and we've just synced. The sync's writes will have
517 * caused another writeback to be scheduled by laptop_io_completion.
518 * Nothing needs to be written back anymore, so we unschedule the writeback.
519 */
520void laptop_sync_completion(void)
521{
522	del_timer(&laptop_mode_wb_timer);
523}
524
525/*
526 * If ratelimit_pages is too high then we can get into dirty-data overload
527 * if a large number of processes all perform writes at the same time.
528 * If it is too low then SMP machines will call the (expensive)
529 * get_writeback_state too often.
530 *
531 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
532 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
533 * thresholds before writeback cuts in.
534 *
535 * But the limit should not be set too high.  Because it also controls the
536 * amount of memory which the balance_dirty_pages() caller has to write back.
537 * If this is too large then the caller will block on the IO queue all the
538 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
539 * will write six megabyte chunks, max.
540 */
541
542void writeback_set_ratelimit(void)
543{
544	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
545	if (ratelimit_pages < 16)
546		ratelimit_pages = 16;
547	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
548		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
549}
550
551static int __cpuinit
552ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
553{
554	writeback_set_ratelimit();
555	return NOTIFY_DONE;
556}
557
558static struct notifier_block __cpuinitdata ratelimit_nb = {
559	.notifier_call	= ratelimit_handler,
560	.next		= NULL,
561};
562
563/*
564 * Called early on to tune the page writeback dirty limits.
565 *
566 * We used to scale dirty pages according to how total memory
567 * related to pages that could be allocated for buffers (by
568 * comparing nr_free_buffer_pages() to vm_total_pages.
569 *
570 * However, that was when we used "dirty_ratio" to scale with
571 * all memory, and we don't do that any more. "dirty_ratio"
572 * is now applied to total non-HIGHPAGE memory (by subtracting
573 * totalhigh_pages from vm_total_pages), and as such we can't
574 * get into the old insane situation any more where we had
575 * large amounts of dirty pages compared to a small amount of
576 * non-HIGHMEM memory.
577 *
578 * But we might still want to scale the dirty_ratio by how
579 * much memory the box has..
580 */
581void __init page_writeback_init(void)
582{
583	mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
584	writeback_set_ratelimit();
585	register_cpu_notifier(&ratelimit_nb);
586}
587
588/**
589 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
590 * @mapping: address space structure to write
591 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
592 * @writepage: function called for each page
593 * @data: data passed to writepage function
594 *
595 * If a page is already under I/O, write_cache_pages() skips it, even
596 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
597 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
598 * and msync() need to guarantee that all the data which was dirty at the time
599 * the call was made get new I/O started against them.  If wbc->sync_mode is
600 * WB_SYNC_ALL then we were called for data integrity and we must wait for
601 * existing IO to complete.
602 */
603int write_cache_pages(struct address_space *mapping,
604		      struct writeback_control *wbc, writepage_t writepage,
605		      void *data)
606{
607	struct backing_dev_info *bdi = mapping->backing_dev_info;
608	int ret = 0;
609	int done = 0;
610	struct pagevec pvec;
611	int nr_pages;
612	pgoff_t index;
613	pgoff_t end;		/* Inclusive */
614	int scanned = 0;
615	int range_whole = 0;
616
617	if (wbc->nonblocking && bdi_write_congested(bdi)) {
618		wbc->encountered_congestion = 1;
619		return 0;
620	}
621
622	pagevec_init(&pvec, 0);
623	if (wbc->range_cyclic) {
624		index = mapping->writeback_index; /* Start from prev offset */
625		end = -1;
626	} else {
627		index = wbc->range_start >> PAGE_CACHE_SHIFT;
628		end = wbc->range_end >> PAGE_CACHE_SHIFT;
629		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
630			range_whole = 1;
631		scanned = 1;
632	}
633retry:
634	while (!done && (index <= end) &&
635	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
636					      PAGECACHE_TAG_DIRTY,
637					      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
638		unsigned i;
639
640		scanned = 1;
641		for (i = 0; i < nr_pages; i++) {
642			struct page *page = pvec.pages[i];
643
644			/*
645			 * At this point we hold neither mapping->tree_lock nor
646			 * lock on the page itself: the page may be truncated or
647			 * invalidated (changing page->mapping to NULL), or even
648			 * swizzled back from swapper_space to tmpfs file
649			 * mapping
650			 */
651			lock_page(page);
652
653			if (unlikely(page->mapping != mapping)) {
654				unlock_page(page);
655				continue;
656			}
657
658			if (!wbc->range_cyclic && page->index > end) {
659				done = 1;
660				unlock_page(page);
661				continue;
662			}
663
664			if (wbc->sync_mode != WB_SYNC_NONE)
665				wait_on_page_writeback(page);
666
667			if (PageWriteback(page) ||
668			    !clear_page_dirty_for_io(page)) {
669				unlock_page(page);
670				continue;
671			}
672
673			ret = (*writepage)(page, wbc, data);
674
675			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE))
676				unlock_page(page);
677			if (ret || (--(wbc->nr_to_write) <= 0))
678				done = 1;
679			if (wbc->nonblocking && bdi_write_congested(bdi)) {
680				wbc->encountered_congestion = 1;
681				done = 1;
682			}
683		}
684		pagevec_release(&pvec);
685		cond_resched();
686	}
687	if (!scanned && !done) {
688		/*
689		 * We hit the last page and there is more work to be done: wrap
690		 * back to the start of the file
691		 */
692		scanned = 1;
693		index = 0;
694		goto retry;
695	}
696	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
697		mapping->writeback_index = index;
698	return ret;
699}
700EXPORT_SYMBOL(write_cache_pages);
701
702/*
703 * Function used by generic_writepages to call the real writepage
704 * function and set the mapping flags on error
705 */
706static int __writepage(struct page *page, struct writeback_control *wbc,
707		       void *data)
708{
709	struct address_space *mapping = data;
710	int ret = mapping->a_ops->writepage(page, wbc);
711	mapping_set_error(mapping, ret);
712	return ret;
713}
714
715/**
716 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
717 * @mapping: address space structure to write
718 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
719 *
720 * This is a library function, which implements the writepages()
721 * address_space_operation.
722 */
723int generic_writepages(struct address_space *mapping,
724		       struct writeback_control *wbc)
725{
726	/* deal with chardevs and other special file */
727	if (!mapping->a_ops->writepage)
728		return 0;
729
730	return write_cache_pages(mapping, wbc, __writepage, mapping);
731}
732
733EXPORT_SYMBOL(generic_writepages);
734
735int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
736{
737	int ret;
738
739	if (wbc->nr_to_write <= 0)
740		return 0;
741	wbc->for_writepages = 1;
742	if (mapping->a_ops->writepages)
743		ret = mapping->a_ops->writepages(mapping, wbc);
744	else
745		ret = generic_writepages(mapping, wbc);
746	wbc->for_writepages = 0;
747	return ret;
748}
749
750/**
751 * write_one_page - write out a single page and optionally wait on I/O
752 * @page: the page to write
753 * @wait: if true, wait on writeout
754 *
755 * The page must be locked by the caller and will be unlocked upon return.
756 *
757 * write_one_page() returns a negative error code if I/O failed.
758 */
759int write_one_page(struct page *page, int wait)
760{
761	struct address_space *mapping = page->mapping;
762	int ret = 0;
763	struct writeback_control wbc = {
764		.sync_mode = WB_SYNC_ALL,
765		.nr_to_write = 1,
766	};
767
768	BUG_ON(!PageLocked(page));
769
770	if (wait)
771		wait_on_page_writeback(page);
772
773	if (clear_page_dirty_for_io(page)) {
774		page_cache_get(page);
775		ret = mapping->a_ops->writepage(page, &wbc);
776		if (ret == 0 && wait) {
777			wait_on_page_writeback(page);
778			if (PageError(page))
779				ret = -EIO;
780		}
781		page_cache_release(page);
782	} else {
783		unlock_page(page);
784	}
785	return ret;
786}
787EXPORT_SYMBOL(write_one_page);
788
789/*
790 * For address_spaces which do not use buffers nor write back.
791 */
792int __set_page_dirty_no_writeback(struct page *page)
793{
794	if (!PageDirty(page))
795		SetPageDirty(page);
796	return 0;
797}
798
799/*
800 * For address_spaces which do not use buffers.  Just tag the page as dirty in
801 * its radix tree.
802 *
803 * This is also used when a single buffer is being dirtied: we want to set the
804 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
805 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
806 *
807 * Most callers have locked the page, which pins the address_space in memory.
808 * But zap_pte_range() does not lock the page, however in that case the
809 * mapping is pinned by the vma's ->vm_file reference.
810 *
811 * We take care to handle the case where the page was truncated from the
812 * mapping by re-checking page_mapping() insode tree_lock.
813 */
814int __set_page_dirty_nobuffers(struct page *page)
815{
816	if (!TestSetPageDirty(page)) {
817		struct address_space *mapping = page_mapping(page);
818		struct address_space *mapping2;
819
820		if (!mapping)
821			return 1;
822
823		write_lock_irq(&mapping->tree_lock);
824		mapping2 = page_mapping(page);
825		if (mapping2) { /* Race with truncate? */
826			BUG_ON(mapping2 != mapping);
827			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
828			if (mapping_cap_account_dirty(mapping)) {
829				__inc_zone_page_state(page, NR_FILE_DIRTY);
830				task_io_account_write(PAGE_CACHE_SIZE);
831			}
832			radix_tree_tag_set(&mapping->page_tree,
833				page_index(page), PAGECACHE_TAG_DIRTY);
834		}
835		write_unlock_irq(&mapping->tree_lock);
836		if (mapping->host) {
837			/* !PageAnon && !swapper_space */
838			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
839		}
840		return 1;
841	}
842	return 0;
843}
844EXPORT_SYMBOL(__set_page_dirty_nobuffers);
845
846/*
847 * When a writepage implementation decides that it doesn't want to write this
848 * page for some reason, it should redirty the locked page via
849 * redirty_page_for_writepage() and it should then unlock the page and return 0
850 */
851int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
852{
853	wbc->pages_skipped++;
854	return __set_page_dirty_nobuffers(page);
855}
856EXPORT_SYMBOL(redirty_page_for_writepage);
857
858/*
859 * If the mapping doesn't provide a set_page_dirty a_op, then
860 * just fall through and assume that it wants buffer_heads.
861 */
862int fastcall set_page_dirty(struct page *page)
863{
864	struct address_space *mapping = page_mapping(page);
865
866	if (likely(mapping)) {
867		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
868#ifdef CONFIG_BLOCK
869		if (!spd)
870			spd = __set_page_dirty_buffers;
871#endif
872		return (*spd)(page);
873	}
874	if (!PageDirty(page)) {
875		if (!TestSetPageDirty(page))
876			return 1;
877	}
878	return 0;
879}
880EXPORT_SYMBOL(set_page_dirty);
881
882/*
883 * set_page_dirty() is racy if the caller has no reference against
884 * page->mapping->host, and if the page is unlocked.  This is because another
885 * CPU could truncate the page off the mapping and then free the mapping.
886 *
887 * Usually, the page _is_ locked, or the caller is a user-space process which
888 * holds a reference on the inode by having an open file.
889 *
890 * In other cases, the page should be locked before running set_page_dirty().
891 */
892int set_page_dirty_lock(struct page *page)
893{
894	int ret;
895
896	lock_page_nosync(page);
897	ret = set_page_dirty(page);
898	unlock_page(page);
899	return ret;
900}
901EXPORT_SYMBOL(set_page_dirty_lock);
902
903/*
904 * Clear a page's dirty flag, while caring for dirty memory accounting.
905 * Returns true if the page was previously dirty.
906 *
907 * This is for preparing to put the page under writeout.  We leave the page
908 * tagged as dirty in the radix tree so that a concurrent write-for-sync
909 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
910 * implementation will run either set_page_writeback() or set_page_dirty(),
911 * at which stage we bring the page's dirty flag and radix-tree dirty tag
912 * back into sync.
913 *
914 * This incoherency between the page's dirty flag and radix-tree tag is
915 * unfortunate, but it only exists while the page is locked.
916 */
917int clear_page_dirty_for_io(struct page *page)
918{
919	struct address_space *mapping = page_mapping(page);
920
921	BUG_ON(!PageLocked(page));
922
923	ClearPageReclaim(page);
924	if (mapping && mapping_cap_account_dirty(mapping)) {
925		/*
926		 * Yes, Virginia, this is indeed insane.
927		 *
928		 * We use this sequence to make sure that
929		 *  (a) we account for dirty stats properly
930		 *  (b) we tell the low-level filesystem to
931		 *      mark the whole page dirty if it was
932		 *      dirty in a pagetable. Only to then
933		 *  (c) clean the page again and return 1 to
934		 *      cause the writeback.
935		 *
936		 * This way we avoid all nasty races with the
937		 * dirty bit in multiple places and clearing
938		 * them concurrently from different threads.
939		 *
940		 * Note! Normally the "set_page_dirty(page)"
941		 * has no effect on the actual dirty bit - since
942		 * that will already usually be set. But we
943		 * need the side effects, and it can help us
944		 * avoid races.
945		 *
946		 * We basically use the page "master dirty bit"
947		 * as a serialization point for all the different
948		 * threads doing their things.
949		 */
950		if (page_mkclean(page))
951			set_page_dirty(page);
952		/*
953		 * We carefully synchronise fault handlers against
954		 * installing a dirty pte and marking the page dirty
955		 * at this point. We do this by having them hold the
956		 * page lock at some point after installing their
957		 * pte, but before marking the page dirty.
958		 * Pages are always locked coming in here, so we get
959		 * the desired exclusion. See mm/memory.c:do_wp_page()
960		 * for more comments.
961		 */
962		if (TestClearPageDirty(page)) {
963			dec_zone_page_state(page, NR_FILE_DIRTY);
964			return 1;
965		}
966		return 0;
967	}
968	return TestClearPageDirty(page);
969}
970EXPORT_SYMBOL(clear_page_dirty_for_io);
971
972int test_clear_page_writeback(struct page *page)
973{
974	struct address_space *mapping = page_mapping(page);
975	int ret;
976
977	if (mapping) {
978		unsigned long flags;
979
980		write_lock_irqsave(&mapping->tree_lock, flags);
981		ret = TestClearPageWriteback(page);
982		if (ret)
983			radix_tree_tag_clear(&mapping->page_tree,
984						page_index(page),
985						PAGECACHE_TAG_WRITEBACK);
986		write_unlock_irqrestore(&mapping->tree_lock, flags);
987	} else {
988		ret = TestClearPageWriteback(page);
989	}
990	if (ret)
991		dec_zone_page_state(page, NR_WRITEBACK);
992	return ret;
993}
994
995int test_set_page_writeback(struct page *page)
996{
997	struct address_space *mapping = page_mapping(page);
998	int ret;
999
1000	if (mapping) {
1001		unsigned long flags;
1002
1003		write_lock_irqsave(&mapping->tree_lock, flags);
1004		ret = TestSetPageWriteback(page);
1005		if (!ret)
1006			radix_tree_tag_set(&mapping->page_tree,
1007						page_index(page),
1008						PAGECACHE_TAG_WRITEBACK);
1009		if (!PageDirty(page))
1010			radix_tree_tag_clear(&mapping->page_tree,
1011						page_index(page),
1012						PAGECACHE_TAG_DIRTY);
1013		write_unlock_irqrestore(&mapping->tree_lock, flags);
1014	} else {
1015		ret = TestSetPageWriteback(page);
1016	}
1017	if (!ret)
1018		inc_zone_page_state(page, NR_WRITEBACK);
1019	return ret;
1020
1021}
1022EXPORT_SYMBOL(test_set_page_writeback);
1023
1024/*
1025 * Return true if any of the pages in the mapping are marged with the
1026 * passed tag.
1027 */
1028int mapping_tagged(struct address_space *mapping, int tag)
1029{
1030	unsigned long flags;
1031	int ret;
1032
1033	read_lock_irqsave(&mapping->tree_lock, flags);
1034	ret = radix_tree_tagged(&mapping->page_tree, tag);
1035	read_unlock_irqrestore(&mapping->tree_lock, flags);
1036	return ret;
1037}
1038EXPORT_SYMBOL(mapping_tagged);
1039