page-writeback.c revision f61eaf9fc58f3b2d9e3ad424496620f3381ccd1e
1/*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002	akpm@zip.com.au
11 *		Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
25#include <linux/task_io_accounting_ops.h>
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
28#include <linux/rmap.h>
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
35#include <linux/buffer_head.h>
36#include <linux/pagevec.h>
37
38/*
39 * The maximum number of pages to writeout in a single bdflush/kupdate
40 * operation.  We do this so we don't hold I_SYNC against an inode for
41 * enormous amounts of time, which would block a userspace task which has
42 * been forced to throttle against that inode.  Also, the code reevaluates
43 * the dirty each time it has written this many pages.
44 */
45#define MAX_WRITEBACK_PAGES	1024
46
47/*
48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49 * will look to see if it needs to force writeback or throttling.
50 */
51static long ratelimit_pages = 32;
52
53/*
54 * When balance_dirty_pages decides that the caller needs to perform some
55 * non-background writeback, this is how many pages it will attempt to write.
56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57 * large amounts of I/O are submitted.
58 */
59static inline long sync_writeback_pages(void)
60{
61	return ratelimit_pages + ratelimit_pages / 2;
62}
63
64/* The following parameters are exported via /proc/sys/vm */
65
66/*
67 * Start background writeback (via pdflush) at this percentage
68 */
69int dirty_background_ratio = 5;
70
71/*
72 * The generator of dirty data starts writeback at this percentage
73 */
74int vm_dirty_ratio = 10;
75
76/*
77 * The interval between `kupdate'-style writebacks, in jiffies
78 */
79int dirty_writeback_interval = 5 * HZ;
80
81/*
82 * The longest number of jiffies for which data is allowed to remain dirty
83 */
84int dirty_expire_interval = 30 * HZ;
85
86/*
87 * Flag that makes the machine dump writes/reads and block dirtyings.
88 */
89int block_dump;
90
91/*
92 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
93 * a full sync is triggered after this time elapses without any disk activity.
94 */
95int laptop_mode;
96
97EXPORT_SYMBOL(laptop_mode);
98
99/* End of sysctl-exported parameters */
100
101
102static void background_writeout(unsigned long _min_pages);
103
104/*
105 * Scale the writeback cache size proportional to the relative writeout speeds.
106 *
107 * We do this by keeping a floating proportion between BDIs, based on page
108 * writeback completions [end_page_writeback()]. Those devices that write out
109 * pages fastest will get the larger share, while the slower will get a smaller
110 * share.
111 *
112 * We use page writeout completions because we are interested in getting rid of
113 * dirty pages. Having them written out is the primary goal.
114 *
115 * We introduce a concept of time, a period over which we measure these events,
116 * because demand can/will vary over time. The length of this period itself is
117 * measured in page writeback completions.
118 *
119 */
120static struct prop_descriptor vm_completions;
121static struct prop_descriptor vm_dirties;
122
123static unsigned long determine_dirtyable_memory(void);
124
125/*
126 * couple the period to the dirty_ratio:
127 *
128 *   period/2 ~ roundup_pow_of_two(dirty limit)
129 */
130static int calc_period_shift(void)
131{
132	unsigned long dirty_total;
133
134	dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
135	return 2 + ilog2(dirty_total - 1);
136}
137
138/*
139 * update the period when the dirty ratio changes.
140 */
141int dirty_ratio_handler(struct ctl_table *table, int write,
142		struct file *filp, void __user *buffer, size_t *lenp,
143		loff_t *ppos)
144{
145	int old_ratio = vm_dirty_ratio;
146	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
147	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
148		int shift = calc_period_shift();
149		prop_change_shift(&vm_completions, shift);
150		prop_change_shift(&vm_dirties, shift);
151	}
152	return ret;
153}
154
155/*
156 * Increment the BDI's writeout completion count and the global writeout
157 * completion count. Called from test_clear_page_writeback().
158 */
159static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
160{
161	__prop_inc_percpu(&vm_completions, &bdi->completions);
162}
163
164static inline void task_dirty_inc(struct task_struct *tsk)
165{
166	prop_inc_single(&vm_dirties, &tsk->dirties);
167}
168
169/*
170 * Obtain an accurate fraction of the BDI's portion.
171 */
172static void bdi_writeout_fraction(struct backing_dev_info *bdi,
173		long *numerator, long *denominator)
174{
175	if (bdi_cap_writeback_dirty(bdi)) {
176		prop_fraction_percpu(&vm_completions, &bdi->completions,
177				numerator, denominator);
178	} else {
179		*numerator = 0;
180		*denominator = 1;
181	}
182}
183
184/*
185 * Clip the earned share of dirty pages to that which is actually available.
186 * This avoids exceeding the total dirty_limit when the floating averages
187 * fluctuate too quickly.
188 */
189static void
190clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
191{
192	long avail_dirty;
193
194	avail_dirty = dirty -
195		(global_page_state(NR_FILE_DIRTY) +
196		 global_page_state(NR_WRITEBACK) +
197		 global_page_state(NR_UNSTABLE_NFS));
198
199	if (avail_dirty < 0)
200		avail_dirty = 0;
201
202	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
203		bdi_stat(bdi, BDI_WRITEBACK);
204
205	*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
206}
207
208static inline void task_dirties_fraction(struct task_struct *tsk,
209		long *numerator, long *denominator)
210{
211	prop_fraction_single(&vm_dirties, &tsk->dirties,
212				numerator, denominator);
213}
214
215/*
216 * scale the dirty limit
217 *
218 * task specific dirty limit:
219 *
220 *   dirty -= (dirty/8) * p_{t}
221 */
222static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
223{
224	long numerator, denominator;
225	long dirty = *pdirty;
226	u64 inv = dirty >> 3;
227
228	task_dirties_fraction(tsk, &numerator, &denominator);
229	inv *= numerator;
230	do_div(inv, denominator);
231
232	dirty -= inv;
233	if (dirty < *pdirty/2)
234		dirty = *pdirty/2;
235
236	*pdirty = dirty;
237}
238
239/*
240 * Work out the current dirty-memory clamping and background writeout
241 * thresholds.
242 *
243 * The main aim here is to lower them aggressively if there is a lot of mapped
244 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
245 * pages.  It is better to clamp down on writers than to start swapping, and
246 * performing lots of scanning.
247 *
248 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
249 *
250 * We don't permit the clamping level to fall below 5% - that is getting rather
251 * excessive.
252 *
253 * We make sure that the background writeout level is below the adjusted
254 * clamping level.
255 */
256
257static unsigned long highmem_dirtyable_memory(unsigned long total)
258{
259#ifdef CONFIG_HIGHMEM
260	int node;
261	unsigned long x = 0;
262
263	for_each_node_state(node, N_HIGH_MEMORY) {
264		struct zone *z =
265			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
266
267		x += zone_page_state(z, NR_FREE_PAGES)
268			+ zone_page_state(z, NR_INACTIVE)
269			+ zone_page_state(z, NR_ACTIVE);
270	}
271	/*
272	 * Make sure that the number of highmem pages is never larger
273	 * than the number of the total dirtyable memory. This can only
274	 * occur in very strange VM situations but we want to make sure
275	 * that this does not occur.
276	 */
277	return min(x, total);
278#else
279	return 0;
280#endif
281}
282
283static unsigned long determine_dirtyable_memory(void)
284{
285	unsigned long x;
286
287	x = global_page_state(NR_FREE_PAGES)
288		+ global_page_state(NR_INACTIVE)
289		+ global_page_state(NR_ACTIVE);
290	x -= highmem_dirtyable_memory(x);
291	return x + 1;	/* Ensure that we never return 0 */
292}
293
294static void
295get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
296		 struct backing_dev_info *bdi)
297{
298	int background_ratio;		/* Percentages */
299	int dirty_ratio;
300	long background;
301	long dirty;
302	unsigned long available_memory = determine_dirtyable_memory();
303	struct task_struct *tsk;
304
305	dirty_ratio = vm_dirty_ratio;
306	if (dirty_ratio < 5)
307		dirty_ratio = 5;
308
309	background_ratio = dirty_background_ratio;
310	if (background_ratio >= dirty_ratio)
311		background_ratio = dirty_ratio / 2;
312
313	background = (background_ratio * available_memory) / 100;
314	dirty = (dirty_ratio * available_memory) / 100;
315	tsk = current;
316	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
317		background += background / 4;
318		dirty += dirty / 4;
319	}
320	*pbackground = background;
321	*pdirty = dirty;
322
323	if (bdi) {
324		u64 bdi_dirty = dirty;
325		long numerator, denominator;
326
327		/*
328		 * Calculate this BDI's share of the dirty ratio.
329		 */
330		bdi_writeout_fraction(bdi, &numerator, &denominator);
331
332		bdi_dirty *= numerator;
333		do_div(bdi_dirty, denominator);
334
335		*pbdi_dirty = bdi_dirty;
336		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
337		task_dirty_limit(current, pbdi_dirty);
338	}
339}
340
341/*
342 * balance_dirty_pages() must be called by processes which are generating dirty
343 * data.  It looks at the number of dirty pages in the machine and will force
344 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
345 * If we're over `background_thresh' then pdflush is woken to perform some
346 * writeout.
347 */
348static void balance_dirty_pages(struct address_space *mapping)
349{
350	long nr_reclaimable, bdi_nr_reclaimable;
351	long nr_writeback, bdi_nr_writeback;
352	long background_thresh;
353	long dirty_thresh;
354	long bdi_thresh;
355	unsigned long pages_written = 0;
356	unsigned long write_chunk = sync_writeback_pages();
357
358	struct backing_dev_info *bdi = mapping->backing_dev_info;
359
360	for (;;) {
361		struct writeback_control wbc = {
362			.bdi		= bdi,
363			.sync_mode	= WB_SYNC_NONE,
364			.older_than_this = NULL,
365			.nr_to_write	= write_chunk,
366			.range_cyclic	= 1,
367		};
368
369		get_dirty_limits(&background_thresh, &dirty_thresh,
370				&bdi_thresh, bdi);
371
372		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
373					global_page_state(NR_UNSTABLE_NFS);
374		nr_writeback = global_page_state(NR_WRITEBACK);
375
376		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
377		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
378
379		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
380			break;
381
382		/*
383		 * Throttle it only when the background writeback cannot
384		 * catch-up. This avoids (excessively) small writeouts
385		 * when the bdi limits are ramping up.
386		 */
387		if (nr_reclaimable + nr_writeback <
388				(background_thresh + dirty_thresh) / 2)
389			break;
390
391		if (!bdi->dirty_exceeded)
392			bdi->dirty_exceeded = 1;
393
394		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
395		 * Unstable writes are a feature of certain networked
396		 * filesystems (i.e. NFS) in which data may have been
397		 * written to the server's write cache, but has not yet
398		 * been flushed to permanent storage.
399		 */
400		if (bdi_nr_reclaimable) {
401			writeback_inodes(&wbc);
402			pages_written += write_chunk - wbc.nr_to_write;
403			get_dirty_limits(&background_thresh, &dirty_thresh,
404				       &bdi_thresh, bdi);
405		}
406
407		/*
408		 * In order to avoid the stacked BDI deadlock we need
409		 * to ensure we accurately count the 'dirty' pages when
410		 * the threshold is low.
411		 *
412		 * Otherwise it would be possible to get thresh+n pages
413		 * reported dirty, even though there are thresh-m pages
414		 * actually dirty; with m+n sitting in the percpu
415		 * deltas.
416		 */
417		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
418			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
419			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
420		} else if (bdi_nr_reclaimable) {
421			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
422			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
423		}
424
425		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
426			break;
427		if (pages_written >= write_chunk)
428			break;		/* We've done our duty */
429
430		congestion_wait(WRITE, HZ/10);
431	}
432
433	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
434			bdi->dirty_exceeded)
435		bdi->dirty_exceeded = 0;
436
437	if (writeback_in_progress(bdi))
438		return;		/* pdflush is already working this queue */
439
440	/*
441	 * In laptop mode, we wait until hitting the higher threshold before
442	 * starting background writeout, and then write out all the way down
443	 * to the lower threshold.  So slow writers cause minimal disk activity.
444	 *
445	 * In normal mode, we start background writeout at the lower
446	 * background_thresh, to keep the amount of dirty memory low.
447	 */
448	if ((laptop_mode && pages_written) ||
449			(!laptop_mode && (global_page_state(NR_FILE_DIRTY)
450					  + global_page_state(NR_UNSTABLE_NFS)
451					  > background_thresh)))
452		pdflush_operation(background_writeout, 0);
453}
454
455void set_page_dirty_balance(struct page *page, int page_mkwrite)
456{
457	if (set_page_dirty(page) || page_mkwrite) {
458		struct address_space *mapping = page_mapping(page);
459
460		if (mapping)
461			balance_dirty_pages_ratelimited(mapping);
462	}
463}
464
465/**
466 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
467 * @mapping: address_space which was dirtied
468 * @nr_pages_dirtied: number of pages which the caller has just dirtied
469 *
470 * Processes which are dirtying memory should call in here once for each page
471 * which was newly dirtied.  The function will periodically check the system's
472 * dirty state and will initiate writeback if needed.
473 *
474 * On really big machines, get_writeback_state is expensive, so try to avoid
475 * calling it too often (ratelimiting).  But once we're over the dirty memory
476 * limit we decrease the ratelimiting by a lot, to prevent individual processes
477 * from overshooting the limit by (ratelimit_pages) each.
478 */
479void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
480					unsigned long nr_pages_dirtied)
481{
482	static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
483	unsigned long ratelimit;
484	unsigned long *p;
485
486	ratelimit = ratelimit_pages;
487	if (mapping->backing_dev_info->dirty_exceeded)
488		ratelimit = 8;
489
490	/*
491	 * Check the rate limiting. Also, we do not want to throttle real-time
492	 * tasks in balance_dirty_pages(). Period.
493	 */
494	preempt_disable();
495	p =  &__get_cpu_var(ratelimits);
496	*p += nr_pages_dirtied;
497	if (unlikely(*p >= ratelimit)) {
498		*p = 0;
499		preempt_enable();
500		balance_dirty_pages(mapping);
501		return;
502	}
503	preempt_enable();
504}
505EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
506
507void throttle_vm_writeout(gfp_t gfp_mask)
508{
509	long background_thresh;
510	long dirty_thresh;
511
512        for ( ; ; ) {
513		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
514
515                /*
516                 * Boost the allowable dirty threshold a bit for page
517                 * allocators so they don't get DoS'ed by heavy writers
518                 */
519                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
520
521                if (global_page_state(NR_UNSTABLE_NFS) +
522			global_page_state(NR_WRITEBACK) <= dirty_thresh)
523                        	break;
524                congestion_wait(WRITE, HZ/10);
525
526		/*
527		 * The caller might hold locks which can prevent IO completion
528		 * or progress in the filesystem.  So we cannot just sit here
529		 * waiting for IO to complete.
530		 */
531		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
532			break;
533        }
534}
535
536/*
537 * writeback at least _min_pages, and keep writing until the amount of dirty
538 * memory is less than the background threshold, or until we're all clean.
539 */
540static void background_writeout(unsigned long _min_pages)
541{
542	long min_pages = _min_pages;
543	struct writeback_control wbc = {
544		.bdi		= NULL,
545		.sync_mode	= WB_SYNC_NONE,
546		.older_than_this = NULL,
547		.nr_to_write	= 0,
548		.nonblocking	= 1,
549		.range_cyclic	= 1,
550	};
551
552	for ( ; ; ) {
553		long background_thresh;
554		long dirty_thresh;
555
556		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
557		if (global_page_state(NR_FILE_DIRTY) +
558			global_page_state(NR_UNSTABLE_NFS) < background_thresh
559				&& min_pages <= 0)
560			break;
561		wbc.encountered_congestion = 0;
562		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
563		wbc.pages_skipped = 0;
564		writeback_inodes(&wbc);
565		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
566		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
567			/* Wrote less than expected */
568			congestion_wait(WRITE, HZ/10);
569			if (!wbc.encountered_congestion)
570				break;
571		}
572	}
573}
574
575/*
576 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
577 * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
578 * -1 if all pdflush threads were busy.
579 */
580int wakeup_pdflush(long nr_pages)
581{
582	if (nr_pages == 0)
583		nr_pages = global_page_state(NR_FILE_DIRTY) +
584				global_page_state(NR_UNSTABLE_NFS);
585	return pdflush_operation(background_writeout, nr_pages);
586}
587
588static void wb_timer_fn(unsigned long unused);
589static void laptop_timer_fn(unsigned long unused);
590
591static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
592static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
593
594/*
595 * Periodic writeback of "old" data.
596 *
597 * Define "old": the first time one of an inode's pages is dirtied, we mark the
598 * dirtying-time in the inode's address_space.  So this periodic writeback code
599 * just walks the superblock inode list, writing back any inodes which are
600 * older than a specific point in time.
601 *
602 * Try to run once per dirty_writeback_interval.  But if a writeback event
603 * takes longer than a dirty_writeback_interval interval, then leave a
604 * one-second gap.
605 *
606 * older_than_this takes precedence over nr_to_write.  So we'll only write back
607 * all dirty pages if they are all attached to "old" mappings.
608 */
609static void wb_kupdate(unsigned long arg)
610{
611	unsigned long oldest_jif;
612	unsigned long start_jif;
613	unsigned long next_jif;
614	long nr_to_write;
615	struct writeback_control wbc = {
616		.bdi		= NULL,
617		.sync_mode	= WB_SYNC_NONE,
618		.older_than_this = &oldest_jif,
619		.nr_to_write	= 0,
620		.nonblocking	= 1,
621		.for_kupdate	= 1,
622		.range_cyclic	= 1,
623	};
624
625	sync_supers();
626
627	oldest_jif = jiffies - dirty_expire_interval;
628	start_jif = jiffies;
629	next_jif = start_jif + dirty_writeback_interval;
630	nr_to_write = global_page_state(NR_FILE_DIRTY) +
631			global_page_state(NR_UNSTABLE_NFS) +
632			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
633	while (nr_to_write > 0) {
634		wbc.encountered_congestion = 0;
635		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
636		writeback_inodes(&wbc);
637		if (wbc.nr_to_write > 0) {
638			if (wbc.encountered_congestion)
639				congestion_wait(WRITE, HZ/10);
640			else
641				break;	/* All the old data is written */
642		}
643		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
644	}
645	if (time_before(next_jif, jiffies + HZ))
646		next_jif = jiffies + HZ;
647	if (dirty_writeback_interval)
648		mod_timer(&wb_timer, next_jif);
649}
650
651/*
652 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
653 */
654int dirty_writeback_centisecs_handler(ctl_table *table, int write,
655	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
656{
657	proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
658	if (dirty_writeback_interval)
659		mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
660	else
661		del_timer(&wb_timer);
662	return 0;
663}
664
665static void wb_timer_fn(unsigned long unused)
666{
667	if (pdflush_operation(wb_kupdate, 0) < 0)
668		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
669}
670
671static void laptop_flush(unsigned long unused)
672{
673	sys_sync();
674}
675
676static void laptop_timer_fn(unsigned long unused)
677{
678	pdflush_operation(laptop_flush, 0);
679}
680
681/*
682 * We've spun up the disk and we're in laptop mode: schedule writeback
683 * of all dirty data a few seconds from now.  If the flush is already scheduled
684 * then push it back - the user is still using the disk.
685 */
686void laptop_io_completion(void)
687{
688	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
689}
690
691/*
692 * We're in laptop mode and we've just synced. The sync's writes will have
693 * caused another writeback to be scheduled by laptop_io_completion.
694 * Nothing needs to be written back anymore, so we unschedule the writeback.
695 */
696void laptop_sync_completion(void)
697{
698	del_timer(&laptop_mode_wb_timer);
699}
700
701/*
702 * If ratelimit_pages is too high then we can get into dirty-data overload
703 * if a large number of processes all perform writes at the same time.
704 * If it is too low then SMP machines will call the (expensive)
705 * get_writeback_state too often.
706 *
707 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
708 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
709 * thresholds before writeback cuts in.
710 *
711 * But the limit should not be set too high.  Because it also controls the
712 * amount of memory which the balance_dirty_pages() caller has to write back.
713 * If this is too large then the caller will block on the IO queue all the
714 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
715 * will write six megabyte chunks, max.
716 */
717
718void writeback_set_ratelimit(void)
719{
720	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
721	if (ratelimit_pages < 16)
722		ratelimit_pages = 16;
723	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
724		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
725}
726
727static int __cpuinit
728ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
729{
730	writeback_set_ratelimit();
731	return NOTIFY_DONE;
732}
733
734static struct notifier_block __cpuinitdata ratelimit_nb = {
735	.notifier_call	= ratelimit_handler,
736	.next		= NULL,
737};
738
739/*
740 * Called early on to tune the page writeback dirty limits.
741 *
742 * We used to scale dirty pages according to how total memory
743 * related to pages that could be allocated for buffers (by
744 * comparing nr_free_buffer_pages() to vm_total_pages.
745 *
746 * However, that was when we used "dirty_ratio" to scale with
747 * all memory, and we don't do that any more. "dirty_ratio"
748 * is now applied to total non-HIGHPAGE memory (by subtracting
749 * totalhigh_pages from vm_total_pages), and as such we can't
750 * get into the old insane situation any more where we had
751 * large amounts of dirty pages compared to a small amount of
752 * non-HIGHMEM memory.
753 *
754 * But we might still want to scale the dirty_ratio by how
755 * much memory the box has..
756 */
757void __init page_writeback_init(void)
758{
759	int shift;
760
761	mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
762	writeback_set_ratelimit();
763	register_cpu_notifier(&ratelimit_nb);
764
765	shift = calc_period_shift();
766	prop_descriptor_init(&vm_completions, shift);
767	prop_descriptor_init(&vm_dirties, shift);
768}
769
770/**
771 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
772 * @mapping: address space structure to write
773 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
774 * @writepage: function called for each page
775 * @data: data passed to writepage function
776 *
777 * If a page is already under I/O, write_cache_pages() skips it, even
778 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
779 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
780 * and msync() need to guarantee that all the data which was dirty at the time
781 * the call was made get new I/O started against them.  If wbc->sync_mode is
782 * WB_SYNC_ALL then we were called for data integrity and we must wait for
783 * existing IO to complete.
784 */
785int write_cache_pages(struct address_space *mapping,
786		      struct writeback_control *wbc, writepage_t writepage,
787		      void *data)
788{
789	struct backing_dev_info *bdi = mapping->backing_dev_info;
790	int ret = 0;
791	int done = 0;
792	struct pagevec pvec;
793	int nr_pages;
794	pgoff_t index;
795	pgoff_t end;		/* Inclusive */
796	int scanned = 0;
797	int range_whole = 0;
798
799	if (wbc->nonblocking && bdi_write_congested(bdi)) {
800		wbc->encountered_congestion = 1;
801		return 0;
802	}
803
804	pagevec_init(&pvec, 0);
805	if (wbc->range_cyclic) {
806		index = mapping->writeback_index; /* Start from prev offset */
807		end = -1;
808	} else {
809		index = wbc->range_start >> PAGE_CACHE_SHIFT;
810		end = wbc->range_end >> PAGE_CACHE_SHIFT;
811		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
812			range_whole = 1;
813		scanned = 1;
814	}
815retry:
816	while (!done && (index <= end) &&
817	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
818					      PAGECACHE_TAG_DIRTY,
819					      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
820		unsigned i;
821
822		scanned = 1;
823		for (i = 0; i < nr_pages; i++) {
824			struct page *page = pvec.pages[i];
825
826			/*
827			 * At this point we hold neither mapping->tree_lock nor
828			 * lock on the page itself: the page may be truncated or
829			 * invalidated (changing page->mapping to NULL), or even
830			 * swizzled back from swapper_space to tmpfs file
831			 * mapping
832			 */
833			lock_page(page);
834
835			if (unlikely(page->mapping != mapping)) {
836				unlock_page(page);
837				continue;
838			}
839
840			if (!wbc->range_cyclic && page->index > end) {
841				done = 1;
842				unlock_page(page);
843				continue;
844			}
845
846			if (wbc->sync_mode != WB_SYNC_NONE)
847				wait_on_page_writeback(page);
848
849			if (PageWriteback(page) ||
850			    !clear_page_dirty_for_io(page)) {
851				unlock_page(page);
852				continue;
853			}
854
855			ret = (*writepage)(page, wbc, data);
856
857			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
858				unlock_page(page);
859				ret = 0;
860			}
861			if (ret || (--(wbc->nr_to_write) <= 0))
862				done = 1;
863			if (wbc->nonblocking && bdi_write_congested(bdi)) {
864				wbc->encountered_congestion = 1;
865				done = 1;
866			}
867		}
868		pagevec_release(&pvec);
869		cond_resched();
870	}
871	if (!scanned && !done) {
872		/*
873		 * We hit the last page and there is more work to be done: wrap
874		 * back to the start of the file
875		 */
876		scanned = 1;
877		index = 0;
878		goto retry;
879	}
880	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
881		mapping->writeback_index = index;
882	return ret;
883}
884EXPORT_SYMBOL(write_cache_pages);
885
886/*
887 * Function used by generic_writepages to call the real writepage
888 * function and set the mapping flags on error
889 */
890static int __writepage(struct page *page, struct writeback_control *wbc,
891		       void *data)
892{
893	struct address_space *mapping = data;
894	int ret = mapping->a_ops->writepage(page, wbc);
895	mapping_set_error(mapping, ret);
896	return ret;
897}
898
899/**
900 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
901 * @mapping: address space structure to write
902 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
903 *
904 * This is a library function, which implements the writepages()
905 * address_space_operation.
906 */
907int generic_writepages(struct address_space *mapping,
908		       struct writeback_control *wbc)
909{
910	/* deal with chardevs and other special file */
911	if (!mapping->a_ops->writepage)
912		return 0;
913
914	return write_cache_pages(mapping, wbc, __writepage, mapping);
915}
916
917EXPORT_SYMBOL(generic_writepages);
918
919int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
920{
921	int ret;
922
923	if (wbc->nr_to_write <= 0)
924		return 0;
925	wbc->for_writepages = 1;
926	if (mapping->a_ops->writepages)
927		ret = mapping->a_ops->writepages(mapping, wbc);
928	else
929		ret = generic_writepages(mapping, wbc);
930	wbc->for_writepages = 0;
931	return ret;
932}
933
934/**
935 * write_one_page - write out a single page and optionally wait on I/O
936 * @page: the page to write
937 * @wait: if true, wait on writeout
938 *
939 * The page must be locked by the caller and will be unlocked upon return.
940 *
941 * write_one_page() returns a negative error code if I/O failed.
942 */
943int write_one_page(struct page *page, int wait)
944{
945	struct address_space *mapping = page->mapping;
946	int ret = 0;
947	struct writeback_control wbc = {
948		.sync_mode = WB_SYNC_ALL,
949		.nr_to_write = 1,
950	};
951
952	BUG_ON(!PageLocked(page));
953
954	if (wait)
955		wait_on_page_writeback(page);
956
957	if (clear_page_dirty_for_io(page)) {
958		page_cache_get(page);
959		ret = mapping->a_ops->writepage(page, &wbc);
960		if (ret == 0 && wait) {
961			wait_on_page_writeback(page);
962			if (PageError(page))
963				ret = -EIO;
964		}
965		page_cache_release(page);
966	} else {
967		unlock_page(page);
968	}
969	return ret;
970}
971EXPORT_SYMBOL(write_one_page);
972
973/*
974 * For address_spaces which do not use buffers nor write back.
975 */
976int __set_page_dirty_no_writeback(struct page *page)
977{
978	if (!PageDirty(page))
979		SetPageDirty(page);
980	return 0;
981}
982
983/*
984 * For address_spaces which do not use buffers.  Just tag the page as dirty in
985 * its radix tree.
986 *
987 * This is also used when a single buffer is being dirtied: we want to set the
988 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
989 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
990 *
991 * Most callers have locked the page, which pins the address_space in memory.
992 * But zap_pte_range() does not lock the page, however in that case the
993 * mapping is pinned by the vma's ->vm_file reference.
994 *
995 * We take care to handle the case where the page was truncated from the
996 * mapping by re-checking page_mapping() inside tree_lock.
997 */
998int __set_page_dirty_nobuffers(struct page *page)
999{
1000	if (!TestSetPageDirty(page)) {
1001		struct address_space *mapping = page_mapping(page);
1002		struct address_space *mapping2;
1003
1004		if (!mapping)
1005			return 1;
1006
1007		write_lock_irq(&mapping->tree_lock);
1008		mapping2 = page_mapping(page);
1009		if (mapping2) { /* Race with truncate? */
1010			BUG_ON(mapping2 != mapping);
1011			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1012			if (mapping_cap_account_dirty(mapping)) {
1013				__inc_zone_page_state(page, NR_FILE_DIRTY);
1014				__inc_bdi_stat(mapping->backing_dev_info,
1015						BDI_RECLAIMABLE);
1016				task_io_account_write(PAGE_CACHE_SIZE);
1017			}
1018			radix_tree_tag_set(&mapping->page_tree,
1019				page_index(page), PAGECACHE_TAG_DIRTY);
1020		}
1021		write_unlock_irq(&mapping->tree_lock);
1022		if (mapping->host) {
1023			/* !PageAnon && !swapper_space */
1024			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1025		}
1026		return 1;
1027	}
1028	return 0;
1029}
1030EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1031
1032/*
1033 * When a writepage implementation decides that it doesn't want to write this
1034 * page for some reason, it should redirty the locked page via
1035 * redirty_page_for_writepage() and it should then unlock the page and return 0
1036 */
1037int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1038{
1039	wbc->pages_skipped++;
1040	return __set_page_dirty_nobuffers(page);
1041}
1042EXPORT_SYMBOL(redirty_page_for_writepage);
1043
1044/*
1045 * If the mapping doesn't provide a set_page_dirty a_op, then
1046 * just fall through and assume that it wants buffer_heads.
1047 */
1048static int __set_page_dirty(struct page *page)
1049{
1050	struct address_space *mapping = page_mapping(page);
1051
1052	if (likely(mapping)) {
1053		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1054#ifdef CONFIG_BLOCK
1055		if (!spd)
1056			spd = __set_page_dirty_buffers;
1057#endif
1058		return (*spd)(page);
1059	}
1060	if (!PageDirty(page)) {
1061		if (!TestSetPageDirty(page))
1062			return 1;
1063	}
1064	return 0;
1065}
1066
1067int fastcall set_page_dirty(struct page *page)
1068{
1069	int ret = __set_page_dirty(page);
1070	if (ret)
1071		task_dirty_inc(current);
1072	return ret;
1073}
1074EXPORT_SYMBOL(set_page_dirty);
1075
1076/*
1077 * set_page_dirty() is racy if the caller has no reference against
1078 * page->mapping->host, and if the page is unlocked.  This is because another
1079 * CPU could truncate the page off the mapping and then free the mapping.
1080 *
1081 * Usually, the page _is_ locked, or the caller is a user-space process which
1082 * holds a reference on the inode by having an open file.
1083 *
1084 * In other cases, the page should be locked before running set_page_dirty().
1085 */
1086int set_page_dirty_lock(struct page *page)
1087{
1088	int ret;
1089
1090	lock_page_nosync(page);
1091	ret = set_page_dirty(page);
1092	unlock_page(page);
1093	return ret;
1094}
1095EXPORT_SYMBOL(set_page_dirty_lock);
1096
1097/*
1098 * Clear a page's dirty flag, while caring for dirty memory accounting.
1099 * Returns true if the page was previously dirty.
1100 *
1101 * This is for preparing to put the page under writeout.  We leave the page
1102 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1103 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1104 * implementation will run either set_page_writeback() or set_page_dirty(),
1105 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1106 * back into sync.
1107 *
1108 * This incoherency between the page's dirty flag and radix-tree tag is
1109 * unfortunate, but it only exists while the page is locked.
1110 */
1111int clear_page_dirty_for_io(struct page *page)
1112{
1113	struct address_space *mapping = page_mapping(page);
1114
1115	BUG_ON(!PageLocked(page));
1116
1117	ClearPageReclaim(page);
1118	if (mapping && mapping_cap_account_dirty(mapping)) {
1119		/*
1120		 * Yes, Virginia, this is indeed insane.
1121		 *
1122		 * We use this sequence to make sure that
1123		 *  (a) we account for dirty stats properly
1124		 *  (b) we tell the low-level filesystem to
1125		 *      mark the whole page dirty if it was
1126		 *      dirty in a pagetable. Only to then
1127		 *  (c) clean the page again and return 1 to
1128		 *      cause the writeback.
1129		 *
1130		 * This way we avoid all nasty races with the
1131		 * dirty bit in multiple places and clearing
1132		 * them concurrently from different threads.
1133		 *
1134		 * Note! Normally the "set_page_dirty(page)"
1135		 * has no effect on the actual dirty bit - since
1136		 * that will already usually be set. But we
1137		 * need the side effects, and it can help us
1138		 * avoid races.
1139		 *
1140		 * We basically use the page "master dirty bit"
1141		 * as a serialization point for all the different
1142		 * threads doing their things.
1143		 */
1144		if (page_mkclean(page))
1145			set_page_dirty(page);
1146		/*
1147		 * We carefully synchronise fault handlers against
1148		 * installing a dirty pte and marking the page dirty
1149		 * at this point. We do this by having them hold the
1150		 * page lock at some point after installing their
1151		 * pte, but before marking the page dirty.
1152		 * Pages are always locked coming in here, so we get
1153		 * the desired exclusion. See mm/memory.c:do_wp_page()
1154		 * for more comments.
1155		 */
1156		if (TestClearPageDirty(page)) {
1157			dec_zone_page_state(page, NR_FILE_DIRTY);
1158			dec_bdi_stat(mapping->backing_dev_info,
1159					BDI_RECLAIMABLE);
1160			return 1;
1161		}
1162		return 0;
1163	}
1164	return TestClearPageDirty(page);
1165}
1166EXPORT_SYMBOL(clear_page_dirty_for_io);
1167
1168int test_clear_page_writeback(struct page *page)
1169{
1170	struct address_space *mapping = page_mapping(page);
1171	int ret;
1172
1173	if (mapping) {
1174		struct backing_dev_info *bdi = mapping->backing_dev_info;
1175		unsigned long flags;
1176
1177		write_lock_irqsave(&mapping->tree_lock, flags);
1178		ret = TestClearPageWriteback(page);
1179		if (ret) {
1180			radix_tree_tag_clear(&mapping->page_tree,
1181						page_index(page),
1182						PAGECACHE_TAG_WRITEBACK);
1183			if (bdi_cap_writeback_dirty(bdi)) {
1184				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1185				__bdi_writeout_inc(bdi);
1186			}
1187		}
1188		write_unlock_irqrestore(&mapping->tree_lock, flags);
1189	} else {
1190		ret = TestClearPageWriteback(page);
1191	}
1192	if (ret)
1193		dec_zone_page_state(page, NR_WRITEBACK);
1194	return ret;
1195}
1196
1197int test_set_page_writeback(struct page *page)
1198{
1199	struct address_space *mapping = page_mapping(page);
1200	int ret;
1201
1202	if (mapping) {
1203		struct backing_dev_info *bdi = mapping->backing_dev_info;
1204		unsigned long flags;
1205
1206		write_lock_irqsave(&mapping->tree_lock, flags);
1207		ret = TestSetPageWriteback(page);
1208		if (!ret) {
1209			radix_tree_tag_set(&mapping->page_tree,
1210						page_index(page),
1211						PAGECACHE_TAG_WRITEBACK);
1212			if (bdi_cap_writeback_dirty(bdi))
1213				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1214		}
1215		if (!PageDirty(page))
1216			radix_tree_tag_clear(&mapping->page_tree,
1217						page_index(page),
1218						PAGECACHE_TAG_DIRTY);
1219		write_unlock_irqrestore(&mapping->tree_lock, flags);
1220	} else {
1221		ret = TestSetPageWriteback(page);
1222	}
1223	if (!ret)
1224		inc_zone_page_state(page, NR_WRITEBACK);
1225	return ret;
1226
1227}
1228EXPORT_SYMBOL(test_set_page_writeback);
1229
1230/*
1231 * Return true if any of the pages in the mapping are marked with the
1232 * passed tag.
1233 */
1234int mapping_tagged(struct address_space *mapping, int tag)
1235{
1236	int ret;
1237	rcu_read_lock();
1238	ret = radix_tree_tagged(&mapping->page_tree, tag);
1239	rcu_read_unlock();
1240	return ret;
1241}
1242EXPORT_SYMBOL(mapping_tagged);
1243