page_alloc.c revision 070f80326a215d8e6c4fd6f175e28eb446c492bc
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
36#include <linux/memory_hotplug.h>
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
39#include <linux/mempolicy.h>
40
41#include <asm/tlbflush.h>
42#include "internal.h"
43
44/*
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
47 */
48nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
49EXPORT_SYMBOL(node_online_map);
50nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
51EXPORT_SYMBOL(node_possible_map);
52struct pglist_data *pgdat_list __read_mostly;
53unsigned long totalram_pages __read_mostly;
54unsigned long totalhigh_pages __read_mostly;
55long nr_swap_pages;
56
57static void fastcall free_hot_cold_page(struct page *page, int cold);
58
59/*
60 * results with 256, 32 in the lowmem_reserve sysctl:
61 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
62 *	1G machine -> (16M dma, 784M normal, 224M high)
63 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
64 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
65 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
66 *
67 * TBD: should special case ZONE_DMA32 machines here - in those we normally
68 * don't need any ZONE_NORMAL reservation
69 */
70int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
71
72EXPORT_SYMBOL(totalram_pages);
73
74/*
75 * Used by page_zone() to look up the address of the struct zone whose
76 * id is encoded in the upper bits of page->flags
77 */
78struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
79EXPORT_SYMBOL(zone_table);
80
81static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
82int min_free_kbytes = 1024;
83
84unsigned long __initdata nr_kernel_pages;
85unsigned long __initdata nr_all_pages;
86
87#ifdef CONFIG_DEBUG_VM
88static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
89{
90	int ret = 0;
91	unsigned seq;
92	unsigned long pfn = page_to_pfn(page);
93
94	do {
95		seq = zone_span_seqbegin(zone);
96		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
97			ret = 1;
98		else if (pfn < zone->zone_start_pfn)
99			ret = 1;
100	} while (zone_span_seqretry(zone, seq));
101
102	return ret;
103}
104
105static int page_is_consistent(struct zone *zone, struct page *page)
106{
107#ifdef CONFIG_HOLES_IN_ZONE
108	if (!pfn_valid(page_to_pfn(page)))
109		return 0;
110#endif
111	if (zone != page_zone(page))
112		return 0;
113
114	return 1;
115}
116/*
117 * Temporary debugging check for pages not lying within a given zone.
118 */
119static int bad_range(struct zone *zone, struct page *page)
120{
121	if (page_outside_zone_boundaries(zone, page))
122		return 1;
123	if (!page_is_consistent(zone, page))
124		return 1;
125
126	return 0;
127}
128
129#else
130static inline int bad_range(struct zone *zone, struct page *page)
131{
132	return 0;
133}
134#endif
135
136static void bad_page(struct page *page)
137{
138	printk(KERN_EMERG "Bad page state in process '%s'\n"
139		"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
140		"Trying to fix it up, but a reboot is needed\n"
141		"Backtrace:\n",
142		current->comm, page, (int)(2*sizeof(unsigned long)),
143		(unsigned long)page->flags, page->mapping,
144		page_mapcount(page), page_count(page));
145	dump_stack();
146	page->flags &= ~(1 << PG_lru	|
147			1 << PG_private |
148			1 << PG_locked	|
149			1 << PG_active	|
150			1 << PG_dirty	|
151			1 << PG_reclaim |
152			1 << PG_slab    |
153			1 << PG_swapcache |
154			1 << PG_writeback );
155	set_page_count(page, 0);
156	reset_page_mapcount(page);
157	page->mapping = NULL;
158	add_taint(TAINT_BAD_PAGE);
159}
160
161/*
162 * Higher-order pages are called "compound pages".  They are structured thusly:
163 *
164 * The first PAGE_SIZE page is called the "head page".
165 *
166 * The remaining PAGE_SIZE pages are called "tail pages".
167 *
168 * All pages have PG_compound set.  All pages have their ->private pointing at
169 * the head page (even the head page has this).
170 *
171 * The first tail page's ->mapping, if non-zero, holds the address of the
172 * compound page's put_page() function.
173 *
174 * The order of the allocation is stored in the first tail page's ->index
175 * This is only for debug at present.  This usage means that zero-order pages
176 * may not be compound.
177 */
178static void prep_compound_page(struct page *page, unsigned long order)
179{
180	int i;
181	int nr_pages = 1 << order;
182
183	page[1].mapping = NULL;
184	page[1].index = order;
185	for (i = 0; i < nr_pages; i++) {
186		struct page *p = page + i;
187
188		SetPageCompound(p);
189		set_page_private(p, (unsigned long)page);
190	}
191}
192
193static void destroy_compound_page(struct page *page, unsigned long order)
194{
195	int i;
196	int nr_pages = 1 << order;
197
198	if (unlikely(page[1].index != order))
199		bad_page(page);
200
201	for (i = 0; i < nr_pages; i++) {
202		struct page *p = page + i;
203
204		if (unlikely(!PageCompound(p) |
205				(page_private(p) != (unsigned long)page)))
206			bad_page(page);
207		ClearPageCompound(p);
208	}
209}
210
211/*
212 * function for dealing with page's order in buddy system.
213 * zone->lock is already acquired when we use these.
214 * So, we don't need atomic page->flags operations here.
215 */
216static inline unsigned long page_order(struct page *page) {
217	return page_private(page);
218}
219
220static inline void set_page_order(struct page *page, int order) {
221	set_page_private(page, order);
222	__SetPagePrivate(page);
223}
224
225static inline void rmv_page_order(struct page *page)
226{
227	__ClearPagePrivate(page);
228	set_page_private(page, 0);
229}
230
231/*
232 * Locate the struct page for both the matching buddy in our
233 * pair (buddy1) and the combined O(n+1) page they form (page).
234 *
235 * 1) Any buddy B1 will have an order O twin B2 which satisfies
236 * the following equation:
237 *     B2 = B1 ^ (1 << O)
238 * For example, if the starting buddy (buddy2) is #8 its order
239 * 1 buddy is #10:
240 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
241 *
242 * 2) Any buddy B will have an order O+1 parent P which
243 * satisfies the following equation:
244 *     P = B & ~(1 << O)
245 *
246 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
247 */
248static inline struct page *
249__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
250{
251	unsigned long buddy_idx = page_idx ^ (1 << order);
252
253	return page + (buddy_idx - page_idx);
254}
255
256static inline unsigned long
257__find_combined_index(unsigned long page_idx, unsigned int order)
258{
259	return (page_idx & ~(1 << order));
260}
261
262/*
263 * This function checks whether a page is free && is the buddy
264 * we can do coalesce a page and its buddy if
265 * (a) the buddy is not in a hole &&
266 * (b) the buddy is free &&
267 * (c) the buddy is on the buddy system &&
268 * (d) a page and its buddy have the same order.
269 * for recording page's order, we use page_private(page) and PG_private.
270 *
271 */
272static inline int page_is_buddy(struct page *page, int order)
273{
274#ifdef CONFIG_HOLES_IN_ZONE
275	if (!pfn_valid(page_to_pfn(page)))
276		return 0;
277#endif
278
279       if (PagePrivate(page)           &&
280           (page_order(page) == order) &&
281            page_count(page) == 0)
282               return 1;
283       return 0;
284}
285
286/*
287 * Freeing function for a buddy system allocator.
288 *
289 * The concept of a buddy system is to maintain direct-mapped table
290 * (containing bit values) for memory blocks of various "orders".
291 * The bottom level table contains the map for the smallest allocatable
292 * units of memory (here, pages), and each level above it describes
293 * pairs of units from the levels below, hence, "buddies".
294 * At a high level, all that happens here is marking the table entry
295 * at the bottom level available, and propagating the changes upward
296 * as necessary, plus some accounting needed to play nicely with other
297 * parts of the VM system.
298 * At each level, we keep a list of pages, which are heads of continuous
299 * free pages of length of (1 << order) and marked with PG_Private.Page's
300 * order is recorded in page_private(page) field.
301 * So when we are allocating or freeing one, we can derive the state of the
302 * other.  That is, if we allocate a small block, and both were
303 * free, the remainder of the region must be split into blocks.
304 * If a block is freed, and its buddy is also free, then this
305 * triggers coalescing into a block of larger size.
306 *
307 * -- wli
308 */
309
310static inline void __free_pages_bulk (struct page *page,
311		struct zone *zone, unsigned int order)
312{
313	unsigned long page_idx;
314	int order_size = 1 << order;
315
316	if (unlikely(PageCompound(page)))
317		destroy_compound_page(page, order);
318
319	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
320
321	BUG_ON(page_idx & (order_size - 1));
322	BUG_ON(bad_range(zone, page));
323
324	zone->free_pages += order_size;
325	while (order < MAX_ORDER-1) {
326		unsigned long combined_idx;
327		struct free_area *area;
328		struct page *buddy;
329
330		buddy = __page_find_buddy(page, page_idx, order);
331		if (!page_is_buddy(buddy, order))
332			break;		/* Move the buddy up one level. */
333
334		list_del(&buddy->lru);
335		area = zone->free_area + order;
336		area->nr_free--;
337		rmv_page_order(buddy);
338		combined_idx = __find_combined_index(page_idx, order);
339		page = page + (combined_idx - page_idx);
340		page_idx = combined_idx;
341		order++;
342	}
343	set_page_order(page, order);
344	list_add(&page->lru, &zone->free_area[order].free_list);
345	zone->free_area[order].nr_free++;
346}
347
348static inline int free_pages_check(struct page *page)
349{
350	if (unlikely(page_mapcount(page) |
351		(page->mapping != NULL)  |
352		(page_count(page) != 0)  |
353		(page->flags & (
354			1 << PG_lru	|
355			1 << PG_private |
356			1 << PG_locked	|
357			1 << PG_active	|
358			1 << PG_reclaim	|
359			1 << PG_slab	|
360			1 << PG_swapcache |
361			1 << PG_writeback |
362			1 << PG_reserved ))))
363		bad_page(page);
364	if (PageDirty(page))
365		__ClearPageDirty(page);
366	/*
367	 * For now, we report if PG_reserved was found set, but do not
368	 * clear it, and do not free the page.  But we shall soon need
369	 * to do more, for when the ZERO_PAGE count wraps negative.
370	 */
371	return PageReserved(page);
372}
373
374/*
375 * Frees a list of pages.
376 * Assumes all pages on list are in same zone, and of same order.
377 * count is the number of pages to free.
378 *
379 * If the zone was previously in an "all pages pinned" state then look to
380 * see if this freeing clears that state.
381 *
382 * And clear the zone's pages_scanned counter, to hold off the "all pages are
383 * pinned" detection logic.
384 */
385static int
386free_pages_bulk(struct zone *zone, int count,
387		struct list_head *list, unsigned int order)
388{
389	struct page *page = NULL;
390	int ret = 0;
391
392	spin_lock(&zone->lock);
393	zone->all_unreclaimable = 0;
394	zone->pages_scanned = 0;
395	while (!list_empty(list) && count--) {
396		page = list_entry(list->prev, struct page, lru);
397		/* have to delete it as __free_pages_bulk list manipulates */
398		list_del(&page->lru);
399		__free_pages_bulk(page, zone, order);
400		ret++;
401	}
402	spin_unlock(&zone->lock);
403	return ret;
404}
405
406void __free_pages_ok(struct page *page, unsigned int order)
407{
408	unsigned long flags;
409	LIST_HEAD(list);
410	int i;
411	int reserved = 0;
412
413	arch_free_page(page, order);
414
415#ifndef CONFIG_MMU
416	if (order > 0)
417		for (i = 1 ; i < (1 << order) ; ++i)
418			__put_page(page + i);
419#endif
420
421	for (i = 0 ; i < (1 << order) ; ++i)
422		reserved += free_pages_check(page + i);
423	if (reserved)
424		return;
425
426	list_add(&page->lru, &list);
427	mod_page_state(pgfree, 1 << order);
428	kernel_map_pages(page, 1<<order, 0);
429	local_irq_save(flags);
430	free_pages_bulk(page_zone(page), 1, &list, order);
431	local_irq_restore(flags);
432}
433
434/*
435 * permit the bootmem allocator to evade page validation on high-order frees
436 */
437void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
438{
439	if (order == 0) {
440		__ClearPageReserved(page);
441		set_page_count(page, 0);
442
443		free_hot_cold_page(page, 0);
444	} else {
445		LIST_HEAD(list);
446		int loop;
447
448		for (loop = 0; loop < BITS_PER_LONG; loop++) {
449			struct page *p = &page[loop];
450
451			if (loop + 16 < BITS_PER_LONG)
452				prefetchw(p + 16);
453			__ClearPageReserved(p);
454			set_page_count(p, 0);
455		}
456
457		arch_free_page(page, order);
458
459		mod_page_state(pgfree, 1 << order);
460
461		list_add(&page->lru, &list);
462		kernel_map_pages(page, 1 << order, 0);
463		free_pages_bulk(page_zone(page), 1, &list, order);
464	}
465}
466
467
468/*
469 * The order of subdivision here is critical for the IO subsystem.
470 * Please do not alter this order without good reasons and regression
471 * testing. Specifically, as large blocks of memory are subdivided,
472 * the order in which smaller blocks are delivered depends on the order
473 * they're subdivided in this function. This is the primary factor
474 * influencing the order in which pages are delivered to the IO
475 * subsystem according to empirical testing, and this is also justified
476 * by considering the behavior of a buddy system containing a single
477 * large block of memory acted on by a series of small allocations.
478 * This behavior is a critical factor in sglist merging's success.
479 *
480 * -- wli
481 */
482static inline void expand(struct zone *zone, struct page *page,
483 	int low, int high, struct free_area *area)
484{
485	unsigned long size = 1 << high;
486
487	while (high > low) {
488		area--;
489		high--;
490		size >>= 1;
491		BUG_ON(bad_range(zone, &page[size]));
492		list_add(&page[size].lru, &area->free_list);
493		area->nr_free++;
494		set_page_order(&page[size], high);
495	}
496}
497
498/*
499 * This page is about to be returned from the page allocator
500 */
501static int prep_new_page(struct page *page, int order)
502{
503	if (unlikely(page_mapcount(page) |
504		(page->mapping != NULL)  |
505		(page_count(page) != 0)  |
506		(page->flags & (
507			1 << PG_lru	|
508			1 << PG_private	|
509			1 << PG_locked	|
510			1 << PG_active	|
511			1 << PG_dirty	|
512			1 << PG_reclaim	|
513			1 << PG_slab    |
514			1 << PG_swapcache |
515			1 << PG_writeback |
516			1 << PG_reserved ))))
517		bad_page(page);
518
519	/*
520	 * For now, we report if PG_reserved was found set, but do not
521	 * clear it, and do not allocate the page: as a safety net.
522	 */
523	if (PageReserved(page))
524		return 1;
525
526	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
527			1 << PG_referenced | 1 << PG_arch_1 |
528			1 << PG_checked | 1 << PG_mappedtodisk);
529	set_page_private(page, 0);
530	set_page_refs(page, order);
531	kernel_map_pages(page, 1 << order, 1);
532	return 0;
533}
534
535/*
536 * Do the hard work of removing an element from the buddy allocator.
537 * Call me with the zone->lock already held.
538 */
539static struct page *__rmqueue(struct zone *zone, unsigned int order)
540{
541	struct free_area * area;
542	unsigned int current_order;
543	struct page *page;
544
545	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
546		area = zone->free_area + current_order;
547		if (list_empty(&area->free_list))
548			continue;
549
550		page = list_entry(area->free_list.next, struct page, lru);
551		list_del(&page->lru);
552		rmv_page_order(page);
553		area->nr_free--;
554		zone->free_pages -= 1UL << order;
555		expand(zone, page, order, current_order, area);
556		return page;
557	}
558
559	return NULL;
560}
561
562/*
563 * Obtain a specified number of elements from the buddy allocator, all under
564 * a single hold of the lock, for efficiency.  Add them to the supplied list.
565 * Returns the number of new pages which were placed at *list.
566 */
567static int rmqueue_bulk(struct zone *zone, unsigned int order,
568			unsigned long count, struct list_head *list)
569{
570	int i;
571
572	spin_lock(&zone->lock);
573	for (i = 0; i < count; ++i) {
574		struct page *page = __rmqueue(zone, order);
575		if (unlikely(page == NULL))
576			break;
577		list_add_tail(&page->lru, list);
578	}
579	spin_unlock(&zone->lock);
580	return i;
581}
582
583#ifdef CONFIG_NUMA
584/* Called from the slab reaper to drain remote pagesets */
585void drain_remote_pages(void)
586{
587	struct zone *zone;
588	int i;
589	unsigned long flags;
590
591	local_irq_save(flags);
592	for_each_zone(zone) {
593		struct per_cpu_pageset *pset;
594
595		/* Do not drain local pagesets */
596		if (zone->zone_pgdat->node_id == numa_node_id())
597			continue;
598
599		pset = zone->pageset[smp_processor_id()];
600		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
601			struct per_cpu_pages *pcp;
602
603			pcp = &pset->pcp[i];
604			if (pcp->count)
605				pcp->count -= free_pages_bulk(zone, pcp->count,
606						&pcp->list, 0);
607		}
608	}
609	local_irq_restore(flags);
610}
611#endif
612
613#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
614static void __drain_pages(unsigned int cpu)
615{
616	unsigned long flags;
617	struct zone *zone;
618	int i;
619
620	for_each_zone(zone) {
621		struct per_cpu_pageset *pset;
622
623		pset = zone_pcp(zone, cpu);
624		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
625			struct per_cpu_pages *pcp;
626
627			pcp = &pset->pcp[i];
628			local_irq_save(flags);
629			pcp->count -= free_pages_bulk(zone, pcp->count,
630						&pcp->list, 0);
631			local_irq_restore(flags);
632		}
633	}
634}
635#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
636
637#ifdef CONFIG_PM
638
639void mark_free_pages(struct zone *zone)
640{
641	unsigned long zone_pfn, flags;
642	int order;
643	struct list_head *curr;
644
645	if (!zone->spanned_pages)
646		return;
647
648	spin_lock_irqsave(&zone->lock, flags);
649	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
650		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
651
652	for (order = MAX_ORDER - 1; order >= 0; --order)
653		list_for_each(curr, &zone->free_area[order].free_list) {
654			unsigned long start_pfn, i;
655
656			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
657
658			for (i=0; i < (1<<order); i++)
659				SetPageNosaveFree(pfn_to_page(start_pfn+i));
660	}
661	spin_unlock_irqrestore(&zone->lock, flags);
662}
663
664/*
665 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
666 */
667void drain_local_pages(void)
668{
669	unsigned long flags;
670
671	local_irq_save(flags);
672	__drain_pages(smp_processor_id());
673	local_irq_restore(flags);
674}
675#endif /* CONFIG_PM */
676
677static void zone_statistics(struct zonelist *zonelist, struct zone *z)
678{
679#ifdef CONFIG_NUMA
680	unsigned long flags;
681	int cpu;
682	pg_data_t *pg = z->zone_pgdat;
683	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
684	struct per_cpu_pageset *p;
685
686	local_irq_save(flags);
687	cpu = smp_processor_id();
688	p = zone_pcp(z,cpu);
689	if (pg == orig) {
690		p->numa_hit++;
691	} else {
692		p->numa_miss++;
693		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
694	}
695	if (pg == NODE_DATA(numa_node_id()))
696		p->local_node++;
697	else
698		p->other_node++;
699	local_irq_restore(flags);
700#endif
701}
702
703/*
704 * Free a 0-order page
705 */
706static void fastcall free_hot_cold_page(struct page *page, int cold)
707{
708	struct zone *zone = page_zone(page);
709	struct per_cpu_pages *pcp;
710	unsigned long flags;
711
712	arch_free_page(page, 0);
713
714	if (PageAnon(page))
715		page->mapping = NULL;
716	if (free_pages_check(page))
717		return;
718
719	inc_page_state(pgfree);
720	kernel_map_pages(page, 1, 0);
721
722	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
723	local_irq_save(flags);
724	list_add(&page->lru, &pcp->list);
725	pcp->count++;
726	if (pcp->count >= pcp->high)
727		pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
728	local_irq_restore(flags);
729	put_cpu();
730}
731
732void fastcall free_hot_page(struct page *page)
733{
734	free_hot_cold_page(page, 0);
735}
736
737void fastcall free_cold_page(struct page *page)
738{
739	free_hot_cold_page(page, 1);
740}
741
742static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
743{
744	int i;
745
746	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
747	for(i = 0; i < (1 << order); i++)
748		clear_highpage(page + i);
749}
750
751/*
752 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
753 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
754 * or two.
755 */
756static struct page *
757buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
758{
759	unsigned long flags;
760	struct page *page;
761	int cold = !!(gfp_flags & __GFP_COLD);
762
763again:
764	if (order == 0) {
765		struct per_cpu_pages *pcp;
766
767		page = NULL;
768		pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
769		local_irq_save(flags);
770		if (!pcp->count)
771			pcp->count += rmqueue_bulk(zone, 0,
772						pcp->batch, &pcp->list);
773		if (likely(pcp->count)) {
774			page = list_entry(pcp->list.next, struct page, lru);
775			list_del(&page->lru);
776			pcp->count--;
777		}
778		local_irq_restore(flags);
779		put_cpu();
780	} else {
781		spin_lock_irqsave(&zone->lock, flags);
782		page = __rmqueue(zone, order);
783		spin_unlock_irqrestore(&zone->lock, flags);
784	}
785
786	if (page != NULL) {
787		BUG_ON(bad_range(zone, page));
788		mod_page_state_zone(zone, pgalloc, 1 << order);
789		if (prep_new_page(page, order))
790			goto again;
791
792		if (gfp_flags & __GFP_ZERO)
793			prep_zero_page(page, order, gfp_flags);
794
795		if (order && (gfp_flags & __GFP_COMP))
796			prep_compound_page(page, order);
797	}
798	return page;
799}
800
801#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
802#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
803#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
804#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
805#define ALLOC_HARDER		0x10 /* try to alloc harder */
806#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
807#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
808
809/*
810 * Return 1 if free pages are above 'mark'. This takes into account the order
811 * of the allocation.
812 */
813int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
814		      int classzone_idx, int alloc_flags)
815{
816	/* free_pages my go negative - that's OK */
817	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
818	int o;
819
820	if (alloc_flags & ALLOC_HIGH)
821		min -= min / 2;
822	if (alloc_flags & ALLOC_HARDER)
823		min -= min / 4;
824
825	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
826		return 0;
827	for (o = 0; o < order; o++) {
828		/* At the next order, this order's pages become unavailable */
829		free_pages -= z->free_area[o].nr_free << o;
830
831		/* Require fewer higher order pages to be free */
832		min >>= 1;
833
834		if (free_pages <= min)
835			return 0;
836	}
837	return 1;
838}
839
840/*
841 * get_page_from_freeliest goes through the zonelist trying to allocate
842 * a page.
843 */
844static struct page *
845get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
846		struct zonelist *zonelist, int alloc_flags)
847{
848	struct zone **z = zonelist->zones;
849	struct page *page = NULL;
850	int classzone_idx = zone_idx(*z);
851
852	/*
853	 * Go through the zonelist once, looking for a zone with enough free.
854	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
855	 */
856	do {
857		if ((alloc_flags & ALLOC_CPUSET) &&
858				!cpuset_zone_allowed(*z, gfp_mask))
859			continue;
860
861		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
862			unsigned long mark;
863			if (alloc_flags & ALLOC_WMARK_MIN)
864				mark = (*z)->pages_min;
865			else if (alloc_flags & ALLOC_WMARK_LOW)
866				mark = (*z)->pages_low;
867			else
868				mark = (*z)->pages_high;
869			if (!zone_watermark_ok(*z, order, mark,
870				    classzone_idx, alloc_flags))
871				continue;
872		}
873
874		page = buffered_rmqueue(*z, order, gfp_mask);
875		if (page) {
876			zone_statistics(zonelist, *z);
877			break;
878		}
879	} while (*(++z) != NULL);
880	return page;
881}
882
883/*
884 * This is the 'heart' of the zoned buddy allocator.
885 */
886struct page * fastcall
887__alloc_pages(gfp_t gfp_mask, unsigned int order,
888		struct zonelist *zonelist)
889{
890	const gfp_t wait = gfp_mask & __GFP_WAIT;
891	struct zone **z;
892	struct page *page;
893	struct reclaim_state reclaim_state;
894	struct task_struct *p = current;
895	int do_retry;
896	int alloc_flags;
897	int did_some_progress;
898
899	might_sleep_if(wait);
900
901restart:
902	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
903
904	if (unlikely(*z == NULL)) {
905		/* Should this ever happen?? */
906		return NULL;
907	}
908
909	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
910				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
911	if (page)
912		goto got_pg;
913
914	do {
915		wakeup_kswapd(*z, order);
916	} while (*(++z));
917
918	/*
919	 * OK, we're below the kswapd watermark and have kicked background
920	 * reclaim. Now things get more complex, so set up alloc_flags according
921	 * to how we want to proceed.
922	 *
923	 * The caller may dip into page reserves a bit more if the caller
924	 * cannot run direct reclaim, or if the caller has realtime scheduling
925	 * policy.
926	 */
927	alloc_flags = ALLOC_WMARK_MIN;
928	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
929		alloc_flags |= ALLOC_HARDER;
930	if (gfp_mask & __GFP_HIGH)
931		alloc_flags |= ALLOC_HIGH;
932	alloc_flags |= ALLOC_CPUSET;
933
934	/*
935	 * Go through the zonelist again. Let __GFP_HIGH and allocations
936	 * coming from realtime tasks go deeper into reserves.
937	 *
938	 * This is the last chance, in general, before the goto nopage.
939	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
940	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
941	 */
942	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
943	if (page)
944		goto got_pg;
945
946	/* This allocation should allow future memory freeing. */
947
948	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
949			&& !in_interrupt()) {
950		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
951nofail_alloc:
952			/* go through the zonelist yet again, ignoring mins */
953			page = get_page_from_freelist(gfp_mask, order,
954				zonelist, ALLOC_NO_WATERMARKS);
955			if (page)
956				goto got_pg;
957			if (gfp_mask & __GFP_NOFAIL) {
958				blk_congestion_wait(WRITE, HZ/50);
959				goto nofail_alloc;
960			}
961		}
962		goto nopage;
963	}
964
965	/* Atomic allocations - we can't balance anything */
966	if (!wait)
967		goto nopage;
968
969rebalance:
970	cond_resched();
971
972	/* We now go into synchronous reclaim */
973	p->flags |= PF_MEMALLOC;
974	reclaim_state.reclaimed_slab = 0;
975	p->reclaim_state = &reclaim_state;
976
977	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
978
979	p->reclaim_state = NULL;
980	p->flags &= ~PF_MEMALLOC;
981
982	cond_resched();
983
984	if (likely(did_some_progress)) {
985		page = get_page_from_freelist(gfp_mask, order,
986						zonelist, alloc_flags);
987		if (page)
988			goto got_pg;
989	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
990		/*
991		 * Go through the zonelist yet one more time, keep
992		 * very high watermark here, this is only to catch
993		 * a parallel oom killing, we must fail if we're still
994		 * under heavy pressure.
995		 */
996		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
997				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
998		if (page)
999			goto got_pg;
1000
1001		out_of_memory(gfp_mask, order);
1002		goto restart;
1003	}
1004
1005	/*
1006	 * Don't let big-order allocations loop unless the caller explicitly
1007	 * requests that.  Wait for some write requests to complete then retry.
1008	 *
1009	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1010	 * <= 3, but that may not be true in other implementations.
1011	 */
1012	do_retry = 0;
1013	if (!(gfp_mask & __GFP_NORETRY)) {
1014		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1015			do_retry = 1;
1016		if (gfp_mask & __GFP_NOFAIL)
1017			do_retry = 1;
1018	}
1019	if (do_retry) {
1020		blk_congestion_wait(WRITE, HZ/50);
1021		goto rebalance;
1022	}
1023
1024nopage:
1025	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1026		printk(KERN_WARNING "%s: page allocation failure."
1027			" order:%d, mode:0x%x\n",
1028			p->comm, order, gfp_mask);
1029		dump_stack();
1030		show_mem();
1031	}
1032got_pg:
1033	return page;
1034}
1035
1036EXPORT_SYMBOL(__alloc_pages);
1037
1038/*
1039 * Common helper functions.
1040 */
1041fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1042{
1043	struct page * page;
1044	page = alloc_pages(gfp_mask, order);
1045	if (!page)
1046		return 0;
1047	return (unsigned long) page_address(page);
1048}
1049
1050EXPORT_SYMBOL(__get_free_pages);
1051
1052fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1053{
1054	struct page * page;
1055
1056	/*
1057	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1058	 * a highmem page
1059	 */
1060	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1061
1062	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1063	if (page)
1064		return (unsigned long) page_address(page);
1065	return 0;
1066}
1067
1068EXPORT_SYMBOL(get_zeroed_page);
1069
1070void __pagevec_free(struct pagevec *pvec)
1071{
1072	int i = pagevec_count(pvec);
1073
1074	while (--i >= 0)
1075		free_hot_cold_page(pvec->pages[i], pvec->cold);
1076}
1077
1078fastcall void __free_pages(struct page *page, unsigned int order)
1079{
1080	if (put_page_testzero(page)) {
1081		if (order == 0)
1082			free_hot_page(page);
1083		else
1084			__free_pages_ok(page, order);
1085	}
1086}
1087
1088EXPORT_SYMBOL(__free_pages);
1089
1090fastcall void free_pages(unsigned long addr, unsigned int order)
1091{
1092	if (addr != 0) {
1093		BUG_ON(!virt_addr_valid((void *)addr));
1094		__free_pages(virt_to_page((void *)addr), order);
1095	}
1096}
1097
1098EXPORT_SYMBOL(free_pages);
1099
1100/*
1101 * Total amount of free (allocatable) RAM:
1102 */
1103unsigned int nr_free_pages(void)
1104{
1105	unsigned int sum = 0;
1106	struct zone *zone;
1107
1108	for_each_zone(zone)
1109		sum += zone->free_pages;
1110
1111	return sum;
1112}
1113
1114EXPORT_SYMBOL(nr_free_pages);
1115
1116#ifdef CONFIG_NUMA
1117unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1118{
1119	unsigned int i, sum = 0;
1120
1121	for (i = 0; i < MAX_NR_ZONES; i++)
1122		sum += pgdat->node_zones[i].free_pages;
1123
1124	return sum;
1125}
1126#endif
1127
1128static unsigned int nr_free_zone_pages(int offset)
1129{
1130	/* Just pick one node, since fallback list is circular */
1131	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1132	unsigned int sum = 0;
1133
1134	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1135	struct zone **zonep = zonelist->zones;
1136	struct zone *zone;
1137
1138	for (zone = *zonep++; zone; zone = *zonep++) {
1139		unsigned long size = zone->present_pages;
1140		unsigned long high = zone->pages_high;
1141		if (size > high)
1142			sum += size - high;
1143	}
1144
1145	return sum;
1146}
1147
1148/*
1149 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1150 */
1151unsigned int nr_free_buffer_pages(void)
1152{
1153	return nr_free_zone_pages(gfp_zone(GFP_USER));
1154}
1155
1156/*
1157 * Amount of free RAM allocatable within all zones
1158 */
1159unsigned int nr_free_pagecache_pages(void)
1160{
1161	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1162}
1163
1164#ifdef CONFIG_HIGHMEM
1165unsigned int nr_free_highpages (void)
1166{
1167	pg_data_t *pgdat;
1168	unsigned int pages = 0;
1169
1170	for_each_pgdat(pgdat)
1171		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1172
1173	return pages;
1174}
1175#endif
1176
1177#ifdef CONFIG_NUMA
1178static void show_node(struct zone *zone)
1179{
1180	printk("Node %d ", zone->zone_pgdat->node_id);
1181}
1182#else
1183#define show_node(zone)	do { } while (0)
1184#endif
1185
1186/*
1187 * Accumulate the page_state information across all CPUs.
1188 * The result is unavoidably approximate - it can change
1189 * during and after execution of this function.
1190 */
1191static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1192
1193atomic_t nr_pagecache = ATOMIC_INIT(0);
1194EXPORT_SYMBOL(nr_pagecache);
1195#ifdef CONFIG_SMP
1196DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1197#endif
1198
1199static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1200{
1201	int cpu = 0;
1202
1203	memset(ret, 0, sizeof(*ret));
1204
1205	cpu = first_cpu(*cpumask);
1206	while (cpu < NR_CPUS) {
1207		unsigned long *in, *out, off;
1208
1209		in = (unsigned long *)&per_cpu(page_states, cpu);
1210
1211		cpu = next_cpu(cpu, *cpumask);
1212
1213		if (cpu < NR_CPUS)
1214			prefetch(&per_cpu(page_states, cpu));
1215
1216		out = (unsigned long *)ret;
1217		for (off = 0; off < nr; off++)
1218			*out++ += *in++;
1219	}
1220}
1221
1222void get_page_state_node(struct page_state *ret, int node)
1223{
1224	int nr;
1225	cpumask_t mask = node_to_cpumask(node);
1226
1227	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1228	nr /= sizeof(unsigned long);
1229
1230	__get_page_state(ret, nr+1, &mask);
1231}
1232
1233void get_page_state(struct page_state *ret)
1234{
1235	int nr;
1236	cpumask_t mask = CPU_MASK_ALL;
1237
1238	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1239	nr /= sizeof(unsigned long);
1240
1241	__get_page_state(ret, nr + 1, &mask);
1242}
1243
1244void get_full_page_state(struct page_state *ret)
1245{
1246	cpumask_t mask = CPU_MASK_ALL;
1247
1248	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1249}
1250
1251unsigned long __read_page_state(unsigned long offset)
1252{
1253	unsigned long ret = 0;
1254	int cpu;
1255
1256	for_each_cpu(cpu) {
1257		unsigned long in;
1258
1259		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1260		ret += *((unsigned long *)in);
1261	}
1262	return ret;
1263}
1264
1265void __mod_page_state(unsigned long offset, unsigned long delta)
1266{
1267	unsigned long flags;
1268	void* ptr;
1269
1270	local_irq_save(flags);
1271	ptr = &__get_cpu_var(page_states);
1272	*(unsigned long*)(ptr + offset) += delta;
1273	local_irq_restore(flags);
1274}
1275
1276EXPORT_SYMBOL(__mod_page_state);
1277
1278void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1279			unsigned long *free, struct pglist_data *pgdat)
1280{
1281	struct zone *zones = pgdat->node_zones;
1282	int i;
1283
1284	*active = 0;
1285	*inactive = 0;
1286	*free = 0;
1287	for (i = 0; i < MAX_NR_ZONES; i++) {
1288		*active += zones[i].nr_active;
1289		*inactive += zones[i].nr_inactive;
1290		*free += zones[i].free_pages;
1291	}
1292}
1293
1294void get_zone_counts(unsigned long *active,
1295		unsigned long *inactive, unsigned long *free)
1296{
1297	struct pglist_data *pgdat;
1298
1299	*active = 0;
1300	*inactive = 0;
1301	*free = 0;
1302	for_each_pgdat(pgdat) {
1303		unsigned long l, m, n;
1304		__get_zone_counts(&l, &m, &n, pgdat);
1305		*active += l;
1306		*inactive += m;
1307		*free += n;
1308	}
1309}
1310
1311void si_meminfo(struct sysinfo *val)
1312{
1313	val->totalram = totalram_pages;
1314	val->sharedram = 0;
1315	val->freeram = nr_free_pages();
1316	val->bufferram = nr_blockdev_pages();
1317#ifdef CONFIG_HIGHMEM
1318	val->totalhigh = totalhigh_pages;
1319	val->freehigh = nr_free_highpages();
1320#else
1321	val->totalhigh = 0;
1322	val->freehigh = 0;
1323#endif
1324	val->mem_unit = PAGE_SIZE;
1325}
1326
1327EXPORT_SYMBOL(si_meminfo);
1328
1329#ifdef CONFIG_NUMA
1330void si_meminfo_node(struct sysinfo *val, int nid)
1331{
1332	pg_data_t *pgdat = NODE_DATA(nid);
1333
1334	val->totalram = pgdat->node_present_pages;
1335	val->freeram = nr_free_pages_pgdat(pgdat);
1336	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1337	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1338	val->mem_unit = PAGE_SIZE;
1339}
1340#endif
1341
1342#define K(x) ((x) << (PAGE_SHIFT-10))
1343
1344/*
1345 * Show free area list (used inside shift_scroll-lock stuff)
1346 * We also calculate the percentage fragmentation. We do this by counting the
1347 * memory on each free list with the exception of the first item on the list.
1348 */
1349void show_free_areas(void)
1350{
1351	struct page_state ps;
1352	int cpu, temperature;
1353	unsigned long active;
1354	unsigned long inactive;
1355	unsigned long free;
1356	struct zone *zone;
1357
1358	for_each_zone(zone) {
1359		show_node(zone);
1360		printk("%s per-cpu:", zone->name);
1361
1362		if (!populated_zone(zone)) {
1363			printk(" empty\n");
1364			continue;
1365		} else
1366			printk("\n");
1367
1368		for_each_online_cpu(cpu) {
1369			struct per_cpu_pageset *pageset;
1370
1371			pageset = zone_pcp(zone, cpu);
1372
1373			for (temperature = 0; temperature < 2; temperature++)
1374				printk("cpu %d %s: high %d, batch %d used:%d\n",
1375					cpu,
1376					temperature ? "cold" : "hot",
1377					pageset->pcp[temperature].high,
1378					pageset->pcp[temperature].batch,
1379					pageset->pcp[temperature].count);
1380		}
1381	}
1382
1383	get_page_state(&ps);
1384	get_zone_counts(&active, &inactive, &free);
1385
1386	printk("Free pages: %11ukB (%ukB HighMem)\n",
1387		K(nr_free_pages()),
1388		K(nr_free_highpages()));
1389
1390	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1391		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1392		active,
1393		inactive,
1394		ps.nr_dirty,
1395		ps.nr_writeback,
1396		ps.nr_unstable,
1397		nr_free_pages(),
1398		ps.nr_slab,
1399		ps.nr_mapped,
1400		ps.nr_page_table_pages);
1401
1402	for_each_zone(zone) {
1403		int i;
1404
1405		show_node(zone);
1406		printk("%s"
1407			" free:%lukB"
1408			" min:%lukB"
1409			" low:%lukB"
1410			" high:%lukB"
1411			" active:%lukB"
1412			" inactive:%lukB"
1413			" present:%lukB"
1414			" pages_scanned:%lu"
1415			" all_unreclaimable? %s"
1416			"\n",
1417			zone->name,
1418			K(zone->free_pages),
1419			K(zone->pages_min),
1420			K(zone->pages_low),
1421			K(zone->pages_high),
1422			K(zone->nr_active),
1423			K(zone->nr_inactive),
1424			K(zone->present_pages),
1425			zone->pages_scanned,
1426			(zone->all_unreclaimable ? "yes" : "no")
1427			);
1428		printk("lowmem_reserve[]:");
1429		for (i = 0; i < MAX_NR_ZONES; i++)
1430			printk(" %lu", zone->lowmem_reserve[i]);
1431		printk("\n");
1432	}
1433
1434	for_each_zone(zone) {
1435 		unsigned long nr, flags, order, total = 0;
1436
1437		show_node(zone);
1438		printk("%s: ", zone->name);
1439		if (!populated_zone(zone)) {
1440			printk("empty\n");
1441			continue;
1442		}
1443
1444		spin_lock_irqsave(&zone->lock, flags);
1445		for (order = 0; order < MAX_ORDER; order++) {
1446			nr = zone->free_area[order].nr_free;
1447			total += nr << order;
1448			printk("%lu*%lukB ", nr, K(1UL) << order);
1449		}
1450		spin_unlock_irqrestore(&zone->lock, flags);
1451		printk("= %lukB\n", K(total));
1452	}
1453
1454	show_swap_cache_info();
1455}
1456
1457/*
1458 * Builds allocation fallback zone lists.
1459 *
1460 * Add all populated zones of a node to the zonelist.
1461 */
1462static int __init build_zonelists_node(pg_data_t *pgdat,
1463			struct zonelist *zonelist, int nr_zones, int zone_type)
1464{
1465	struct zone *zone;
1466
1467	BUG_ON(zone_type > ZONE_HIGHMEM);
1468
1469	do {
1470		zone = pgdat->node_zones + zone_type;
1471		if (populated_zone(zone)) {
1472#ifndef CONFIG_HIGHMEM
1473			BUG_ON(zone_type > ZONE_NORMAL);
1474#endif
1475			zonelist->zones[nr_zones++] = zone;
1476			check_highest_zone(zone_type);
1477		}
1478		zone_type--;
1479
1480	} while (zone_type >= 0);
1481	return nr_zones;
1482}
1483
1484static inline int highest_zone(int zone_bits)
1485{
1486	int res = ZONE_NORMAL;
1487	if (zone_bits & (__force int)__GFP_HIGHMEM)
1488		res = ZONE_HIGHMEM;
1489	if (zone_bits & (__force int)__GFP_DMA32)
1490		res = ZONE_DMA32;
1491	if (zone_bits & (__force int)__GFP_DMA)
1492		res = ZONE_DMA;
1493	return res;
1494}
1495
1496#ifdef CONFIG_NUMA
1497#define MAX_NODE_LOAD (num_online_nodes())
1498static int __initdata node_load[MAX_NUMNODES];
1499/**
1500 * find_next_best_node - find the next node that should appear in a given node's fallback list
1501 * @node: node whose fallback list we're appending
1502 * @used_node_mask: nodemask_t of already used nodes
1503 *
1504 * We use a number of factors to determine which is the next node that should
1505 * appear on a given node's fallback list.  The node should not have appeared
1506 * already in @node's fallback list, and it should be the next closest node
1507 * according to the distance array (which contains arbitrary distance values
1508 * from each node to each node in the system), and should also prefer nodes
1509 * with no CPUs, since presumably they'll have very little allocation pressure
1510 * on them otherwise.
1511 * It returns -1 if no node is found.
1512 */
1513static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1514{
1515	int i, n, val;
1516	int min_val = INT_MAX;
1517	int best_node = -1;
1518
1519	for_each_online_node(i) {
1520		cpumask_t tmp;
1521
1522		/* Start from local node */
1523		n = (node+i) % num_online_nodes();
1524
1525		/* Don't want a node to appear more than once */
1526		if (node_isset(n, *used_node_mask))
1527			continue;
1528
1529		/* Use the local node if we haven't already */
1530		if (!node_isset(node, *used_node_mask)) {
1531			best_node = node;
1532			break;
1533		}
1534
1535		/* Use the distance array to find the distance */
1536		val = node_distance(node, n);
1537
1538		/* Give preference to headless and unused nodes */
1539		tmp = node_to_cpumask(n);
1540		if (!cpus_empty(tmp))
1541			val += PENALTY_FOR_NODE_WITH_CPUS;
1542
1543		/* Slight preference for less loaded node */
1544		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1545		val += node_load[n];
1546
1547		if (val < min_val) {
1548			min_val = val;
1549			best_node = n;
1550		}
1551	}
1552
1553	if (best_node >= 0)
1554		node_set(best_node, *used_node_mask);
1555
1556	return best_node;
1557}
1558
1559static void __init build_zonelists(pg_data_t *pgdat)
1560{
1561	int i, j, k, node, local_node;
1562	int prev_node, load;
1563	struct zonelist *zonelist;
1564	nodemask_t used_mask;
1565
1566	/* initialize zonelists */
1567	for (i = 0; i < GFP_ZONETYPES; i++) {
1568		zonelist = pgdat->node_zonelists + i;
1569		zonelist->zones[0] = NULL;
1570	}
1571
1572	/* NUMA-aware ordering of nodes */
1573	local_node = pgdat->node_id;
1574	load = num_online_nodes();
1575	prev_node = local_node;
1576	nodes_clear(used_mask);
1577	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1578		/*
1579		 * We don't want to pressure a particular node.
1580		 * So adding penalty to the first node in same
1581		 * distance group to make it round-robin.
1582		 */
1583		if (node_distance(local_node, node) !=
1584				node_distance(local_node, prev_node))
1585			node_load[node] += load;
1586		prev_node = node;
1587		load--;
1588		for (i = 0; i < GFP_ZONETYPES; i++) {
1589			zonelist = pgdat->node_zonelists + i;
1590			for (j = 0; zonelist->zones[j] != NULL; j++);
1591
1592			k = highest_zone(i);
1593
1594	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1595			zonelist->zones[j] = NULL;
1596		}
1597	}
1598}
1599
1600#else	/* CONFIG_NUMA */
1601
1602static void __init build_zonelists(pg_data_t *pgdat)
1603{
1604	int i, j, k, node, local_node;
1605
1606	local_node = pgdat->node_id;
1607	for (i = 0; i < GFP_ZONETYPES; i++) {
1608		struct zonelist *zonelist;
1609
1610		zonelist = pgdat->node_zonelists + i;
1611
1612		j = 0;
1613		k = highest_zone(i);
1614 		j = build_zonelists_node(pgdat, zonelist, j, k);
1615 		/*
1616 		 * Now we build the zonelist so that it contains the zones
1617 		 * of all the other nodes.
1618 		 * We don't want to pressure a particular node, so when
1619 		 * building the zones for node N, we make sure that the
1620 		 * zones coming right after the local ones are those from
1621 		 * node N+1 (modulo N)
1622 		 */
1623		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1624			if (!node_online(node))
1625				continue;
1626			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1627		}
1628		for (node = 0; node < local_node; node++) {
1629			if (!node_online(node))
1630				continue;
1631			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1632		}
1633
1634		zonelist->zones[j] = NULL;
1635	}
1636}
1637
1638#endif	/* CONFIG_NUMA */
1639
1640void __init build_all_zonelists(void)
1641{
1642	int i;
1643
1644	for_each_online_node(i)
1645		build_zonelists(NODE_DATA(i));
1646	printk("Built %i zonelists\n", num_online_nodes());
1647	cpuset_init_current_mems_allowed();
1648}
1649
1650/*
1651 * Helper functions to size the waitqueue hash table.
1652 * Essentially these want to choose hash table sizes sufficiently
1653 * large so that collisions trying to wait on pages are rare.
1654 * But in fact, the number of active page waitqueues on typical
1655 * systems is ridiculously low, less than 200. So this is even
1656 * conservative, even though it seems large.
1657 *
1658 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1659 * waitqueues, i.e. the size of the waitq table given the number of pages.
1660 */
1661#define PAGES_PER_WAITQUEUE	256
1662
1663static inline unsigned long wait_table_size(unsigned long pages)
1664{
1665	unsigned long size = 1;
1666
1667	pages /= PAGES_PER_WAITQUEUE;
1668
1669	while (size < pages)
1670		size <<= 1;
1671
1672	/*
1673	 * Once we have dozens or even hundreds of threads sleeping
1674	 * on IO we've got bigger problems than wait queue collision.
1675	 * Limit the size of the wait table to a reasonable size.
1676	 */
1677	size = min(size, 4096UL);
1678
1679	return max(size, 4UL);
1680}
1681
1682/*
1683 * This is an integer logarithm so that shifts can be used later
1684 * to extract the more random high bits from the multiplicative
1685 * hash function before the remainder is taken.
1686 */
1687static inline unsigned long wait_table_bits(unsigned long size)
1688{
1689	return ffz(~size);
1690}
1691
1692#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1693
1694static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1695		unsigned long *zones_size, unsigned long *zholes_size)
1696{
1697	unsigned long realtotalpages, totalpages = 0;
1698	int i;
1699
1700	for (i = 0; i < MAX_NR_ZONES; i++)
1701		totalpages += zones_size[i];
1702	pgdat->node_spanned_pages = totalpages;
1703
1704	realtotalpages = totalpages;
1705	if (zholes_size)
1706		for (i = 0; i < MAX_NR_ZONES; i++)
1707			realtotalpages -= zholes_size[i];
1708	pgdat->node_present_pages = realtotalpages;
1709	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1710}
1711
1712
1713/*
1714 * Initially all pages are reserved - free ones are freed
1715 * up by free_all_bootmem() once the early boot process is
1716 * done. Non-atomic initialization, single-pass.
1717 */
1718void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1719		unsigned long start_pfn)
1720{
1721	struct page *page;
1722	unsigned long end_pfn = start_pfn + size;
1723	unsigned long pfn;
1724
1725	for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1726		if (!early_pfn_valid(pfn))
1727			continue;
1728		page = pfn_to_page(pfn);
1729		set_page_links(page, zone, nid, pfn);
1730		set_page_count(page, 1);
1731		reset_page_mapcount(page);
1732		SetPageReserved(page);
1733		INIT_LIST_HEAD(&page->lru);
1734#ifdef WANT_PAGE_VIRTUAL
1735		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1736		if (!is_highmem_idx(zone))
1737			set_page_address(page, __va(pfn << PAGE_SHIFT));
1738#endif
1739	}
1740}
1741
1742void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1743				unsigned long size)
1744{
1745	int order;
1746	for (order = 0; order < MAX_ORDER ; order++) {
1747		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1748		zone->free_area[order].nr_free = 0;
1749	}
1750}
1751
1752#define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1753void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1754		unsigned long size)
1755{
1756	unsigned long snum = pfn_to_section_nr(pfn);
1757	unsigned long end = pfn_to_section_nr(pfn + size);
1758
1759	if (FLAGS_HAS_NODE)
1760		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1761	else
1762		for (; snum <= end; snum++)
1763			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1764}
1765
1766#ifndef __HAVE_ARCH_MEMMAP_INIT
1767#define memmap_init(size, nid, zone, start_pfn) \
1768	memmap_init_zone((size), (nid), (zone), (start_pfn))
1769#endif
1770
1771static int __devinit zone_batchsize(struct zone *zone)
1772{
1773	int batch;
1774
1775	/*
1776	 * The per-cpu-pages pools are set to around 1000th of the
1777	 * size of the zone.  But no more than 1/2 of a meg.
1778	 *
1779	 * OK, so we don't know how big the cache is.  So guess.
1780	 */
1781	batch = zone->present_pages / 1024;
1782	if (batch * PAGE_SIZE > 512 * 1024)
1783		batch = (512 * 1024) / PAGE_SIZE;
1784	batch /= 4;		/* We effectively *= 4 below */
1785	if (batch < 1)
1786		batch = 1;
1787
1788	/*
1789	 * Clamp the batch to a 2^n - 1 value. Having a power
1790	 * of 2 value was found to be more likely to have
1791	 * suboptimal cache aliasing properties in some cases.
1792	 *
1793	 * For example if 2 tasks are alternately allocating
1794	 * batches of pages, one task can end up with a lot
1795	 * of pages of one half of the possible page colors
1796	 * and the other with pages of the other colors.
1797	 */
1798	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1799
1800	return batch;
1801}
1802
1803inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1804{
1805	struct per_cpu_pages *pcp;
1806
1807	memset(p, 0, sizeof(*p));
1808
1809	pcp = &p->pcp[0];		/* hot */
1810	pcp->count = 0;
1811	pcp->high = 6 * batch;
1812	pcp->batch = max(1UL, 1 * batch);
1813	INIT_LIST_HEAD(&pcp->list);
1814
1815	pcp = &p->pcp[1];		/* cold*/
1816	pcp->count = 0;
1817	pcp->high = 2 * batch;
1818	pcp->batch = max(1UL, batch/2);
1819	INIT_LIST_HEAD(&pcp->list);
1820}
1821
1822#ifdef CONFIG_NUMA
1823/*
1824 * Boot pageset table. One per cpu which is going to be used for all
1825 * zones and all nodes. The parameters will be set in such a way
1826 * that an item put on a list will immediately be handed over to
1827 * the buddy list. This is safe since pageset manipulation is done
1828 * with interrupts disabled.
1829 *
1830 * Some NUMA counter updates may also be caught by the boot pagesets.
1831 *
1832 * The boot_pagesets must be kept even after bootup is complete for
1833 * unused processors and/or zones. They do play a role for bootstrapping
1834 * hotplugged processors.
1835 *
1836 * zoneinfo_show() and maybe other functions do
1837 * not check if the processor is online before following the pageset pointer.
1838 * Other parts of the kernel may not check if the zone is available.
1839 */
1840static struct per_cpu_pageset
1841	boot_pageset[NR_CPUS];
1842
1843/*
1844 * Dynamically allocate memory for the
1845 * per cpu pageset array in struct zone.
1846 */
1847static int __devinit process_zones(int cpu)
1848{
1849	struct zone *zone, *dzone;
1850
1851	for_each_zone(zone) {
1852
1853		zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1854					 GFP_KERNEL, cpu_to_node(cpu));
1855		if (!zone->pageset[cpu])
1856			goto bad;
1857
1858		setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1859	}
1860
1861	return 0;
1862bad:
1863	for_each_zone(dzone) {
1864		if (dzone == zone)
1865			break;
1866		kfree(dzone->pageset[cpu]);
1867		dzone->pageset[cpu] = NULL;
1868	}
1869	return -ENOMEM;
1870}
1871
1872static inline void free_zone_pagesets(int cpu)
1873{
1874#ifdef CONFIG_NUMA
1875	struct zone *zone;
1876
1877	for_each_zone(zone) {
1878		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1879
1880		zone_pcp(zone, cpu) = NULL;
1881		kfree(pset);
1882	}
1883#endif
1884}
1885
1886static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1887		unsigned long action,
1888		void *hcpu)
1889{
1890	int cpu = (long)hcpu;
1891	int ret = NOTIFY_OK;
1892
1893	switch (action) {
1894		case CPU_UP_PREPARE:
1895			if (process_zones(cpu))
1896				ret = NOTIFY_BAD;
1897			break;
1898		case CPU_UP_CANCELED:
1899		case CPU_DEAD:
1900			free_zone_pagesets(cpu);
1901			break;
1902		default:
1903			break;
1904	}
1905	return ret;
1906}
1907
1908static struct notifier_block pageset_notifier =
1909	{ &pageset_cpuup_callback, NULL, 0 };
1910
1911void __init setup_per_cpu_pageset(void)
1912{
1913	int err;
1914
1915	/* Initialize per_cpu_pageset for cpu 0.
1916	 * A cpuup callback will do this for every cpu
1917	 * as it comes online
1918	 */
1919	err = process_zones(smp_processor_id());
1920	BUG_ON(err);
1921	register_cpu_notifier(&pageset_notifier);
1922}
1923
1924#endif
1925
1926static __devinit
1927void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1928{
1929	int i;
1930	struct pglist_data *pgdat = zone->zone_pgdat;
1931
1932	/*
1933	 * The per-page waitqueue mechanism uses hashed waitqueues
1934	 * per zone.
1935	 */
1936	zone->wait_table_size = wait_table_size(zone_size_pages);
1937	zone->wait_table_bits =	wait_table_bits(zone->wait_table_size);
1938	zone->wait_table = (wait_queue_head_t *)
1939		alloc_bootmem_node(pgdat, zone->wait_table_size
1940					* sizeof(wait_queue_head_t));
1941
1942	for(i = 0; i < zone->wait_table_size; ++i)
1943		init_waitqueue_head(zone->wait_table + i);
1944}
1945
1946static __devinit void zone_pcp_init(struct zone *zone)
1947{
1948	int cpu;
1949	unsigned long batch = zone_batchsize(zone);
1950
1951	for (cpu = 0; cpu < NR_CPUS; cpu++) {
1952#ifdef CONFIG_NUMA
1953		/* Early boot. Slab allocator not functional yet */
1954		zone->pageset[cpu] = &boot_pageset[cpu];
1955		setup_pageset(&boot_pageset[cpu],0);
1956#else
1957		setup_pageset(zone_pcp(zone,cpu), batch);
1958#endif
1959	}
1960	printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1961		zone->name, zone->present_pages, batch);
1962}
1963
1964static __devinit void init_currently_empty_zone(struct zone *zone,
1965		unsigned long zone_start_pfn, unsigned long size)
1966{
1967	struct pglist_data *pgdat = zone->zone_pgdat;
1968
1969	zone_wait_table_init(zone, size);
1970	pgdat->nr_zones = zone_idx(zone) + 1;
1971
1972	zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1973	zone->zone_start_pfn = zone_start_pfn;
1974
1975	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1976
1977	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1978}
1979
1980/*
1981 * Set up the zone data structures:
1982 *   - mark all pages reserved
1983 *   - mark all memory queues empty
1984 *   - clear the memory bitmaps
1985 */
1986static void __init free_area_init_core(struct pglist_data *pgdat,
1987		unsigned long *zones_size, unsigned long *zholes_size)
1988{
1989	unsigned long j;
1990	int nid = pgdat->node_id;
1991	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1992
1993	pgdat_resize_init(pgdat);
1994	pgdat->nr_zones = 0;
1995	init_waitqueue_head(&pgdat->kswapd_wait);
1996	pgdat->kswapd_max_order = 0;
1997
1998	for (j = 0; j < MAX_NR_ZONES; j++) {
1999		struct zone *zone = pgdat->node_zones + j;
2000		unsigned long size, realsize;
2001
2002		realsize = size = zones_size[j];
2003		if (zholes_size)
2004			realsize -= zholes_size[j];
2005
2006		if (j < ZONE_HIGHMEM)
2007			nr_kernel_pages += realsize;
2008		nr_all_pages += realsize;
2009
2010		zone->spanned_pages = size;
2011		zone->present_pages = realsize;
2012		zone->name = zone_names[j];
2013		spin_lock_init(&zone->lock);
2014		spin_lock_init(&zone->lru_lock);
2015		zone_seqlock_init(zone);
2016		zone->zone_pgdat = pgdat;
2017		zone->free_pages = 0;
2018
2019		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2020
2021		zone_pcp_init(zone);
2022		INIT_LIST_HEAD(&zone->active_list);
2023		INIT_LIST_HEAD(&zone->inactive_list);
2024		zone->nr_scan_active = 0;
2025		zone->nr_scan_inactive = 0;
2026		zone->nr_active = 0;
2027		zone->nr_inactive = 0;
2028		atomic_set(&zone->reclaim_in_progress, 0);
2029		if (!size)
2030			continue;
2031
2032		zonetable_add(zone, nid, j, zone_start_pfn, size);
2033		init_currently_empty_zone(zone, zone_start_pfn, size);
2034		zone_start_pfn += size;
2035	}
2036}
2037
2038static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2039{
2040	/* Skip empty nodes */
2041	if (!pgdat->node_spanned_pages)
2042		return;
2043
2044#ifdef CONFIG_FLAT_NODE_MEM_MAP
2045	/* ia64 gets its own node_mem_map, before this, without bootmem */
2046	if (!pgdat->node_mem_map) {
2047		unsigned long size;
2048		struct page *map;
2049
2050		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2051		map = alloc_remap(pgdat->node_id, size);
2052		if (!map)
2053			map = alloc_bootmem_node(pgdat, size);
2054		pgdat->node_mem_map = map;
2055	}
2056#ifdef CONFIG_FLATMEM
2057	/*
2058	 * With no DISCONTIG, the global mem_map is just set as node 0's
2059	 */
2060	if (pgdat == NODE_DATA(0))
2061		mem_map = NODE_DATA(0)->node_mem_map;
2062#endif
2063#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2064}
2065
2066void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2067		unsigned long *zones_size, unsigned long node_start_pfn,
2068		unsigned long *zholes_size)
2069{
2070	pgdat->node_id = nid;
2071	pgdat->node_start_pfn = node_start_pfn;
2072	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2073
2074	alloc_node_mem_map(pgdat);
2075
2076	free_area_init_core(pgdat, zones_size, zholes_size);
2077}
2078
2079#ifndef CONFIG_NEED_MULTIPLE_NODES
2080static bootmem_data_t contig_bootmem_data;
2081struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2082
2083EXPORT_SYMBOL(contig_page_data);
2084#endif
2085
2086void __init free_area_init(unsigned long *zones_size)
2087{
2088	free_area_init_node(0, NODE_DATA(0), zones_size,
2089			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2090}
2091
2092#ifdef CONFIG_PROC_FS
2093
2094#include <linux/seq_file.h>
2095
2096static void *frag_start(struct seq_file *m, loff_t *pos)
2097{
2098	pg_data_t *pgdat;
2099	loff_t node = *pos;
2100
2101	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2102		--node;
2103
2104	return pgdat;
2105}
2106
2107static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2108{
2109	pg_data_t *pgdat = (pg_data_t *)arg;
2110
2111	(*pos)++;
2112	return pgdat->pgdat_next;
2113}
2114
2115static void frag_stop(struct seq_file *m, void *arg)
2116{
2117}
2118
2119/*
2120 * This walks the free areas for each zone.
2121 */
2122static int frag_show(struct seq_file *m, void *arg)
2123{
2124	pg_data_t *pgdat = (pg_data_t *)arg;
2125	struct zone *zone;
2126	struct zone *node_zones = pgdat->node_zones;
2127	unsigned long flags;
2128	int order;
2129
2130	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2131		if (!populated_zone(zone))
2132			continue;
2133
2134		spin_lock_irqsave(&zone->lock, flags);
2135		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2136		for (order = 0; order < MAX_ORDER; ++order)
2137			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2138		spin_unlock_irqrestore(&zone->lock, flags);
2139		seq_putc(m, '\n');
2140	}
2141	return 0;
2142}
2143
2144struct seq_operations fragmentation_op = {
2145	.start	= frag_start,
2146	.next	= frag_next,
2147	.stop	= frag_stop,
2148	.show	= frag_show,
2149};
2150
2151/*
2152 * Output information about zones in @pgdat.
2153 */
2154static int zoneinfo_show(struct seq_file *m, void *arg)
2155{
2156	pg_data_t *pgdat = arg;
2157	struct zone *zone;
2158	struct zone *node_zones = pgdat->node_zones;
2159	unsigned long flags;
2160
2161	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2162		int i;
2163
2164		if (!populated_zone(zone))
2165			continue;
2166
2167		spin_lock_irqsave(&zone->lock, flags);
2168		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2169		seq_printf(m,
2170			   "\n  pages free     %lu"
2171			   "\n        min      %lu"
2172			   "\n        low      %lu"
2173			   "\n        high     %lu"
2174			   "\n        active   %lu"
2175			   "\n        inactive %lu"
2176			   "\n        scanned  %lu (a: %lu i: %lu)"
2177			   "\n        spanned  %lu"
2178			   "\n        present  %lu",
2179			   zone->free_pages,
2180			   zone->pages_min,
2181			   zone->pages_low,
2182			   zone->pages_high,
2183			   zone->nr_active,
2184			   zone->nr_inactive,
2185			   zone->pages_scanned,
2186			   zone->nr_scan_active, zone->nr_scan_inactive,
2187			   zone->spanned_pages,
2188			   zone->present_pages);
2189		seq_printf(m,
2190			   "\n        protection: (%lu",
2191			   zone->lowmem_reserve[0]);
2192		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2193			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2194		seq_printf(m,
2195			   ")"
2196			   "\n  pagesets");
2197		for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2198			struct per_cpu_pageset *pageset;
2199			int j;
2200
2201			pageset = zone_pcp(zone, i);
2202			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2203				if (pageset->pcp[j].count)
2204					break;
2205			}
2206			if (j == ARRAY_SIZE(pageset->pcp))
2207				continue;
2208			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2209				seq_printf(m,
2210					   "\n    cpu: %i pcp: %i"
2211					   "\n              count: %i"
2212					   "\n              high:  %i"
2213					   "\n              batch: %i",
2214					   i, j,
2215					   pageset->pcp[j].count,
2216					   pageset->pcp[j].high,
2217					   pageset->pcp[j].batch);
2218			}
2219#ifdef CONFIG_NUMA
2220			seq_printf(m,
2221				   "\n            numa_hit:       %lu"
2222				   "\n            numa_miss:      %lu"
2223				   "\n            numa_foreign:   %lu"
2224				   "\n            interleave_hit: %lu"
2225				   "\n            local_node:     %lu"
2226				   "\n            other_node:     %lu",
2227				   pageset->numa_hit,
2228				   pageset->numa_miss,
2229				   pageset->numa_foreign,
2230				   pageset->interleave_hit,
2231				   pageset->local_node,
2232				   pageset->other_node);
2233#endif
2234		}
2235		seq_printf(m,
2236			   "\n  all_unreclaimable: %u"
2237			   "\n  prev_priority:     %i"
2238			   "\n  temp_priority:     %i"
2239			   "\n  start_pfn:         %lu",
2240			   zone->all_unreclaimable,
2241			   zone->prev_priority,
2242			   zone->temp_priority,
2243			   zone->zone_start_pfn);
2244		spin_unlock_irqrestore(&zone->lock, flags);
2245		seq_putc(m, '\n');
2246	}
2247	return 0;
2248}
2249
2250struct seq_operations zoneinfo_op = {
2251	.start	= frag_start, /* iterate over all zones. The same as in
2252			       * fragmentation. */
2253	.next	= frag_next,
2254	.stop	= frag_stop,
2255	.show	= zoneinfo_show,
2256};
2257
2258static char *vmstat_text[] = {
2259	"nr_dirty",
2260	"nr_writeback",
2261	"nr_unstable",
2262	"nr_page_table_pages",
2263	"nr_mapped",
2264	"nr_slab",
2265
2266	"pgpgin",
2267	"pgpgout",
2268	"pswpin",
2269	"pswpout",
2270
2271	"pgalloc_high",
2272	"pgalloc_normal",
2273	"pgalloc_dma32",
2274	"pgalloc_dma",
2275
2276	"pgfree",
2277	"pgactivate",
2278	"pgdeactivate",
2279
2280	"pgfault",
2281	"pgmajfault",
2282
2283	"pgrefill_high",
2284	"pgrefill_normal",
2285	"pgrefill_dma32",
2286	"pgrefill_dma",
2287
2288	"pgsteal_high",
2289	"pgsteal_normal",
2290	"pgsteal_dma32",
2291	"pgsteal_dma",
2292
2293	"pgscan_kswapd_high",
2294	"pgscan_kswapd_normal",
2295	"pgscan_kswapd_dma32",
2296	"pgscan_kswapd_dma",
2297
2298	"pgscan_direct_high",
2299	"pgscan_direct_normal",
2300	"pgscan_direct_dma32",
2301	"pgscan_direct_dma",
2302
2303	"pginodesteal",
2304	"slabs_scanned",
2305	"kswapd_steal",
2306	"kswapd_inodesteal",
2307	"pageoutrun",
2308	"allocstall",
2309
2310	"pgrotated",
2311	"nr_bounce",
2312};
2313
2314static void *vmstat_start(struct seq_file *m, loff_t *pos)
2315{
2316	struct page_state *ps;
2317
2318	if (*pos >= ARRAY_SIZE(vmstat_text))
2319		return NULL;
2320
2321	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2322	m->private = ps;
2323	if (!ps)
2324		return ERR_PTR(-ENOMEM);
2325	get_full_page_state(ps);
2326	ps->pgpgin /= 2;		/* sectors -> kbytes */
2327	ps->pgpgout /= 2;
2328	return (unsigned long *)ps + *pos;
2329}
2330
2331static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2332{
2333	(*pos)++;
2334	if (*pos >= ARRAY_SIZE(vmstat_text))
2335		return NULL;
2336	return (unsigned long *)m->private + *pos;
2337}
2338
2339static int vmstat_show(struct seq_file *m, void *arg)
2340{
2341	unsigned long *l = arg;
2342	unsigned long off = l - (unsigned long *)m->private;
2343
2344	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2345	return 0;
2346}
2347
2348static void vmstat_stop(struct seq_file *m, void *arg)
2349{
2350	kfree(m->private);
2351	m->private = NULL;
2352}
2353
2354struct seq_operations vmstat_op = {
2355	.start	= vmstat_start,
2356	.next	= vmstat_next,
2357	.stop	= vmstat_stop,
2358	.show	= vmstat_show,
2359};
2360
2361#endif /* CONFIG_PROC_FS */
2362
2363#ifdef CONFIG_HOTPLUG_CPU
2364static int page_alloc_cpu_notify(struct notifier_block *self,
2365				 unsigned long action, void *hcpu)
2366{
2367	int cpu = (unsigned long)hcpu;
2368	long *count;
2369	unsigned long *src, *dest;
2370
2371	if (action == CPU_DEAD) {
2372		int i;
2373
2374		/* Drain local pagecache count. */
2375		count = &per_cpu(nr_pagecache_local, cpu);
2376		atomic_add(*count, &nr_pagecache);
2377		*count = 0;
2378		local_irq_disable();
2379		__drain_pages(cpu);
2380
2381		/* Add dead cpu's page_states to our own. */
2382		dest = (unsigned long *)&__get_cpu_var(page_states);
2383		src = (unsigned long *)&per_cpu(page_states, cpu);
2384
2385		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2386				i++) {
2387			dest[i] += src[i];
2388			src[i] = 0;
2389		}
2390
2391		local_irq_enable();
2392	}
2393	return NOTIFY_OK;
2394}
2395#endif /* CONFIG_HOTPLUG_CPU */
2396
2397void __init page_alloc_init(void)
2398{
2399	hotcpu_notifier(page_alloc_cpu_notify, 0);
2400}
2401
2402/*
2403 * setup_per_zone_lowmem_reserve - called whenever
2404 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2405 *	has a correct pages reserved value, so an adequate number of
2406 *	pages are left in the zone after a successful __alloc_pages().
2407 */
2408static void setup_per_zone_lowmem_reserve(void)
2409{
2410	struct pglist_data *pgdat;
2411	int j, idx;
2412
2413	for_each_pgdat(pgdat) {
2414		for (j = 0; j < MAX_NR_ZONES; j++) {
2415			struct zone *zone = pgdat->node_zones + j;
2416			unsigned long present_pages = zone->present_pages;
2417
2418			zone->lowmem_reserve[j] = 0;
2419
2420			for (idx = j-1; idx >= 0; idx--) {
2421				struct zone *lower_zone;
2422
2423				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2424					sysctl_lowmem_reserve_ratio[idx] = 1;
2425
2426				lower_zone = pgdat->node_zones + idx;
2427				lower_zone->lowmem_reserve[j] = present_pages /
2428					sysctl_lowmem_reserve_ratio[idx];
2429				present_pages += lower_zone->present_pages;
2430			}
2431		}
2432	}
2433}
2434
2435/*
2436 * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2437 *	that the pages_{min,low,high} values for each zone are set correctly
2438 *	with respect to min_free_kbytes.
2439 */
2440void setup_per_zone_pages_min(void)
2441{
2442	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2443	unsigned long lowmem_pages = 0;
2444	struct zone *zone;
2445	unsigned long flags;
2446
2447	/* Calculate total number of !ZONE_HIGHMEM pages */
2448	for_each_zone(zone) {
2449		if (!is_highmem(zone))
2450			lowmem_pages += zone->present_pages;
2451	}
2452
2453	for_each_zone(zone) {
2454		unsigned long tmp;
2455		spin_lock_irqsave(&zone->lru_lock, flags);
2456		tmp = (pages_min * zone->present_pages) / lowmem_pages;
2457		if (is_highmem(zone)) {
2458			/*
2459			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2460			 * need highmem pages, so cap pages_min to a small
2461			 * value here.
2462			 *
2463			 * The (pages_high-pages_low) and (pages_low-pages_min)
2464			 * deltas controls asynch page reclaim, and so should
2465			 * not be capped for highmem.
2466			 */
2467			int min_pages;
2468
2469			min_pages = zone->present_pages / 1024;
2470			if (min_pages < SWAP_CLUSTER_MAX)
2471				min_pages = SWAP_CLUSTER_MAX;
2472			if (min_pages > 128)
2473				min_pages = 128;
2474			zone->pages_min = min_pages;
2475		} else {
2476			/*
2477			 * If it's a lowmem zone, reserve a number of pages
2478			 * proportionate to the zone's size.
2479			 */
2480			zone->pages_min = tmp;
2481		}
2482
2483		zone->pages_low   = zone->pages_min + tmp / 4;
2484		zone->pages_high  = zone->pages_min + tmp / 2;
2485		spin_unlock_irqrestore(&zone->lru_lock, flags);
2486	}
2487}
2488
2489/*
2490 * Initialise min_free_kbytes.
2491 *
2492 * For small machines we want it small (128k min).  For large machines
2493 * we want it large (64MB max).  But it is not linear, because network
2494 * bandwidth does not increase linearly with machine size.  We use
2495 *
2496 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2497 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2498 *
2499 * which yields
2500 *
2501 * 16MB:	512k
2502 * 32MB:	724k
2503 * 64MB:	1024k
2504 * 128MB:	1448k
2505 * 256MB:	2048k
2506 * 512MB:	2896k
2507 * 1024MB:	4096k
2508 * 2048MB:	5792k
2509 * 4096MB:	8192k
2510 * 8192MB:	11584k
2511 * 16384MB:	16384k
2512 */
2513static int __init init_per_zone_pages_min(void)
2514{
2515	unsigned long lowmem_kbytes;
2516
2517	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2518
2519	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2520	if (min_free_kbytes < 128)
2521		min_free_kbytes = 128;
2522	if (min_free_kbytes > 65536)
2523		min_free_kbytes = 65536;
2524	setup_per_zone_pages_min();
2525	setup_per_zone_lowmem_reserve();
2526	return 0;
2527}
2528module_init(init_per_zone_pages_min)
2529
2530/*
2531 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2532 *	that we can call two helper functions whenever min_free_kbytes
2533 *	changes.
2534 */
2535int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2536	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2537{
2538	proc_dointvec(table, write, file, buffer, length, ppos);
2539	setup_per_zone_pages_min();
2540	return 0;
2541}
2542
2543/*
2544 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2545 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2546 *	whenever sysctl_lowmem_reserve_ratio changes.
2547 *
2548 * The reserve ratio obviously has absolutely no relation with the
2549 * pages_min watermarks. The lowmem reserve ratio can only make sense
2550 * if in function of the boot time zone sizes.
2551 */
2552int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2553	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2554{
2555	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2556	setup_per_zone_lowmem_reserve();
2557	return 0;
2558}
2559
2560__initdata int hashdist = HASHDIST_DEFAULT;
2561
2562#ifdef CONFIG_NUMA
2563static int __init set_hashdist(char *str)
2564{
2565	if (!str)
2566		return 0;
2567	hashdist = simple_strtoul(str, &str, 0);
2568	return 1;
2569}
2570__setup("hashdist=", set_hashdist);
2571#endif
2572
2573/*
2574 * allocate a large system hash table from bootmem
2575 * - it is assumed that the hash table must contain an exact power-of-2
2576 *   quantity of entries
2577 * - limit is the number of hash buckets, not the total allocation size
2578 */
2579void *__init alloc_large_system_hash(const char *tablename,
2580				     unsigned long bucketsize,
2581				     unsigned long numentries,
2582				     int scale,
2583				     int flags,
2584				     unsigned int *_hash_shift,
2585				     unsigned int *_hash_mask,
2586				     unsigned long limit)
2587{
2588	unsigned long long max = limit;
2589	unsigned long log2qty, size;
2590	void *table = NULL;
2591
2592	/* allow the kernel cmdline to have a say */
2593	if (!numentries) {
2594		/* round applicable memory size up to nearest megabyte */
2595		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2596		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2597		numentries >>= 20 - PAGE_SHIFT;
2598		numentries <<= 20 - PAGE_SHIFT;
2599
2600		/* limit to 1 bucket per 2^scale bytes of low memory */
2601		if (scale > PAGE_SHIFT)
2602			numentries >>= (scale - PAGE_SHIFT);
2603		else
2604			numentries <<= (PAGE_SHIFT - scale);
2605	}
2606	/* rounded up to nearest power of 2 in size */
2607	numentries = 1UL << (long_log2(numentries) + 1);
2608
2609	/* limit allocation size to 1/16 total memory by default */
2610	if (max == 0) {
2611		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2612		do_div(max, bucketsize);
2613	}
2614
2615	if (numentries > max)
2616		numentries = max;
2617
2618	log2qty = long_log2(numentries);
2619
2620	do {
2621		size = bucketsize << log2qty;
2622		if (flags & HASH_EARLY)
2623			table = alloc_bootmem(size);
2624		else if (hashdist)
2625			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2626		else {
2627			unsigned long order;
2628			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2629				;
2630			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2631		}
2632	} while (!table && size > PAGE_SIZE && --log2qty);
2633
2634	if (!table)
2635		panic("Failed to allocate %s hash table\n", tablename);
2636
2637	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2638	       tablename,
2639	       (1U << log2qty),
2640	       long_log2(size) - PAGE_SHIFT,
2641	       size);
2642
2643	if (_hash_shift)
2644		*_hash_shift = log2qty;
2645	if (_hash_mask)
2646		*_hash_mask = (1 << log2qty) - 1;
2647
2648	return table;
2649}
2650