page_alloc.c revision 08e0f6a9705376732fd3bc9bf8ba97a6b5211eb1
1/*
2 *  linux/mm/page_alloc.c
3 *
4 *  Manages the free list, the system allocates free pages here.
5 *  Note that kmalloc() lives in slab.c
6 *
7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *  Swap reorganised 29.12.95, Stephen Tweedie
9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/memory_hotplug.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38#include <linux/mempolicy.h>
39#include <linux/stop_machine.h>
40#include <linux/sort.h>
41#include <linux/pfn.h>
42
43#include <asm/tlbflush.h>
44#include <asm/div64.h>
45#include "internal.h"
46
47/*
48 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
49 * initializer cleaner
50 */
51nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
52EXPORT_SYMBOL(node_online_map);
53nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
54EXPORT_SYMBOL(node_possible_map);
55unsigned long totalram_pages __read_mostly;
56unsigned long totalreserve_pages __read_mostly;
57long nr_swap_pages;
58int percpu_pagelist_fraction;
59
60static void __free_pages_ok(struct page *page, unsigned int order);
61
62/*
63 * results with 256, 32 in the lowmem_reserve sysctl:
64 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
65 *	1G machine -> (16M dma, 784M normal, 224M high)
66 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
67 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
68 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
69 *
70 * TBD: should special case ZONE_DMA32 machines here - in those we normally
71 * don't need any ZONE_NORMAL reservation
72 */
73int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
74	 256,
75#ifdef CONFIG_ZONE_DMA32
76	 256,
77#endif
78#ifdef CONFIG_HIGHMEM
79	 32
80#endif
81};
82
83EXPORT_SYMBOL(totalram_pages);
84
85/*
86 * Used by page_zone() to look up the address of the struct zone whose
87 * id is encoded in the upper bits of page->flags
88 */
89struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
90EXPORT_SYMBOL(zone_table);
91
92static char *zone_names[MAX_NR_ZONES] = {
93	 "DMA",
94#ifdef CONFIG_ZONE_DMA32
95	 "DMA32",
96#endif
97	 "Normal",
98#ifdef CONFIG_HIGHMEM
99	 "HighMem"
100#endif
101};
102
103int min_free_kbytes = 1024;
104
105unsigned long __meminitdata nr_kernel_pages;
106unsigned long __meminitdata nr_all_pages;
107static unsigned long __initdata dma_reserve;
108
109#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
110  /*
111   * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
112   * ranges of memory (RAM) that may be registered with add_active_range().
113   * Ranges passed to add_active_range() will be merged if possible
114   * so the number of times add_active_range() can be called is
115   * related to the number of nodes and the number of holes
116   */
117  #ifdef CONFIG_MAX_ACTIVE_REGIONS
118    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
119    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
120  #else
121    #if MAX_NUMNODES >= 32
122      /* If there can be many nodes, allow up to 50 holes per node */
123      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
124    #else
125      /* By default, allow up to 256 distinct regions */
126      #define MAX_ACTIVE_REGIONS 256
127    #endif
128  #endif
129
130  struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
131  int __initdata nr_nodemap_entries;
132  unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
133  unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
134#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
135  unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
136  unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
137#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
138#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
139
140#ifdef CONFIG_DEBUG_VM
141static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
142{
143	int ret = 0;
144	unsigned seq;
145	unsigned long pfn = page_to_pfn(page);
146
147	do {
148		seq = zone_span_seqbegin(zone);
149		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
150			ret = 1;
151		else if (pfn < zone->zone_start_pfn)
152			ret = 1;
153	} while (zone_span_seqretry(zone, seq));
154
155	return ret;
156}
157
158static int page_is_consistent(struct zone *zone, struct page *page)
159{
160#ifdef CONFIG_HOLES_IN_ZONE
161	if (!pfn_valid(page_to_pfn(page)))
162		return 0;
163#endif
164	if (zone != page_zone(page))
165		return 0;
166
167	return 1;
168}
169/*
170 * Temporary debugging check for pages not lying within a given zone.
171 */
172static int bad_range(struct zone *zone, struct page *page)
173{
174	if (page_outside_zone_boundaries(zone, page))
175		return 1;
176	if (!page_is_consistent(zone, page))
177		return 1;
178
179	return 0;
180}
181#else
182static inline int bad_range(struct zone *zone, struct page *page)
183{
184	return 0;
185}
186#endif
187
188static void bad_page(struct page *page)
189{
190	printk(KERN_EMERG "Bad page state in process '%s'\n"
191		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
192		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
193		KERN_EMERG "Backtrace:\n",
194		current->comm, page, (int)(2*sizeof(unsigned long)),
195		(unsigned long)page->flags, page->mapping,
196		page_mapcount(page), page_count(page));
197	dump_stack();
198	page->flags &= ~(1 << PG_lru	|
199			1 << PG_private |
200			1 << PG_locked	|
201			1 << PG_active	|
202			1 << PG_dirty	|
203			1 << PG_reclaim |
204			1 << PG_slab    |
205			1 << PG_swapcache |
206			1 << PG_writeback |
207			1 << PG_buddy );
208	set_page_count(page, 0);
209	reset_page_mapcount(page);
210	page->mapping = NULL;
211	add_taint(TAINT_BAD_PAGE);
212}
213
214/*
215 * Higher-order pages are called "compound pages".  They are structured thusly:
216 *
217 * The first PAGE_SIZE page is called the "head page".
218 *
219 * The remaining PAGE_SIZE pages are called "tail pages".
220 *
221 * All pages have PG_compound set.  All pages have their ->private pointing at
222 * the head page (even the head page has this).
223 *
224 * The first tail page's ->lru.next holds the address of the compound page's
225 * put_page() function.  Its ->lru.prev holds the order of allocation.
226 * This usage means that zero-order pages may not be compound.
227 */
228
229static void free_compound_page(struct page *page)
230{
231	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
232}
233
234static void prep_compound_page(struct page *page, unsigned long order)
235{
236	int i;
237	int nr_pages = 1 << order;
238
239	page[1].lru.next = (void *)free_compound_page;	/* set dtor */
240	page[1].lru.prev = (void *)order;
241	for (i = 0; i < nr_pages; i++) {
242		struct page *p = page + i;
243
244		__SetPageCompound(p);
245		set_page_private(p, (unsigned long)page);
246	}
247}
248
249static void destroy_compound_page(struct page *page, unsigned long order)
250{
251	int i;
252	int nr_pages = 1 << order;
253
254	if (unlikely((unsigned long)page[1].lru.prev != order))
255		bad_page(page);
256
257	for (i = 0; i < nr_pages; i++) {
258		struct page *p = page + i;
259
260		if (unlikely(!PageCompound(p) |
261				(page_private(p) != (unsigned long)page)))
262			bad_page(page);
263		__ClearPageCompound(p);
264	}
265}
266
267static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
268{
269	int i;
270
271	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
272	/*
273	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
274	 * and __GFP_HIGHMEM from hard or soft interrupt context.
275	 */
276	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
277	for (i = 0; i < (1 << order); i++)
278		clear_highpage(page + i);
279}
280
281/*
282 * function for dealing with page's order in buddy system.
283 * zone->lock is already acquired when we use these.
284 * So, we don't need atomic page->flags operations here.
285 */
286static inline unsigned long page_order(struct page *page)
287{
288	return page_private(page);
289}
290
291static inline void set_page_order(struct page *page, int order)
292{
293	set_page_private(page, order);
294	__SetPageBuddy(page);
295}
296
297static inline void rmv_page_order(struct page *page)
298{
299	__ClearPageBuddy(page);
300	set_page_private(page, 0);
301}
302
303/*
304 * Locate the struct page for both the matching buddy in our
305 * pair (buddy1) and the combined O(n+1) page they form (page).
306 *
307 * 1) Any buddy B1 will have an order O twin B2 which satisfies
308 * the following equation:
309 *     B2 = B1 ^ (1 << O)
310 * For example, if the starting buddy (buddy2) is #8 its order
311 * 1 buddy is #10:
312 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
313 *
314 * 2) Any buddy B will have an order O+1 parent P which
315 * satisfies the following equation:
316 *     P = B & ~(1 << O)
317 *
318 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
319 */
320static inline struct page *
321__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
322{
323	unsigned long buddy_idx = page_idx ^ (1 << order);
324
325	return page + (buddy_idx - page_idx);
326}
327
328static inline unsigned long
329__find_combined_index(unsigned long page_idx, unsigned int order)
330{
331	return (page_idx & ~(1 << order));
332}
333
334/*
335 * This function checks whether a page is free && is the buddy
336 * we can do coalesce a page and its buddy if
337 * (a) the buddy is not in a hole &&
338 * (b) the buddy is in the buddy system &&
339 * (c) a page and its buddy have the same order &&
340 * (d) a page and its buddy are in the same zone.
341 *
342 * For recording whether a page is in the buddy system, we use PG_buddy.
343 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
344 *
345 * For recording page's order, we use page_private(page).
346 */
347static inline int page_is_buddy(struct page *page, struct page *buddy,
348								int order)
349{
350#ifdef CONFIG_HOLES_IN_ZONE
351	if (!pfn_valid(page_to_pfn(buddy)))
352		return 0;
353#endif
354
355	if (page_zone_id(page) != page_zone_id(buddy))
356		return 0;
357
358	if (PageBuddy(buddy) && page_order(buddy) == order) {
359		BUG_ON(page_count(buddy) != 0);
360		return 1;
361	}
362	return 0;
363}
364
365/*
366 * Freeing function for a buddy system allocator.
367 *
368 * The concept of a buddy system is to maintain direct-mapped table
369 * (containing bit values) for memory blocks of various "orders".
370 * The bottom level table contains the map for the smallest allocatable
371 * units of memory (here, pages), and each level above it describes
372 * pairs of units from the levels below, hence, "buddies".
373 * At a high level, all that happens here is marking the table entry
374 * at the bottom level available, and propagating the changes upward
375 * as necessary, plus some accounting needed to play nicely with other
376 * parts of the VM system.
377 * At each level, we keep a list of pages, which are heads of continuous
378 * free pages of length of (1 << order) and marked with PG_buddy. Page's
379 * order is recorded in page_private(page) field.
380 * So when we are allocating or freeing one, we can derive the state of the
381 * other.  That is, if we allocate a small block, and both were
382 * free, the remainder of the region must be split into blocks.
383 * If a block is freed, and its buddy is also free, then this
384 * triggers coalescing into a block of larger size.
385 *
386 * -- wli
387 */
388
389static inline void __free_one_page(struct page *page,
390		struct zone *zone, unsigned int order)
391{
392	unsigned long page_idx;
393	int order_size = 1 << order;
394
395	if (unlikely(PageCompound(page)))
396		destroy_compound_page(page, order);
397
398	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
399
400	VM_BUG_ON(page_idx & (order_size - 1));
401	VM_BUG_ON(bad_range(zone, page));
402
403	zone->free_pages += order_size;
404	while (order < MAX_ORDER-1) {
405		unsigned long combined_idx;
406		struct free_area *area;
407		struct page *buddy;
408
409		buddy = __page_find_buddy(page, page_idx, order);
410		if (!page_is_buddy(page, buddy, order))
411			break;		/* Move the buddy up one level. */
412
413		list_del(&buddy->lru);
414		area = zone->free_area + order;
415		area->nr_free--;
416		rmv_page_order(buddy);
417		combined_idx = __find_combined_index(page_idx, order);
418		page = page + (combined_idx - page_idx);
419		page_idx = combined_idx;
420		order++;
421	}
422	set_page_order(page, order);
423	list_add(&page->lru, &zone->free_area[order].free_list);
424	zone->free_area[order].nr_free++;
425}
426
427static inline int free_pages_check(struct page *page)
428{
429	if (unlikely(page_mapcount(page) |
430		(page->mapping != NULL)  |
431		(page_count(page) != 0)  |
432		(page->flags & (
433			1 << PG_lru	|
434			1 << PG_private |
435			1 << PG_locked	|
436			1 << PG_active	|
437			1 << PG_reclaim	|
438			1 << PG_slab	|
439			1 << PG_swapcache |
440			1 << PG_writeback |
441			1 << PG_reserved |
442			1 << PG_buddy ))))
443		bad_page(page);
444	if (PageDirty(page))
445		__ClearPageDirty(page);
446	/*
447	 * For now, we report if PG_reserved was found set, but do not
448	 * clear it, and do not free the page.  But we shall soon need
449	 * to do more, for when the ZERO_PAGE count wraps negative.
450	 */
451	return PageReserved(page);
452}
453
454/*
455 * Frees a list of pages.
456 * Assumes all pages on list are in same zone, and of same order.
457 * count is the number of pages to free.
458 *
459 * If the zone was previously in an "all pages pinned" state then look to
460 * see if this freeing clears that state.
461 *
462 * And clear the zone's pages_scanned counter, to hold off the "all pages are
463 * pinned" detection logic.
464 */
465static void free_pages_bulk(struct zone *zone, int count,
466					struct list_head *list, int order)
467{
468	spin_lock(&zone->lock);
469	zone->all_unreclaimable = 0;
470	zone->pages_scanned = 0;
471	while (count--) {
472		struct page *page;
473
474		VM_BUG_ON(list_empty(list));
475		page = list_entry(list->prev, struct page, lru);
476		/* have to delete it as __free_one_page list manipulates */
477		list_del(&page->lru);
478		__free_one_page(page, zone, order);
479	}
480	spin_unlock(&zone->lock);
481}
482
483static void free_one_page(struct zone *zone, struct page *page, int order)
484{
485	spin_lock(&zone->lock);
486	zone->all_unreclaimable = 0;
487	zone->pages_scanned = 0;
488	__free_one_page(page, zone ,order);
489	spin_unlock(&zone->lock);
490}
491
492static void __free_pages_ok(struct page *page, unsigned int order)
493{
494	unsigned long flags;
495	int i;
496	int reserved = 0;
497
498	arch_free_page(page, order);
499	if (!PageHighMem(page))
500		debug_check_no_locks_freed(page_address(page),
501					   PAGE_SIZE<<order);
502
503	for (i = 0 ; i < (1 << order) ; ++i)
504		reserved += free_pages_check(page + i);
505	if (reserved)
506		return;
507
508	kernel_map_pages(page, 1 << order, 0);
509	local_irq_save(flags);
510	__count_vm_events(PGFREE, 1 << order);
511	free_one_page(page_zone(page), page, order);
512	local_irq_restore(flags);
513}
514
515/*
516 * permit the bootmem allocator to evade page validation on high-order frees
517 */
518void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
519{
520	if (order == 0) {
521		__ClearPageReserved(page);
522		set_page_count(page, 0);
523		set_page_refcounted(page);
524		__free_page(page);
525	} else {
526		int loop;
527
528		prefetchw(page);
529		for (loop = 0; loop < BITS_PER_LONG; loop++) {
530			struct page *p = &page[loop];
531
532			if (loop + 1 < BITS_PER_LONG)
533				prefetchw(p + 1);
534			__ClearPageReserved(p);
535			set_page_count(p, 0);
536		}
537
538		set_page_refcounted(page);
539		__free_pages(page, order);
540	}
541}
542
543
544/*
545 * The order of subdivision here is critical for the IO subsystem.
546 * Please do not alter this order without good reasons and regression
547 * testing. Specifically, as large blocks of memory are subdivided,
548 * the order in which smaller blocks are delivered depends on the order
549 * they're subdivided in this function. This is the primary factor
550 * influencing the order in which pages are delivered to the IO
551 * subsystem according to empirical testing, and this is also justified
552 * by considering the behavior of a buddy system containing a single
553 * large block of memory acted on by a series of small allocations.
554 * This behavior is a critical factor in sglist merging's success.
555 *
556 * -- wli
557 */
558static inline void expand(struct zone *zone, struct page *page,
559 	int low, int high, struct free_area *area)
560{
561	unsigned long size = 1 << high;
562
563	while (high > low) {
564		area--;
565		high--;
566		size >>= 1;
567		VM_BUG_ON(bad_range(zone, &page[size]));
568		list_add(&page[size].lru, &area->free_list);
569		area->nr_free++;
570		set_page_order(&page[size], high);
571	}
572}
573
574/*
575 * This page is about to be returned from the page allocator
576 */
577static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
578{
579	if (unlikely(page_mapcount(page) |
580		(page->mapping != NULL)  |
581		(page_count(page) != 0)  |
582		(page->flags & (
583			1 << PG_lru	|
584			1 << PG_private	|
585			1 << PG_locked	|
586			1 << PG_active	|
587			1 << PG_dirty	|
588			1 << PG_reclaim	|
589			1 << PG_slab    |
590			1 << PG_swapcache |
591			1 << PG_writeback |
592			1 << PG_reserved |
593			1 << PG_buddy ))))
594		bad_page(page);
595
596	/*
597	 * For now, we report if PG_reserved was found set, but do not
598	 * clear it, and do not allocate the page: as a safety net.
599	 */
600	if (PageReserved(page))
601		return 1;
602
603	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
604			1 << PG_referenced | 1 << PG_arch_1 |
605			1 << PG_checked | 1 << PG_mappedtodisk);
606	set_page_private(page, 0);
607	set_page_refcounted(page);
608	kernel_map_pages(page, 1 << order, 1);
609
610	if (gfp_flags & __GFP_ZERO)
611		prep_zero_page(page, order, gfp_flags);
612
613	if (order && (gfp_flags & __GFP_COMP))
614		prep_compound_page(page, order);
615
616	return 0;
617}
618
619/*
620 * Do the hard work of removing an element from the buddy allocator.
621 * Call me with the zone->lock already held.
622 */
623static struct page *__rmqueue(struct zone *zone, unsigned int order)
624{
625	struct free_area * area;
626	unsigned int current_order;
627	struct page *page;
628
629	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
630		area = zone->free_area + current_order;
631		if (list_empty(&area->free_list))
632			continue;
633
634		page = list_entry(area->free_list.next, struct page, lru);
635		list_del(&page->lru);
636		rmv_page_order(page);
637		area->nr_free--;
638		zone->free_pages -= 1UL << order;
639		expand(zone, page, order, current_order, area);
640		return page;
641	}
642
643	return NULL;
644}
645
646/*
647 * Obtain a specified number of elements from the buddy allocator, all under
648 * a single hold of the lock, for efficiency.  Add them to the supplied list.
649 * Returns the number of new pages which were placed at *list.
650 */
651static int rmqueue_bulk(struct zone *zone, unsigned int order,
652			unsigned long count, struct list_head *list)
653{
654	int i;
655
656	spin_lock(&zone->lock);
657	for (i = 0; i < count; ++i) {
658		struct page *page = __rmqueue(zone, order);
659		if (unlikely(page == NULL))
660			break;
661		list_add_tail(&page->lru, list);
662	}
663	spin_unlock(&zone->lock);
664	return i;
665}
666
667#ifdef CONFIG_NUMA
668/*
669 * Called from the slab reaper to drain pagesets on a particular node that
670 * belongs to the currently executing processor.
671 * Note that this function must be called with the thread pinned to
672 * a single processor.
673 */
674void drain_node_pages(int nodeid)
675{
676	int i;
677	enum zone_type z;
678	unsigned long flags;
679
680	for (z = 0; z < MAX_NR_ZONES; z++) {
681		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
682		struct per_cpu_pageset *pset;
683
684		if (!populated_zone(zone))
685			continue;
686
687		pset = zone_pcp(zone, smp_processor_id());
688		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
689			struct per_cpu_pages *pcp;
690
691			pcp = &pset->pcp[i];
692			if (pcp->count) {
693				local_irq_save(flags);
694				free_pages_bulk(zone, pcp->count, &pcp->list, 0);
695				pcp->count = 0;
696				local_irq_restore(flags);
697			}
698		}
699	}
700}
701#endif
702
703#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
704static void __drain_pages(unsigned int cpu)
705{
706	unsigned long flags;
707	struct zone *zone;
708	int i;
709
710	for_each_zone(zone) {
711		struct per_cpu_pageset *pset;
712
713		pset = zone_pcp(zone, cpu);
714		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
715			struct per_cpu_pages *pcp;
716
717			pcp = &pset->pcp[i];
718			local_irq_save(flags);
719			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
720			pcp->count = 0;
721			local_irq_restore(flags);
722		}
723	}
724}
725#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
726
727#ifdef CONFIG_PM
728
729void mark_free_pages(struct zone *zone)
730{
731	unsigned long pfn, max_zone_pfn;
732	unsigned long flags;
733	int order;
734	struct list_head *curr;
735
736	if (!zone->spanned_pages)
737		return;
738
739	spin_lock_irqsave(&zone->lock, flags);
740
741	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
742	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
743		if (pfn_valid(pfn)) {
744			struct page *page = pfn_to_page(pfn);
745
746			if (!PageNosave(page))
747				ClearPageNosaveFree(page);
748		}
749
750	for (order = MAX_ORDER - 1; order >= 0; --order)
751		list_for_each(curr, &zone->free_area[order].free_list) {
752			unsigned long i;
753
754			pfn = page_to_pfn(list_entry(curr, struct page, lru));
755			for (i = 0; i < (1UL << order); i++)
756				SetPageNosaveFree(pfn_to_page(pfn + i));
757		}
758
759	spin_unlock_irqrestore(&zone->lock, flags);
760}
761
762/*
763 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
764 */
765void drain_local_pages(void)
766{
767	unsigned long flags;
768
769	local_irq_save(flags);
770	__drain_pages(smp_processor_id());
771	local_irq_restore(flags);
772}
773#endif /* CONFIG_PM */
774
775/*
776 * Free a 0-order page
777 */
778static void fastcall free_hot_cold_page(struct page *page, int cold)
779{
780	struct zone *zone = page_zone(page);
781	struct per_cpu_pages *pcp;
782	unsigned long flags;
783
784	arch_free_page(page, 0);
785
786	if (PageAnon(page))
787		page->mapping = NULL;
788	if (free_pages_check(page))
789		return;
790
791	kernel_map_pages(page, 1, 0);
792
793	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
794	local_irq_save(flags);
795	__count_vm_event(PGFREE);
796	list_add(&page->lru, &pcp->list);
797	pcp->count++;
798	if (pcp->count >= pcp->high) {
799		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
800		pcp->count -= pcp->batch;
801	}
802	local_irq_restore(flags);
803	put_cpu();
804}
805
806void fastcall free_hot_page(struct page *page)
807{
808	free_hot_cold_page(page, 0);
809}
810
811void fastcall free_cold_page(struct page *page)
812{
813	free_hot_cold_page(page, 1);
814}
815
816/*
817 * split_page takes a non-compound higher-order page, and splits it into
818 * n (1<<order) sub-pages: page[0..n]
819 * Each sub-page must be freed individually.
820 *
821 * Note: this is probably too low level an operation for use in drivers.
822 * Please consult with lkml before using this in your driver.
823 */
824void split_page(struct page *page, unsigned int order)
825{
826	int i;
827
828	VM_BUG_ON(PageCompound(page));
829	VM_BUG_ON(!page_count(page));
830	for (i = 1; i < (1 << order); i++)
831		set_page_refcounted(page + i);
832}
833
834/*
835 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
836 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
837 * or two.
838 */
839static struct page *buffered_rmqueue(struct zonelist *zonelist,
840			struct zone *zone, int order, gfp_t gfp_flags)
841{
842	unsigned long flags;
843	struct page *page;
844	int cold = !!(gfp_flags & __GFP_COLD);
845	int cpu;
846
847again:
848	cpu  = get_cpu();
849	if (likely(order == 0)) {
850		struct per_cpu_pages *pcp;
851
852		pcp = &zone_pcp(zone, cpu)->pcp[cold];
853		local_irq_save(flags);
854		if (!pcp->count) {
855			pcp->count += rmqueue_bulk(zone, 0,
856						pcp->batch, &pcp->list);
857			if (unlikely(!pcp->count))
858				goto failed;
859		}
860		page = list_entry(pcp->list.next, struct page, lru);
861		list_del(&page->lru);
862		pcp->count--;
863	} else {
864		spin_lock_irqsave(&zone->lock, flags);
865		page = __rmqueue(zone, order);
866		spin_unlock(&zone->lock);
867		if (!page)
868			goto failed;
869	}
870
871	__count_zone_vm_events(PGALLOC, zone, 1 << order);
872	zone_statistics(zonelist, zone);
873	local_irq_restore(flags);
874	put_cpu();
875
876	VM_BUG_ON(bad_range(zone, page));
877	if (prep_new_page(page, order, gfp_flags))
878		goto again;
879	return page;
880
881failed:
882	local_irq_restore(flags);
883	put_cpu();
884	return NULL;
885}
886
887#define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
888#define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
889#define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
890#define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
891#define ALLOC_HARDER		0x10 /* try to alloc harder */
892#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
893#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
894
895/*
896 * Return 1 if free pages are above 'mark'. This takes into account the order
897 * of the allocation.
898 */
899int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
900		      int classzone_idx, int alloc_flags)
901{
902	/* free_pages my go negative - that's OK */
903	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
904	int o;
905
906	if (alloc_flags & ALLOC_HIGH)
907		min -= min / 2;
908	if (alloc_flags & ALLOC_HARDER)
909		min -= min / 4;
910
911	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
912		return 0;
913	for (o = 0; o < order; o++) {
914		/* At the next order, this order's pages become unavailable */
915		free_pages -= z->free_area[o].nr_free << o;
916
917		/* Require fewer higher order pages to be free */
918		min >>= 1;
919
920		if (free_pages <= min)
921			return 0;
922	}
923	return 1;
924}
925
926/*
927 * get_page_from_freeliest goes through the zonelist trying to allocate
928 * a page.
929 */
930static struct page *
931get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
932		struct zonelist *zonelist, int alloc_flags)
933{
934	struct zone **z = zonelist->zones;
935	struct page *page = NULL;
936	int classzone_idx = zone_idx(*z);
937	struct zone *zone;
938
939	/*
940	 * Go through the zonelist once, looking for a zone with enough free.
941	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
942	 */
943	do {
944		zone = *z;
945		if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
946			zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
947				break;
948		if ((alloc_flags & ALLOC_CPUSET) &&
949				!cpuset_zone_allowed(zone, gfp_mask))
950			continue;
951
952		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
953			unsigned long mark;
954			if (alloc_flags & ALLOC_WMARK_MIN)
955				mark = zone->pages_min;
956			else if (alloc_flags & ALLOC_WMARK_LOW)
957				mark = zone->pages_low;
958			else
959				mark = zone->pages_high;
960			if (!zone_watermark_ok(zone , order, mark,
961				    classzone_idx, alloc_flags))
962				if (!zone_reclaim_mode ||
963				    !zone_reclaim(zone, gfp_mask, order))
964					continue;
965		}
966
967		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
968		if (page) {
969			break;
970		}
971	} while (*(++z) != NULL);
972	return page;
973}
974
975/*
976 * This is the 'heart' of the zoned buddy allocator.
977 */
978struct page * fastcall
979__alloc_pages(gfp_t gfp_mask, unsigned int order,
980		struct zonelist *zonelist)
981{
982	const gfp_t wait = gfp_mask & __GFP_WAIT;
983	struct zone **z;
984	struct page *page;
985	struct reclaim_state reclaim_state;
986	struct task_struct *p = current;
987	int do_retry;
988	int alloc_flags;
989	int did_some_progress;
990
991	might_sleep_if(wait);
992
993restart:
994	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
995
996	if (unlikely(*z == NULL)) {
997		/* Should this ever happen?? */
998		return NULL;
999	}
1000
1001	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1002				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1003	if (page)
1004		goto got_pg;
1005
1006	do {
1007		wakeup_kswapd(*z, order);
1008	} while (*(++z));
1009
1010	/*
1011	 * OK, we're below the kswapd watermark and have kicked background
1012	 * reclaim. Now things get more complex, so set up alloc_flags according
1013	 * to how we want to proceed.
1014	 *
1015	 * The caller may dip into page reserves a bit more if the caller
1016	 * cannot run direct reclaim, or if the caller has realtime scheduling
1017	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1018	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1019	 */
1020	alloc_flags = ALLOC_WMARK_MIN;
1021	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1022		alloc_flags |= ALLOC_HARDER;
1023	if (gfp_mask & __GFP_HIGH)
1024		alloc_flags |= ALLOC_HIGH;
1025	if (wait)
1026		alloc_flags |= ALLOC_CPUSET;
1027
1028	/*
1029	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1030	 * coming from realtime tasks go deeper into reserves.
1031	 *
1032	 * This is the last chance, in general, before the goto nopage.
1033	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1034	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1035	 */
1036	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1037	if (page)
1038		goto got_pg;
1039
1040	/* This allocation should allow future memory freeing. */
1041
1042	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1043			&& !in_interrupt()) {
1044		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1045nofail_alloc:
1046			/* go through the zonelist yet again, ignoring mins */
1047			page = get_page_from_freelist(gfp_mask, order,
1048				zonelist, ALLOC_NO_WATERMARKS);
1049			if (page)
1050				goto got_pg;
1051			if (gfp_mask & __GFP_NOFAIL) {
1052				blk_congestion_wait(WRITE, HZ/50);
1053				goto nofail_alloc;
1054			}
1055		}
1056		goto nopage;
1057	}
1058
1059	/* Atomic allocations - we can't balance anything */
1060	if (!wait)
1061		goto nopage;
1062
1063rebalance:
1064	cond_resched();
1065
1066	/* We now go into synchronous reclaim */
1067	cpuset_memory_pressure_bump();
1068	p->flags |= PF_MEMALLOC;
1069	reclaim_state.reclaimed_slab = 0;
1070	p->reclaim_state = &reclaim_state;
1071
1072	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1073
1074	p->reclaim_state = NULL;
1075	p->flags &= ~PF_MEMALLOC;
1076
1077	cond_resched();
1078
1079	if (likely(did_some_progress)) {
1080		page = get_page_from_freelist(gfp_mask, order,
1081						zonelist, alloc_flags);
1082		if (page)
1083			goto got_pg;
1084	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1085		/*
1086		 * Go through the zonelist yet one more time, keep
1087		 * very high watermark here, this is only to catch
1088		 * a parallel oom killing, we must fail if we're still
1089		 * under heavy pressure.
1090		 */
1091		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1092				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1093		if (page)
1094			goto got_pg;
1095
1096		out_of_memory(zonelist, gfp_mask, order);
1097		goto restart;
1098	}
1099
1100	/*
1101	 * Don't let big-order allocations loop unless the caller explicitly
1102	 * requests that.  Wait for some write requests to complete then retry.
1103	 *
1104	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1105	 * <= 3, but that may not be true in other implementations.
1106	 */
1107	do_retry = 0;
1108	if (!(gfp_mask & __GFP_NORETRY)) {
1109		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1110			do_retry = 1;
1111		if (gfp_mask & __GFP_NOFAIL)
1112			do_retry = 1;
1113	}
1114	if (do_retry) {
1115		blk_congestion_wait(WRITE, HZ/50);
1116		goto rebalance;
1117	}
1118
1119nopage:
1120	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1121		printk(KERN_WARNING "%s: page allocation failure."
1122			" order:%d, mode:0x%x\n",
1123			p->comm, order, gfp_mask);
1124		dump_stack();
1125		show_mem();
1126	}
1127got_pg:
1128	return page;
1129}
1130
1131EXPORT_SYMBOL(__alloc_pages);
1132
1133/*
1134 * Common helper functions.
1135 */
1136fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1137{
1138	struct page * page;
1139	page = alloc_pages(gfp_mask, order);
1140	if (!page)
1141		return 0;
1142	return (unsigned long) page_address(page);
1143}
1144
1145EXPORT_SYMBOL(__get_free_pages);
1146
1147fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1148{
1149	struct page * page;
1150
1151	/*
1152	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1153	 * a highmem page
1154	 */
1155	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1156
1157	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1158	if (page)
1159		return (unsigned long) page_address(page);
1160	return 0;
1161}
1162
1163EXPORT_SYMBOL(get_zeroed_page);
1164
1165void __pagevec_free(struct pagevec *pvec)
1166{
1167	int i = pagevec_count(pvec);
1168
1169	while (--i >= 0)
1170		free_hot_cold_page(pvec->pages[i], pvec->cold);
1171}
1172
1173fastcall void __free_pages(struct page *page, unsigned int order)
1174{
1175	if (put_page_testzero(page)) {
1176		if (order == 0)
1177			free_hot_page(page);
1178		else
1179			__free_pages_ok(page, order);
1180	}
1181}
1182
1183EXPORT_SYMBOL(__free_pages);
1184
1185fastcall void free_pages(unsigned long addr, unsigned int order)
1186{
1187	if (addr != 0) {
1188		VM_BUG_ON(!virt_addr_valid((void *)addr));
1189		__free_pages(virt_to_page((void *)addr), order);
1190	}
1191}
1192
1193EXPORT_SYMBOL(free_pages);
1194
1195/*
1196 * Total amount of free (allocatable) RAM:
1197 */
1198unsigned int nr_free_pages(void)
1199{
1200	unsigned int sum = 0;
1201	struct zone *zone;
1202
1203	for_each_zone(zone)
1204		sum += zone->free_pages;
1205
1206	return sum;
1207}
1208
1209EXPORT_SYMBOL(nr_free_pages);
1210
1211#ifdef CONFIG_NUMA
1212unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1213{
1214	unsigned int sum = 0;
1215	enum zone_type i;
1216
1217	for (i = 0; i < MAX_NR_ZONES; i++)
1218		sum += pgdat->node_zones[i].free_pages;
1219
1220	return sum;
1221}
1222#endif
1223
1224static unsigned int nr_free_zone_pages(int offset)
1225{
1226	/* Just pick one node, since fallback list is circular */
1227	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1228	unsigned int sum = 0;
1229
1230	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1231	struct zone **zonep = zonelist->zones;
1232	struct zone *zone;
1233
1234	for (zone = *zonep++; zone; zone = *zonep++) {
1235		unsigned long size = zone->present_pages;
1236		unsigned long high = zone->pages_high;
1237		if (size > high)
1238			sum += size - high;
1239	}
1240
1241	return sum;
1242}
1243
1244/*
1245 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1246 */
1247unsigned int nr_free_buffer_pages(void)
1248{
1249	return nr_free_zone_pages(gfp_zone(GFP_USER));
1250}
1251
1252/*
1253 * Amount of free RAM allocatable within all zones
1254 */
1255unsigned int nr_free_pagecache_pages(void)
1256{
1257	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1258}
1259
1260static inline void show_node(struct zone *zone)
1261{
1262	if (NUMA_BUILD)
1263		printk("Node %ld ", zone_to_nid(zone));
1264}
1265
1266void si_meminfo(struct sysinfo *val)
1267{
1268	val->totalram = totalram_pages;
1269	val->sharedram = 0;
1270	val->freeram = nr_free_pages();
1271	val->bufferram = nr_blockdev_pages();
1272	val->totalhigh = totalhigh_pages;
1273	val->freehigh = nr_free_highpages();
1274	val->mem_unit = PAGE_SIZE;
1275}
1276
1277EXPORT_SYMBOL(si_meminfo);
1278
1279#ifdef CONFIG_NUMA
1280void si_meminfo_node(struct sysinfo *val, int nid)
1281{
1282	pg_data_t *pgdat = NODE_DATA(nid);
1283
1284	val->totalram = pgdat->node_present_pages;
1285	val->freeram = nr_free_pages_pgdat(pgdat);
1286#ifdef CONFIG_HIGHMEM
1287	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1288	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1289#else
1290	val->totalhigh = 0;
1291	val->freehigh = 0;
1292#endif
1293	val->mem_unit = PAGE_SIZE;
1294}
1295#endif
1296
1297#define K(x) ((x) << (PAGE_SHIFT-10))
1298
1299/*
1300 * Show free area list (used inside shift_scroll-lock stuff)
1301 * We also calculate the percentage fragmentation. We do this by counting the
1302 * memory on each free list with the exception of the first item on the list.
1303 */
1304void show_free_areas(void)
1305{
1306	int cpu;
1307	unsigned long active;
1308	unsigned long inactive;
1309	unsigned long free;
1310	struct zone *zone;
1311
1312	for_each_zone(zone) {
1313		if (!populated_zone(zone))
1314			continue;
1315
1316		show_node(zone);
1317		printk("%s per-cpu:\n", zone->name);
1318
1319		for_each_online_cpu(cpu) {
1320			struct per_cpu_pageset *pageset;
1321
1322			pageset = zone_pcp(zone, cpu);
1323
1324			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1325			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1326			       cpu, pageset->pcp[0].high,
1327			       pageset->pcp[0].batch, pageset->pcp[0].count,
1328			       pageset->pcp[1].high, pageset->pcp[1].batch,
1329			       pageset->pcp[1].count);
1330		}
1331	}
1332
1333	get_zone_counts(&active, &inactive, &free);
1334
1335	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1336		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1337		active,
1338		inactive,
1339		global_page_state(NR_FILE_DIRTY),
1340		global_page_state(NR_WRITEBACK),
1341		global_page_state(NR_UNSTABLE_NFS),
1342		nr_free_pages(),
1343		global_page_state(NR_SLAB_RECLAIMABLE) +
1344			global_page_state(NR_SLAB_UNRECLAIMABLE),
1345		global_page_state(NR_FILE_MAPPED),
1346		global_page_state(NR_PAGETABLE));
1347
1348	for_each_zone(zone) {
1349		int i;
1350
1351		if (!populated_zone(zone))
1352			continue;
1353
1354		show_node(zone);
1355		printk("%s"
1356			" free:%lukB"
1357			" min:%lukB"
1358			" low:%lukB"
1359			" high:%lukB"
1360			" active:%lukB"
1361			" inactive:%lukB"
1362			" present:%lukB"
1363			" pages_scanned:%lu"
1364			" all_unreclaimable? %s"
1365			"\n",
1366			zone->name,
1367			K(zone->free_pages),
1368			K(zone->pages_min),
1369			K(zone->pages_low),
1370			K(zone->pages_high),
1371			K(zone->nr_active),
1372			K(zone->nr_inactive),
1373			K(zone->present_pages),
1374			zone->pages_scanned,
1375			(zone->all_unreclaimable ? "yes" : "no")
1376			);
1377		printk("lowmem_reserve[]:");
1378		for (i = 0; i < MAX_NR_ZONES; i++)
1379			printk(" %lu", zone->lowmem_reserve[i]);
1380		printk("\n");
1381	}
1382
1383	for_each_zone(zone) {
1384 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1385
1386		if (!populated_zone(zone))
1387			continue;
1388
1389		show_node(zone);
1390		printk("%s: ", zone->name);
1391
1392		spin_lock_irqsave(&zone->lock, flags);
1393		for (order = 0; order < MAX_ORDER; order++) {
1394			nr[order] = zone->free_area[order].nr_free;
1395			total += nr[order] << order;
1396		}
1397		spin_unlock_irqrestore(&zone->lock, flags);
1398		for (order = 0; order < MAX_ORDER; order++)
1399			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1400		printk("= %lukB\n", K(total));
1401	}
1402
1403	show_swap_cache_info();
1404}
1405
1406/*
1407 * Builds allocation fallback zone lists.
1408 *
1409 * Add all populated zones of a node to the zonelist.
1410 */
1411static int __meminit build_zonelists_node(pg_data_t *pgdat,
1412			struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1413{
1414	struct zone *zone;
1415
1416	BUG_ON(zone_type >= MAX_NR_ZONES);
1417	zone_type++;
1418
1419	do {
1420		zone_type--;
1421		zone = pgdat->node_zones + zone_type;
1422		if (populated_zone(zone)) {
1423			zonelist->zones[nr_zones++] = zone;
1424			check_highest_zone(zone_type);
1425		}
1426
1427	} while (zone_type);
1428	return nr_zones;
1429}
1430
1431#ifdef CONFIG_NUMA
1432#define MAX_NODE_LOAD (num_online_nodes())
1433static int __meminitdata node_load[MAX_NUMNODES];
1434/**
1435 * find_next_best_node - find the next node that should appear in a given node's fallback list
1436 * @node: node whose fallback list we're appending
1437 * @used_node_mask: nodemask_t of already used nodes
1438 *
1439 * We use a number of factors to determine which is the next node that should
1440 * appear on a given node's fallback list.  The node should not have appeared
1441 * already in @node's fallback list, and it should be the next closest node
1442 * according to the distance array (which contains arbitrary distance values
1443 * from each node to each node in the system), and should also prefer nodes
1444 * with no CPUs, since presumably they'll have very little allocation pressure
1445 * on them otherwise.
1446 * It returns -1 if no node is found.
1447 */
1448static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1449{
1450	int n, val;
1451	int min_val = INT_MAX;
1452	int best_node = -1;
1453
1454	/* Use the local node if we haven't already */
1455	if (!node_isset(node, *used_node_mask)) {
1456		node_set(node, *used_node_mask);
1457		return node;
1458	}
1459
1460	for_each_online_node(n) {
1461		cpumask_t tmp;
1462
1463		/* Don't want a node to appear more than once */
1464		if (node_isset(n, *used_node_mask))
1465			continue;
1466
1467		/* Use the distance array to find the distance */
1468		val = node_distance(node, n);
1469
1470		/* Penalize nodes under us ("prefer the next node") */
1471		val += (n < node);
1472
1473		/* Give preference to headless and unused nodes */
1474		tmp = node_to_cpumask(n);
1475		if (!cpus_empty(tmp))
1476			val += PENALTY_FOR_NODE_WITH_CPUS;
1477
1478		/* Slight preference for less loaded node */
1479		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1480		val += node_load[n];
1481
1482		if (val < min_val) {
1483			min_val = val;
1484			best_node = n;
1485		}
1486	}
1487
1488	if (best_node >= 0)
1489		node_set(best_node, *used_node_mask);
1490
1491	return best_node;
1492}
1493
1494static void __meminit build_zonelists(pg_data_t *pgdat)
1495{
1496	int j, node, local_node;
1497	enum zone_type i;
1498	int prev_node, load;
1499	struct zonelist *zonelist;
1500	nodemask_t used_mask;
1501
1502	/* initialize zonelists */
1503	for (i = 0; i < MAX_NR_ZONES; i++) {
1504		zonelist = pgdat->node_zonelists + i;
1505		zonelist->zones[0] = NULL;
1506	}
1507
1508	/* NUMA-aware ordering of nodes */
1509	local_node = pgdat->node_id;
1510	load = num_online_nodes();
1511	prev_node = local_node;
1512	nodes_clear(used_mask);
1513	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1514		int distance = node_distance(local_node, node);
1515
1516		/*
1517		 * If another node is sufficiently far away then it is better
1518		 * to reclaim pages in a zone before going off node.
1519		 */
1520		if (distance > RECLAIM_DISTANCE)
1521			zone_reclaim_mode = 1;
1522
1523		/*
1524		 * We don't want to pressure a particular node.
1525		 * So adding penalty to the first node in same
1526		 * distance group to make it round-robin.
1527		 */
1528
1529		if (distance != node_distance(local_node, prev_node))
1530			node_load[node] += load;
1531		prev_node = node;
1532		load--;
1533		for (i = 0; i < MAX_NR_ZONES; i++) {
1534			zonelist = pgdat->node_zonelists + i;
1535			for (j = 0; zonelist->zones[j] != NULL; j++);
1536
1537	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1538			zonelist->zones[j] = NULL;
1539		}
1540	}
1541}
1542
1543#else	/* CONFIG_NUMA */
1544
1545static void __meminit build_zonelists(pg_data_t *pgdat)
1546{
1547	int node, local_node;
1548	enum zone_type i,j;
1549
1550	local_node = pgdat->node_id;
1551	for (i = 0; i < MAX_NR_ZONES; i++) {
1552		struct zonelist *zonelist;
1553
1554		zonelist = pgdat->node_zonelists + i;
1555
1556 		j = build_zonelists_node(pgdat, zonelist, 0, i);
1557 		/*
1558 		 * Now we build the zonelist so that it contains the zones
1559 		 * of all the other nodes.
1560 		 * We don't want to pressure a particular node, so when
1561 		 * building the zones for node N, we make sure that the
1562 		 * zones coming right after the local ones are those from
1563 		 * node N+1 (modulo N)
1564 		 */
1565		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1566			if (!node_online(node))
1567				continue;
1568			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1569		}
1570		for (node = 0; node < local_node; node++) {
1571			if (!node_online(node))
1572				continue;
1573			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1574		}
1575
1576		zonelist->zones[j] = NULL;
1577	}
1578}
1579
1580#endif	/* CONFIG_NUMA */
1581
1582/* return values int ....just for stop_machine_run() */
1583static int __meminit __build_all_zonelists(void *dummy)
1584{
1585	int nid;
1586	for_each_online_node(nid)
1587		build_zonelists(NODE_DATA(nid));
1588	return 0;
1589}
1590
1591void __meminit build_all_zonelists(void)
1592{
1593	if (system_state == SYSTEM_BOOTING) {
1594		__build_all_zonelists(0);
1595		cpuset_init_current_mems_allowed();
1596	} else {
1597		/* we have to stop all cpus to guaranntee there is no user
1598		   of zonelist */
1599		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1600		/* cpuset refresh routine should be here */
1601	}
1602	vm_total_pages = nr_free_pagecache_pages();
1603	printk("Built %i zonelists.  Total pages: %ld\n",
1604			num_online_nodes(), vm_total_pages);
1605}
1606
1607/*
1608 * Helper functions to size the waitqueue hash table.
1609 * Essentially these want to choose hash table sizes sufficiently
1610 * large so that collisions trying to wait on pages are rare.
1611 * But in fact, the number of active page waitqueues on typical
1612 * systems is ridiculously low, less than 200. So this is even
1613 * conservative, even though it seems large.
1614 *
1615 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1616 * waitqueues, i.e. the size of the waitq table given the number of pages.
1617 */
1618#define PAGES_PER_WAITQUEUE	256
1619
1620#ifndef CONFIG_MEMORY_HOTPLUG
1621static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1622{
1623	unsigned long size = 1;
1624
1625	pages /= PAGES_PER_WAITQUEUE;
1626
1627	while (size < pages)
1628		size <<= 1;
1629
1630	/*
1631	 * Once we have dozens or even hundreds of threads sleeping
1632	 * on IO we've got bigger problems than wait queue collision.
1633	 * Limit the size of the wait table to a reasonable size.
1634	 */
1635	size = min(size, 4096UL);
1636
1637	return max(size, 4UL);
1638}
1639#else
1640/*
1641 * A zone's size might be changed by hot-add, so it is not possible to determine
1642 * a suitable size for its wait_table.  So we use the maximum size now.
1643 *
1644 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1645 *
1646 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1647 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1648 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1649 *
1650 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1651 * or more by the traditional way. (See above).  It equals:
1652 *
1653 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1654 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1655 *    powerpc (64K page size)             : =  (32G +16M)byte.
1656 */
1657static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1658{
1659	return 4096UL;
1660}
1661#endif
1662
1663/*
1664 * This is an integer logarithm so that shifts can be used later
1665 * to extract the more random high bits from the multiplicative
1666 * hash function before the remainder is taken.
1667 */
1668static inline unsigned long wait_table_bits(unsigned long size)
1669{
1670	return ffz(~size);
1671}
1672
1673#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1674
1675/*
1676 * Initially all pages are reserved - free ones are freed
1677 * up by free_all_bootmem() once the early boot process is
1678 * done. Non-atomic initialization, single-pass.
1679 */
1680void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1681		unsigned long start_pfn)
1682{
1683	struct page *page;
1684	unsigned long end_pfn = start_pfn + size;
1685	unsigned long pfn;
1686
1687	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1688		if (!early_pfn_valid(pfn))
1689			continue;
1690		page = pfn_to_page(pfn);
1691		set_page_links(page, zone, nid, pfn);
1692		init_page_count(page);
1693		reset_page_mapcount(page);
1694		SetPageReserved(page);
1695		INIT_LIST_HEAD(&page->lru);
1696#ifdef WANT_PAGE_VIRTUAL
1697		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1698		if (!is_highmem_idx(zone))
1699			set_page_address(page, __va(pfn << PAGE_SHIFT));
1700#endif
1701	}
1702}
1703
1704void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1705				unsigned long size)
1706{
1707	int order;
1708	for (order = 0; order < MAX_ORDER ; order++) {
1709		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1710		zone->free_area[order].nr_free = 0;
1711	}
1712}
1713
1714#define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1715void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
1716		unsigned long pfn, unsigned long size)
1717{
1718	unsigned long snum = pfn_to_section_nr(pfn);
1719	unsigned long end = pfn_to_section_nr(pfn + size);
1720
1721	if (FLAGS_HAS_NODE)
1722		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1723	else
1724		for (; snum <= end; snum++)
1725			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1726}
1727
1728#ifndef __HAVE_ARCH_MEMMAP_INIT
1729#define memmap_init(size, nid, zone, start_pfn) \
1730	memmap_init_zone((size), (nid), (zone), (start_pfn))
1731#endif
1732
1733static int __cpuinit zone_batchsize(struct zone *zone)
1734{
1735	int batch;
1736
1737	/*
1738	 * The per-cpu-pages pools are set to around 1000th of the
1739	 * size of the zone.  But no more than 1/2 of a meg.
1740	 *
1741	 * OK, so we don't know how big the cache is.  So guess.
1742	 */
1743	batch = zone->present_pages / 1024;
1744	if (batch * PAGE_SIZE > 512 * 1024)
1745		batch = (512 * 1024) / PAGE_SIZE;
1746	batch /= 4;		/* We effectively *= 4 below */
1747	if (batch < 1)
1748		batch = 1;
1749
1750	/*
1751	 * Clamp the batch to a 2^n - 1 value. Having a power
1752	 * of 2 value was found to be more likely to have
1753	 * suboptimal cache aliasing properties in some cases.
1754	 *
1755	 * For example if 2 tasks are alternately allocating
1756	 * batches of pages, one task can end up with a lot
1757	 * of pages of one half of the possible page colors
1758	 * and the other with pages of the other colors.
1759	 */
1760	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1761
1762	return batch;
1763}
1764
1765inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1766{
1767	struct per_cpu_pages *pcp;
1768
1769	memset(p, 0, sizeof(*p));
1770
1771	pcp = &p->pcp[0];		/* hot */
1772	pcp->count = 0;
1773	pcp->high = 6 * batch;
1774	pcp->batch = max(1UL, 1 * batch);
1775	INIT_LIST_HEAD(&pcp->list);
1776
1777	pcp = &p->pcp[1];		/* cold*/
1778	pcp->count = 0;
1779	pcp->high = 2 * batch;
1780	pcp->batch = max(1UL, batch/2);
1781	INIT_LIST_HEAD(&pcp->list);
1782}
1783
1784/*
1785 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1786 * to the value high for the pageset p.
1787 */
1788
1789static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1790				unsigned long high)
1791{
1792	struct per_cpu_pages *pcp;
1793
1794	pcp = &p->pcp[0]; /* hot list */
1795	pcp->high = high;
1796	pcp->batch = max(1UL, high/4);
1797	if ((high/4) > (PAGE_SHIFT * 8))
1798		pcp->batch = PAGE_SHIFT * 8;
1799}
1800
1801
1802#ifdef CONFIG_NUMA
1803/*
1804 * Boot pageset table. One per cpu which is going to be used for all
1805 * zones and all nodes. The parameters will be set in such a way
1806 * that an item put on a list will immediately be handed over to
1807 * the buddy list. This is safe since pageset manipulation is done
1808 * with interrupts disabled.
1809 *
1810 * Some NUMA counter updates may also be caught by the boot pagesets.
1811 *
1812 * The boot_pagesets must be kept even after bootup is complete for
1813 * unused processors and/or zones. They do play a role for bootstrapping
1814 * hotplugged processors.
1815 *
1816 * zoneinfo_show() and maybe other functions do
1817 * not check if the processor is online before following the pageset pointer.
1818 * Other parts of the kernel may not check if the zone is available.
1819 */
1820static struct per_cpu_pageset boot_pageset[NR_CPUS];
1821
1822/*
1823 * Dynamically allocate memory for the
1824 * per cpu pageset array in struct zone.
1825 */
1826static int __cpuinit process_zones(int cpu)
1827{
1828	struct zone *zone, *dzone;
1829
1830	for_each_zone(zone) {
1831
1832		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1833					 GFP_KERNEL, cpu_to_node(cpu));
1834		if (!zone_pcp(zone, cpu))
1835			goto bad;
1836
1837		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1838
1839		if (percpu_pagelist_fraction)
1840			setup_pagelist_highmark(zone_pcp(zone, cpu),
1841			 	(zone->present_pages / percpu_pagelist_fraction));
1842	}
1843
1844	return 0;
1845bad:
1846	for_each_zone(dzone) {
1847		if (dzone == zone)
1848			break;
1849		kfree(zone_pcp(dzone, cpu));
1850		zone_pcp(dzone, cpu) = NULL;
1851	}
1852	return -ENOMEM;
1853}
1854
1855static inline void free_zone_pagesets(int cpu)
1856{
1857	struct zone *zone;
1858
1859	for_each_zone(zone) {
1860		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1861
1862		/* Free per_cpu_pageset if it is slab allocated */
1863		if (pset != &boot_pageset[cpu])
1864			kfree(pset);
1865		zone_pcp(zone, cpu) = NULL;
1866	}
1867}
1868
1869static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1870		unsigned long action,
1871		void *hcpu)
1872{
1873	int cpu = (long)hcpu;
1874	int ret = NOTIFY_OK;
1875
1876	switch (action) {
1877		case CPU_UP_PREPARE:
1878			if (process_zones(cpu))
1879				ret = NOTIFY_BAD;
1880			break;
1881		case CPU_UP_CANCELED:
1882		case CPU_DEAD:
1883			free_zone_pagesets(cpu);
1884			break;
1885		default:
1886			break;
1887	}
1888	return ret;
1889}
1890
1891static struct notifier_block __cpuinitdata pageset_notifier =
1892	{ &pageset_cpuup_callback, NULL, 0 };
1893
1894void __init setup_per_cpu_pageset(void)
1895{
1896	int err;
1897
1898	/* Initialize per_cpu_pageset for cpu 0.
1899	 * A cpuup callback will do this for every cpu
1900	 * as it comes online
1901	 */
1902	err = process_zones(smp_processor_id());
1903	BUG_ON(err);
1904	register_cpu_notifier(&pageset_notifier);
1905}
1906
1907#endif
1908
1909static __meminit
1910int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1911{
1912	int i;
1913	struct pglist_data *pgdat = zone->zone_pgdat;
1914	size_t alloc_size;
1915
1916	/*
1917	 * The per-page waitqueue mechanism uses hashed waitqueues
1918	 * per zone.
1919	 */
1920	zone->wait_table_hash_nr_entries =
1921		 wait_table_hash_nr_entries(zone_size_pages);
1922	zone->wait_table_bits =
1923		wait_table_bits(zone->wait_table_hash_nr_entries);
1924	alloc_size = zone->wait_table_hash_nr_entries
1925					* sizeof(wait_queue_head_t);
1926
1927 	if (system_state == SYSTEM_BOOTING) {
1928		zone->wait_table = (wait_queue_head_t *)
1929			alloc_bootmem_node(pgdat, alloc_size);
1930	} else {
1931		/*
1932		 * This case means that a zone whose size was 0 gets new memory
1933		 * via memory hot-add.
1934		 * But it may be the case that a new node was hot-added.  In
1935		 * this case vmalloc() will not be able to use this new node's
1936		 * memory - this wait_table must be initialized to use this new
1937		 * node itself as well.
1938		 * To use this new node's memory, further consideration will be
1939		 * necessary.
1940		 */
1941		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1942	}
1943	if (!zone->wait_table)
1944		return -ENOMEM;
1945
1946	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
1947		init_waitqueue_head(zone->wait_table + i);
1948
1949	return 0;
1950}
1951
1952static __meminit void zone_pcp_init(struct zone *zone)
1953{
1954	int cpu;
1955	unsigned long batch = zone_batchsize(zone);
1956
1957	for (cpu = 0; cpu < NR_CPUS; cpu++) {
1958#ifdef CONFIG_NUMA
1959		/* Early boot. Slab allocator not functional yet */
1960		zone_pcp(zone, cpu) = &boot_pageset[cpu];
1961		setup_pageset(&boot_pageset[cpu],0);
1962#else
1963		setup_pageset(zone_pcp(zone,cpu), batch);
1964#endif
1965	}
1966	if (zone->present_pages)
1967		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1968			zone->name, zone->present_pages, batch);
1969}
1970
1971__meminit int init_currently_empty_zone(struct zone *zone,
1972					unsigned long zone_start_pfn,
1973					unsigned long size)
1974{
1975	struct pglist_data *pgdat = zone->zone_pgdat;
1976	int ret;
1977	ret = zone_wait_table_init(zone, size);
1978	if (ret)
1979		return ret;
1980	pgdat->nr_zones = zone_idx(zone) + 1;
1981
1982	zone->zone_start_pfn = zone_start_pfn;
1983
1984	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1985
1986	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1987
1988	return 0;
1989}
1990
1991#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1992/*
1993 * Basic iterator support. Return the first range of PFNs for a node
1994 * Note: nid == MAX_NUMNODES returns first region regardless of node
1995 */
1996static int __init first_active_region_index_in_nid(int nid)
1997{
1998	int i;
1999
2000	for (i = 0; i < nr_nodemap_entries; i++)
2001		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2002			return i;
2003
2004	return -1;
2005}
2006
2007/*
2008 * Basic iterator support. Return the next active range of PFNs for a node
2009 * Note: nid == MAX_NUMNODES returns next region regardles of node
2010 */
2011static int __init next_active_region_index_in_nid(int index, int nid)
2012{
2013	for (index = index + 1; index < nr_nodemap_entries; index++)
2014		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2015			return index;
2016
2017	return -1;
2018}
2019
2020#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2021/*
2022 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2023 * Architectures may implement their own version but if add_active_range()
2024 * was used and there are no special requirements, this is a convenient
2025 * alternative
2026 */
2027int __init early_pfn_to_nid(unsigned long pfn)
2028{
2029	int i;
2030
2031	for (i = 0; i < nr_nodemap_entries; i++) {
2032		unsigned long start_pfn = early_node_map[i].start_pfn;
2033		unsigned long end_pfn = early_node_map[i].end_pfn;
2034
2035		if (start_pfn <= pfn && pfn < end_pfn)
2036			return early_node_map[i].nid;
2037	}
2038
2039	return 0;
2040}
2041#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2042
2043/* Basic iterator support to walk early_node_map[] */
2044#define for_each_active_range_index_in_nid(i, nid) \
2045	for (i = first_active_region_index_in_nid(nid); i != -1; \
2046				i = next_active_region_index_in_nid(i, nid))
2047
2048/**
2049 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2050 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed
2051 * @max_low_pfn: The highest PFN that till be passed to free_bootmem_node
2052 *
2053 * If an architecture guarantees that all ranges registered with
2054 * add_active_ranges() contain no holes and may be freed, this
2055 * this function may be used instead of calling free_bootmem() manually.
2056 */
2057void __init free_bootmem_with_active_regions(int nid,
2058						unsigned long max_low_pfn)
2059{
2060	int i;
2061
2062	for_each_active_range_index_in_nid(i, nid) {
2063		unsigned long size_pages = 0;
2064		unsigned long end_pfn = early_node_map[i].end_pfn;
2065
2066		if (early_node_map[i].start_pfn >= max_low_pfn)
2067			continue;
2068
2069		if (end_pfn > max_low_pfn)
2070			end_pfn = max_low_pfn;
2071
2072		size_pages = end_pfn - early_node_map[i].start_pfn;
2073		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2074				PFN_PHYS(early_node_map[i].start_pfn),
2075				size_pages << PAGE_SHIFT);
2076	}
2077}
2078
2079/**
2080 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2081 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used
2082 *
2083 * If an architecture guarantees that all ranges registered with
2084 * add_active_ranges() contain no holes and may be freed, this
2085 * this function may be used instead of calling memory_present() manually.
2086 */
2087void __init sparse_memory_present_with_active_regions(int nid)
2088{
2089	int i;
2090
2091	for_each_active_range_index_in_nid(i, nid)
2092		memory_present(early_node_map[i].nid,
2093				early_node_map[i].start_pfn,
2094				early_node_map[i].end_pfn);
2095}
2096
2097/**
2098 * push_node_boundaries - Push node boundaries to at least the requested boundary
2099 * @nid: The nid of the node to push the boundary for
2100 * @start_pfn: The start pfn of the node
2101 * @end_pfn: The end pfn of the node
2102 *
2103 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2104 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2105 * be hotplugged even though no physical memory exists. This function allows
2106 * an arch to push out the node boundaries so mem_map is allocated that can
2107 * be used later.
2108 */
2109#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2110void __init push_node_boundaries(unsigned int nid,
2111		unsigned long start_pfn, unsigned long end_pfn)
2112{
2113	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2114			nid, start_pfn, end_pfn);
2115
2116	/* Initialise the boundary for this node if necessary */
2117	if (node_boundary_end_pfn[nid] == 0)
2118		node_boundary_start_pfn[nid] = -1UL;
2119
2120	/* Update the boundaries */
2121	if (node_boundary_start_pfn[nid] > start_pfn)
2122		node_boundary_start_pfn[nid] = start_pfn;
2123	if (node_boundary_end_pfn[nid] < end_pfn)
2124		node_boundary_end_pfn[nid] = end_pfn;
2125}
2126
2127/* If necessary, push the node boundary out for reserve hotadd */
2128static void __init account_node_boundary(unsigned int nid,
2129		unsigned long *start_pfn, unsigned long *end_pfn)
2130{
2131	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2132			nid, *start_pfn, *end_pfn);
2133
2134	/* Return if boundary information has not been provided */
2135	if (node_boundary_end_pfn[nid] == 0)
2136		return;
2137
2138	/* Check the boundaries and update if necessary */
2139	if (node_boundary_start_pfn[nid] < *start_pfn)
2140		*start_pfn = node_boundary_start_pfn[nid];
2141	if (node_boundary_end_pfn[nid] > *end_pfn)
2142		*end_pfn = node_boundary_end_pfn[nid];
2143}
2144#else
2145void __init push_node_boundaries(unsigned int nid,
2146		unsigned long start_pfn, unsigned long end_pfn) {}
2147
2148static void __init account_node_boundary(unsigned int nid,
2149		unsigned long *start_pfn, unsigned long *end_pfn) {}
2150#endif
2151
2152
2153/**
2154 * get_pfn_range_for_nid - Return the start and end page frames for a node
2155 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned
2156 * @start_pfn: Passed by reference. On return, it will have the node start_pfn
2157 * @end_pfn: Passed by reference. On return, it will have the node end_pfn
2158 *
2159 * It returns the start and end page frame of a node based on information
2160 * provided by an arch calling add_active_range(). If called for a node
2161 * with no available memory, a warning is printed and the start and end
2162 * PFNs will be 0
2163 */
2164void __init get_pfn_range_for_nid(unsigned int nid,
2165			unsigned long *start_pfn, unsigned long *end_pfn)
2166{
2167	int i;
2168	*start_pfn = -1UL;
2169	*end_pfn = 0;
2170
2171	for_each_active_range_index_in_nid(i, nid) {
2172		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2173		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2174	}
2175
2176	if (*start_pfn == -1UL) {
2177		printk(KERN_WARNING "Node %u active with no memory\n", nid);
2178		*start_pfn = 0;
2179	}
2180
2181	/* Push the node boundaries out if requested */
2182	account_node_boundary(nid, start_pfn, end_pfn);
2183}
2184
2185/*
2186 * Return the number of pages a zone spans in a node, including holes
2187 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2188 */
2189unsigned long __init zone_spanned_pages_in_node(int nid,
2190					unsigned long zone_type,
2191					unsigned long *ignored)
2192{
2193	unsigned long node_start_pfn, node_end_pfn;
2194	unsigned long zone_start_pfn, zone_end_pfn;
2195
2196	/* Get the start and end of the node and zone */
2197	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2198	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2199	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2200
2201	/* Check that this node has pages within the zone's required range */
2202	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2203		return 0;
2204
2205	/* Move the zone boundaries inside the node if necessary */
2206	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2207	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2208
2209	/* Return the spanned pages */
2210	return zone_end_pfn - zone_start_pfn;
2211}
2212
2213/*
2214 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2215 * then all holes in the requested range will be accounted for
2216 */
2217unsigned long __init __absent_pages_in_range(int nid,
2218				unsigned long range_start_pfn,
2219				unsigned long range_end_pfn)
2220{
2221	int i = 0;
2222	unsigned long prev_end_pfn = 0, hole_pages = 0;
2223	unsigned long start_pfn;
2224
2225	/* Find the end_pfn of the first active range of pfns in the node */
2226	i = first_active_region_index_in_nid(nid);
2227	if (i == -1)
2228		return 0;
2229
2230	/* Account for ranges before physical memory on this node */
2231	if (early_node_map[i].start_pfn > range_start_pfn)
2232		hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2233
2234	prev_end_pfn = early_node_map[i].start_pfn;
2235
2236	/* Find all holes for the zone within the node */
2237	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2238
2239		/* No need to continue if prev_end_pfn is outside the zone */
2240		if (prev_end_pfn >= range_end_pfn)
2241			break;
2242
2243		/* Make sure the end of the zone is not within the hole */
2244		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2245		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2246
2247		/* Update the hole size cound and move on */
2248		if (start_pfn > range_start_pfn) {
2249			BUG_ON(prev_end_pfn > start_pfn);
2250			hole_pages += start_pfn - prev_end_pfn;
2251		}
2252		prev_end_pfn = early_node_map[i].end_pfn;
2253	}
2254
2255	/* Account for ranges past physical memory on this node */
2256	if (range_end_pfn > prev_end_pfn)
2257		hole_pages = range_end_pfn -
2258				max(range_start_pfn, prev_end_pfn);
2259
2260	return hole_pages;
2261}
2262
2263/**
2264 * absent_pages_in_range - Return number of page frames in holes within a range
2265 * @start_pfn: The start PFN to start searching for holes
2266 * @end_pfn: The end PFN to stop searching for holes
2267 *
2268 * It returns the number of pages frames in memory holes within a range
2269 */
2270unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2271							unsigned long end_pfn)
2272{
2273	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2274}
2275
2276/* Return the number of page frames in holes in a zone on a node */
2277unsigned long __init zone_absent_pages_in_node(int nid,
2278					unsigned long zone_type,
2279					unsigned long *ignored)
2280{
2281	unsigned long node_start_pfn, node_end_pfn;
2282	unsigned long zone_start_pfn, zone_end_pfn;
2283
2284	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2285	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2286							node_start_pfn);
2287	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2288							node_end_pfn);
2289
2290	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2291}
2292
2293/* Return the zone index a PFN is in */
2294int memmap_zone_idx(struct page *lmem_map)
2295{
2296	int i;
2297	unsigned long phys_addr = virt_to_phys(lmem_map);
2298	unsigned long pfn = phys_addr >> PAGE_SHIFT;
2299
2300	for (i = 0; i < MAX_NR_ZONES; i++)
2301		if (pfn < arch_zone_highest_possible_pfn[i])
2302			break;
2303
2304	return i;
2305}
2306#else
2307static inline unsigned long zone_spanned_pages_in_node(int nid,
2308					unsigned long zone_type,
2309					unsigned long *zones_size)
2310{
2311	return zones_size[zone_type];
2312}
2313
2314static inline unsigned long zone_absent_pages_in_node(int nid,
2315						unsigned long zone_type,
2316						unsigned long *zholes_size)
2317{
2318	if (!zholes_size)
2319		return 0;
2320
2321	return zholes_size[zone_type];
2322}
2323
2324static inline int memmap_zone_idx(struct page *lmem_map)
2325{
2326	return MAX_NR_ZONES;
2327}
2328#endif
2329
2330static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2331		unsigned long *zones_size, unsigned long *zholes_size)
2332{
2333	unsigned long realtotalpages, totalpages = 0;
2334	enum zone_type i;
2335
2336	for (i = 0; i < MAX_NR_ZONES; i++)
2337		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2338								zones_size);
2339	pgdat->node_spanned_pages = totalpages;
2340
2341	realtotalpages = totalpages;
2342	for (i = 0; i < MAX_NR_ZONES; i++)
2343		realtotalpages -=
2344			zone_absent_pages_in_node(pgdat->node_id, i,
2345								zholes_size);
2346	pgdat->node_present_pages = realtotalpages;
2347	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2348							realtotalpages);
2349}
2350
2351/*
2352 * Set up the zone data structures:
2353 *   - mark all pages reserved
2354 *   - mark all memory queues empty
2355 *   - clear the memory bitmaps
2356 */
2357static void __meminit free_area_init_core(struct pglist_data *pgdat,
2358		unsigned long *zones_size, unsigned long *zholes_size)
2359{
2360	enum zone_type j;
2361	int nid = pgdat->node_id;
2362	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2363	int ret;
2364
2365	pgdat_resize_init(pgdat);
2366	pgdat->nr_zones = 0;
2367	init_waitqueue_head(&pgdat->kswapd_wait);
2368	pgdat->kswapd_max_order = 0;
2369
2370	for (j = 0; j < MAX_NR_ZONES; j++) {
2371		struct zone *zone = pgdat->node_zones + j;
2372		unsigned long size, realsize, memmap_pages;
2373
2374		size = zone_spanned_pages_in_node(nid, j, zones_size);
2375		realsize = size - zone_absent_pages_in_node(nid, j,
2376								zholes_size);
2377
2378		/*
2379		 * Adjust realsize so that it accounts for how much memory
2380		 * is used by this zone for memmap. This affects the watermark
2381		 * and per-cpu initialisations
2382		 */
2383		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2384		if (realsize >= memmap_pages) {
2385			realsize -= memmap_pages;
2386			printk(KERN_DEBUG
2387				"  %s zone: %lu pages used for memmap\n",
2388				zone_names[j], memmap_pages);
2389		} else
2390			printk(KERN_WARNING
2391				"  %s zone: %lu pages exceeds realsize %lu\n",
2392				zone_names[j], memmap_pages, realsize);
2393
2394		/* Account for reserved DMA pages */
2395		if (j == ZONE_DMA && realsize > dma_reserve) {
2396			realsize -= dma_reserve;
2397			printk(KERN_DEBUG "  DMA zone: %lu pages reserved\n",
2398								dma_reserve);
2399		}
2400
2401		if (!is_highmem_idx(j))
2402			nr_kernel_pages += realsize;
2403		nr_all_pages += realsize;
2404
2405		zone->spanned_pages = size;
2406		zone->present_pages = realsize;
2407#ifdef CONFIG_NUMA
2408		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2409						/ 100;
2410		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2411#endif
2412		zone->name = zone_names[j];
2413		spin_lock_init(&zone->lock);
2414		spin_lock_init(&zone->lru_lock);
2415		zone_seqlock_init(zone);
2416		zone->zone_pgdat = pgdat;
2417		zone->free_pages = 0;
2418
2419		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2420
2421		zone_pcp_init(zone);
2422		INIT_LIST_HEAD(&zone->active_list);
2423		INIT_LIST_HEAD(&zone->inactive_list);
2424		zone->nr_scan_active = 0;
2425		zone->nr_scan_inactive = 0;
2426		zone->nr_active = 0;
2427		zone->nr_inactive = 0;
2428		zap_zone_vm_stats(zone);
2429		atomic_set(&zone->reclaim_in_progress, 0);
2430		if (!size)
2431			continue;
2432
2433		zonetable_add(zone, nid, j, zone_start_pfn, size);
2434		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2435		BUG_ON(ret);
2436		zone_start_pfn += size;
2437	}
2438}
2439
2440static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2441{
2442	/* Skip empty nodes */
2443	if (!pgdat->node_spanned_pages)
2444		return;
2445
2446#ifdef CONFIG_FLAT_NODE_MEM_MAP
2447	/* ia64 gets its own node_mem_map, before this, without bootmem */
2448	if (!pgdat->node_mem_map) {
2449		unsigned long size, start, end;
2450		struct page *map;
2451
2452		/*
2453		 * The zone's endpoints aren't required to be MAX_ORDER
2454		 * aligned but the node_mem_map endpoints must be in order
2455		 * for the buddy allocator to function correctly.
2456		 */
2457		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2458		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2459		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2460		size =  (end - start) * sizeof(struct page);
2461		map = alloc_remap(pgdat->node_id, size);
2462		if (!map)
2463			map = alloc_bootmem_node(pgdat, size);
2464		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2465	}
2466#ifdef CONFIG_FLATMEM
2467	/*
2468	 * With no DISCONTIG, the global mem_map is just set as node 0's
2469	 */
2470	if (pgdat == NODE_DATA(0)) {
2471		mem_map = NODE_DATA(0)->node_mem_map;
2472#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2473		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2474			mem_map -= pgdat->node_start_pfn;
2475#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2476	}
2477#endif
2478#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2479}
2480
2481void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2482		unsigned long *zones_size, unsigned long node_start_pfn,
2483		unsigned long *zholes_size)
2484{
2485	pgdat->node_id = nid;
2486	pgdat->node_start_pfn = node_start_pfn;
2487	calculate_node_totalpages(pgdat, zones_size, zholes_size);
2488
2489	alloc_node_mem_map(pgdat);
2490
2491	free_area_init_core(pgdat, zones_size, zholes_size);
2492}
2493
2494#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2495/**
2496 * add_active_range - Register a range of PFNs backed by physical memory
2497 * @nid: The node ID the range resides on
2498 * @start_pfn: The start PFN of the available physical memory
2499 * @end_pfn: The end PFN of the available physical memory
2500 *
2501 * These ranges are stored in an early_node_map[] and later used by
2502 * free_area_init_nodes() to calculate zone sizes and holes. If the
2503 * range spans a memory hole, it is up to the architecture to ensure
2504 * the memory is not freed by the bootmem allocator. If possible
2505 * the range being registered will be merged with existing ranges.
2506 */
2507void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2508						unsigned long end_pfn)
2509{
2510	int i;
2511
2512	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2513			  "%d entries of %d used\n",
2514			  nid, start_pfn, end_pfn,
2515			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2516
2517	/* Merge with existing active regions if possible */
2518	for (i = 0; i < nr_nodemap_entries; i++) {
2519		if (early_node_map[i].nid != nid)
2520			continue;
2521
2522		/* Skip if an existing region covers this new one */
2523		if (start_pfn >= early_node_map[i].start_pfn &&
2524				end_pfn <= early_node_map[i].end_pfn)
2525			return;
2526
2527		/* Merge forward if suitable */
2528		if (start_pfn <= early_node_map[i].end_pfn &&
2529				end_pfn > early_node_map[i].end_pfn) {
2530			early_node_map[i].end_pfn = end_pfn;
2531			return;
2532		}
2533
2534		/* Merge backward if suitable */
2535		if (start_pfn < early_node_map[i].end_pfn &&
2536				end_pfn >= early_node_map[i].start_pfn) {
2537			early_node_map[i].start_pfn = start_pfn;
2538			return;
2539		}
2540	}
2541
2542	/* Check that early_node_map is large enough */
2543	if (i >= MAX_ACTIVE_REGIONS) {
2544		printk(KERN_CRIT "More than %d memory regions, truncating\n",
2545							MAX_ACTIVE_REGIONS);
2546		return;
2547	}
2548
2549	early_node_map[i].nid = nid;
2550	early_node_map[i].start_pfn = start_pfn;
2551	early_node_map[i].end_pfn = end_pfn;
2552	nr_nodemap_entries = i + 1;
2553}
2554
2555/**
2556 * shrink_active_range - Shrink an existing registered range of PFNs
2557 * @nid: The node id the range is on that should be shrunk
2558 * @old_end_pfn: The old end PFN of the range
2559 * @new_end_pfn: The new PFN of the range
2560 *
2561 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2562 * The map is kept at the end physical page range that has already been
2563 * registered with add_active_range(). This function allows an arch to shrink
2564 * an existing registered range.
2565 */
2566void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2567						unsigned long new_end_pfn)
2568{
2569	int i;
2570
2571	/* Find the old active region end and shrink */
2572	for_each_active_range_index_in_nid(i, nid)
2573		if (early_node_map[i].end_pfn == old_end_pfn) {
2574			early_node_map[i].end_pfn = new_end_pfn;
2575			break;
2576		}
2577}
2578
2579/**
2580 * remove_all_active_ranges - Remove all currently registered regions
2581 * During discovery, it may be found that a table like SRAT is invalid
2582 * and an alternative discovery method must be used. This function removes
2583 * all currently registered regions.
2584 */
2585void __init remove_all_active_ranges()
2586{
2587	memset(early_node_map, 0, sizeof(early_node_map));
2588	nr_nodemap_entries = 0;
2589#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2590	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2591	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2592#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2593}
2594
2595/* Compare two active node_active_regions */
2596static int __init cmp_node_active_region(const void *a, const void *b)
2597{
2598	struct node_active_region *arange = (struct node_active_region *)a;
2599	struct node_active_region *brange = (struct node_active_region *)b;
2600
2601	/* Done this way to avoid overflows */
2602	if (arange->start_pfn > brange->start_pfn)
2603		return 1;
2604	if (arange->start_pfn < brange->start_pfn)
2605		return -1;
2606
2607	return 0;
2608}
2609
2610/* sort the node_map by start_pfn */
2611static void __init sort_node_map(void)
2612{
2613	sort(early_node_map, (size_t)nr_nodemap_entries,
2614			sizeof(struct node_active_region),
2615			cmp_node_active_region, NULL);
2616}
2617
2618/* Find the lowest pfn for a node. This depends on a sorted early_node_map */
2619unsigned long __init find_min_pfn_for_node(unsigned long nid)
2620{
2621	int i;
2622
2623	/* Assuming a sorted map, the first range found has the starting pfn */
2624	for_each_active_range_index_in_nid(i, nid)
2625		return early_node_map[i].start_pfn;
2626
2627	printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid);
2628	return 0;
2629}
2630
2631/**
2632 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2633 *
2634 * It returns the minimum PFN based on information provided via
2635 * add_active_range()
2636 */
2637unsigned long __init find_min_pfn_with_active_regions(void)
2638{
2639	return find_min_pfn_for_node(MAX_NUMNODES);
2640}
2641
2642/**
2643 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2644 *
2645 * It returns the maximum PFN based on information provided via
2646 * add_active_range()
2647 */
2648unsigned long __init find_max_pfn_with_active_regions(void)
2649{
2650	int i;
2651	unsigned long max_pfn = 0;
2652
2653	for (i = 0; i < nr_nodemap_entries; i++)
2654		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2655
2656	return max_pfn;
2657}
2658
2659/**
2660 * free_area_init_nodes - Initialise all pg_data_t and zone data
2661 * @arch_max_dma_pfn: The maximum PFN usable for ZONE_DMA
2662 * @arch_max_dma32_pfn: The maximum PFN usable for ZONE_DMA32
2663 * @arch_max_low_pfn: The maximum PFN usable for ZONE_NORMAL
2664 * @arch_max_high_pfn: The maximum PFN usable for ZONE_HIGHMEM
2665 *
2666 * This will call free_area_init_node() for each active node in the system.
2667 * Using the page ranges provided by add_active_range(), the size of each
2668 * zone in each node and their holes is calculated. If the maximum PFN
2669 * between two adjacent zones match, it is assumed that the zone is empty.
2670 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2671 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2672 * starts where the previous one ended. For example, ZONE_DMA32 starts
2673 * at arch_max_dma_pfn.
2674 */
2675void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2676{
2677	unsigned long nid;
2678	enum zone_type i;
2679
2680	/* Record where the zone boundaries are */
2681	memset(arch_zone_lowest_possible_pfn, 0,
2682				sizeof(arch_zone_lowest_possible_pfn));
2683	memset(arch_zone_highest_possible_pfn, 0,
2684				sizeof(arch_zone_highest_possible_pfn));
2685	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2686	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2687	for (i = 1; i < MAX_NR_ZONES; i++) {
2688		arch_zone_lowest_possible_pfn[i] =
2689			arch_zone_highest_possible_pfn[i-1];
2690		arch_zone_highest_possible_pfn[i] =
2691			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2692	}
2693
2694	/* Regions in the early_node_map can be in any order */
2695	sort_node_map();
2696
2697	/* Print out the zone ranges */
2698	printk("Zone PFN ranges:\n");
2699	for (i = 0; i < MAX_NR_ZONES; i++)
2700		printk("  %-8s %8lu -> %8lu\n",
2701				zone_names[i],
2702				arch_zone_lowest_possible_pfn[i],
2703				arch_zone_highest_possible_pfn[i]);
2704
2705	/* Print out the early_node_map[] */
2706	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2707	for (i = 0; i < nr_nodemap_entries; i++)
2708		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2709						early_node_map[i].start_pfn,
2710						early_node_map[i].end_pfn);
2711
2712	/* Initialise every node */
2713	for_each_online_node(nid) {
2714		pg_data_t *pgdat = NODE_DATA(nid);
2715		free_area_init_node(nid, pgdat, NULL,
2716				find_min_pfn_for_node(nid), NULL);
2717	}
2718}
2719#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2720
2721/**
2722 * set_dma_reserve - Account the specified number of pages reserved in ZONE_DMA
2723 * @new_dma_reserve - The number of pages to mark reserved
2724 *
2725 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2726 * In the DMA zone, a significant percentage may be consumed by kernel image
2727 * and other unfreeable allocations which can skew the watermarks badly. This
2728 * function may optionally be used to account for unfreeable pages in
2729 * ZONE_DMA. The effect will be lower watermarks and smaller per-cpu batchsize
2730 */
2731void __init set_dma_reserve(unsigned long new_dma_reserve)
2732{
2733	dma_reserve = new_dma_reserve;
2734}
2735
2736#ifndef CONFIG_NEED_MULTIPLE_NODES
2737static bootmem_data_t contig_bootmem_data;
2738struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2739
2740EXPORT_SYMBOL(contig_page_data);
2741#endif
2742
2743void __init free_area_init(unsigned long *zones_size)
2744{
2745	free_area_init_node(0, NODE_DATA(0), zones_size,
2746			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2747}
2748
2749#ifdef CONFIG_HOTPLUG_CPU
2750static int page_alloc_cpu_notify(struct notifier_block *self,
2751				 unsigned long action, void *hcpu)
2752{
2753	int cpu = (unsigned long)hcpu;
2754
2755	if (action == CPU_DEAD) {
2756		local_irq_disable();
2757		__drain_pages(cpu);
2758		vm_events_fold_cpu(cpu);
2759		local_irq_enable();
2760		refresh_cpu_vm_stats(cpu);
2761	}
2762	return NOTIFY_OK;
2763}
2764#endif /* CONFIG_HOTPLUG_CPU */
2765
2766void __init page_alloc_init(void)
2767{
2768	hotcpu_notifier(page_alloc_cpu_notify, 0);
2769}
2770
2771/*
2772 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2773 *	or min_free_kbytes changes.
2774 */
2775static void calculate_totalreserve_pages(void)
2776{
2777	struct pglist_data *pgdat;
2778	unsigned long reserve_pages = 0;
2779	enum zone_type i, j;
2780
2781	for_each_online_pgdat(pgdat) {
2782		for (i = 0; i < MAX_NR_ZONES; i++) {
2783			struct zone *zone = pgdat->node_zones + i;
2784			unsigned long max = 0;
2785
2786			/* Find valid and maximum lowmem_reserve in the zone */
2787			for (j = i; j < MAX_NR_ZONES; j++) {
2788				if (zone->lowmem_reserve[j] > max)
2789					max = zone->lowmem_reserve[j];
2790			}
2791
2792			/* we treat pages_high as reserved pages. */
2793			max += zone->pages_high;
2794
2795			if (max > zone->present_pages)
2796				max = zone->present_pages;
2797			reserve_pages += max;
2798		}
2799	}
2800	totalreserve_pages = reserve_pages;
2801}
2802
2803/*
2804 * setup_per_zone_lowmem_reserve - called whenever
2805 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2806 *	has a correct pages reserved value, so an adequate number of
2807 *	pages are left in the zone after a successful __alloc_pages().
2808 */
2809static void setup_per_zone_lowmem_reserve(void)
2810{
2811	struct pglist_data *pgdat;
2812	enum zone_type j, idx;
2813
2814	for_each_online_pgdat(pgdat) {
2815		for (j = 0; j < MAX_NR_ZONES; j++) {
2816			struct zone *zone = pgdat->node_zones + j;
2817			unsigned long present_pages = zone->present_pages;
2818
2819			zone->lowmem_reserve[j] = 0;
2820
2821			idx = j;
2822			while (idx) {
2823				struct zone *lower_zone;
2824
2825				idx--;
2826
2827				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2828					sysctl_lowmem_reserve_ratio[idx] = 1;
2829
2830				lower_zone = pgdat->node_zones + idx;
2831				lower_zone->lowmem_reserve[j] = present_pages /
2832					sysctl_lowmem_reserve_ratio[idx];
2833				present_pages += lower_zone->present_pages;
2834			}
2835		}
2836	}
2837
2838	/* update totalreserve_pages */
2839	calculate_totalreserve_pages();
2840}
2841
2842/*
2843 * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2844 *	that the pages_{min,low,high} values for each zone are set correctly
2845 *	with respect to min_free_kbytes.
2846 */
2847void setup_per_zone_pages_min(void)
2848{
2849	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2850	unsigned long lowmem_pages = 0;
2851	struct zone *zone;
2852	unsigned long flags;
2853
2854	/* Calculate total number of !ZONE_HIGHMEM pages */
2855	for_each_zone(zone) {
2856		if (!is_highmem(zone))
2857			lowmem_pages += zone->present_pages;
2858	}
2859
2860	for_each_zone(zone) {
2861		u64 tmp;
2862
2863		spin_lock_irqsave(&zone->lru_lock, flags);
2864		tmp = (u64)pages_min * zone->present_pages;
2865		do_div(tmp, lowmem_pages);
2866		if (is_highmem(zone)) {
2867			/*
2868			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2869			 * need highmem pages, so cap pages_min to a small
2870			 * value here.
2871			 *
2872			 * The (pages_high-pages_low) and (pages_low-pages_min)
2873			 * deltas controls asynch page reclaim, and so should
2874			 * not be capped for highmem.
2875			 */
2876			int min_pages;
2877
2878			min_pages = zone->present_pages / 1024;
2879			if (min_pages < SWAP_CLUSTER_MAX)
2880				min_pages = SWAP_CLUSTER_MAX;
2881			if (min_pages > 128)
2882				min_pages = 128;
2883			zone->pages_min = min_pages;
2884		} else {
2885			/*
2886			 * If it's a lowmem zone, reserve a number of pages
2887			 * proportionate to the zone's size.
2888			 */
2889			zone->pages_min = tmp;
2890		}
2891
2892		zone->pages_low   = zone->pages_min + (tmp >> 2);
2893		zone->pages_high  = zone->pages_min + (tmp >> 1);
2894		spin_unlock_irqrestore(&zone->lru_lock, flags);
2895	}
2896
2897	/* update totalreserve_pages */
2898	calculate_totalreserve_pages();
2899}
2900
2901/*
2902 * Initialise min_free_kbytes.
2903 *
2904 * For small machines we want it small (128k min).  For large machines
2905 * we want it large (64MB max).  But it is not linear, because network
2906 * bandwidth does not increase linearly with machine size.  We use
2907 *
2908 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2909 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2910 *
2911 * which yields
2912 *
2913 * 16MB:	512k
2914 * 32MB:	724k
2915 * 64MB:	1024k
2916 * 128MB:	1448k
2917 * 256MB:	2048k
2918 * 512MB:	2896k
2919 * 1024MB:	4096k
2920 * 2048MB:	5792k
2921 * 4096MB:	8192k
2922 * 8192MB:	11584k
2923 * 16384MB:	16384k
2924 */
2925static int __init init_per_zone_pages_min(void)
2926{
2927	unsigned long lowmem_kbytes;
2928
2929	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2930
2931	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2932	if (min_free_kbytes < 128)
2933		min_free_kbytes = 128;
2934	if (min_free_kbytes > 65536)
2935		min_free_kbytes = 65536;
2936	setup_per_zone_pages_min();
2937	setup_per_zone_lowmem_reserve();
2938	return 0;
2939}
2940module_init(init_per_zone_pages_min)
2941
2942/*
2943 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2944 *	that we can call two helper functions whenever min_free_kbytes
2945 *	changes.
2946 */
2947int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2948	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2949{
2950	proc_dointvec(table, write, file, buffer, length, ppos);
2951	setup_per_zone_pages_min();
2952	return 0;
2953}
2954
2955#ifdef CONFIG_NUMA
2956int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2957	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2958{
2959	struct zone *zone;
2960	int rc;
2961
2962	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2963	if (rc)
2964		return rc;
2965
2966	for_each_zone(zone)
2967		zone->min_unmapped_pages = (zone->present_pages *
2968				sysctl_min_unmapped_ratio) / 100;
2969	return 0;
2970}
2971
2972int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
2973	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2974{
2975	struct zone *zone;
2976	int rc;
2977
2978	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2979	if (rc)
2980		return rc;
2981
2982	for_each_zone(zone)
2983		zone->min_slab_pages = (zone->present_pages *
2984				sysctl_min_slab_ratio) / 100;
2985	return 0;
2986}
2987#endif
2988
2989/*
2990 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2991 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2992 *	whenever sysctl_lowmem_reserve_ratio changes.
2993 *
2994 * The reserve ratio obviously has absolutely no relation with the
2995 * pages_min watermarks. The lowmem reserve ratio can only make sense
2996 * if in function of the boot time zone sizes.
2997 */
2998int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2999	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3000{
3001	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3002	setup_per_zone_lowmem_reserve();
3003	return 0;
3004}
3005
3006/*
3007 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3008 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
3009 * can have before it gets flushed back to buddy allocator.
3010 */
3011
3012int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3013	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3014{
3015	struct zone *zone;
3016	unsigned int cpu;
3017	int ret;
3018
3019	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3020	if (!write || (ret == -EINVAL))
3021		return ret;
3022	for_each_zone(zone) {
3023		for_each_online_cpu(cpu) {
3024			unsigned long  high;
3025			high = zone->present_pages / percpu_pagelist_fraction;
3026			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3027		}
3028	}
3029	return 0;
3030}
3031
3032int hashdist = HASHDIST_DEFAULT;
3033
3034#ifdef CONFIG_NUMA
3035static int __init set_hashdist(char *str)
3036{
3037	if (!str)
3038		return 0;
3039	hashdist = simple_strtoul(str, &str, 0);
3040	return 1;
3041}
3042__setup("hashdist=", set_hashdist);
3043#endif
3044
3045/*
3046 * allocate a large system hash table from bootmem
3047 * - it is assumed that the hash table must contain an exact power-of-2
3048 *   quantity of entries
3049 * - limit is the number of hash buckets, not the total allocation size
3050 */
3051void *__init alloc_large_system_hash(const char *tablename,
3052				     unsigned long bucketsize,
3053				     unsigned long numentries,
3054				     int scale,
3055				     int flags,
3056				     unsigned int *_hash_shift,
3057				     unsigned int *_hash_mask,
3058				     unsigned long limit)
3059{
3060	unsigned long long max = limit;
3061	unsigned long log2qty, size;
3062	void *table = NULL;
3063
3064	/* allow the kernel cmdline to have a say */
3065	if (!numentries) {
3066		/* round applicable memory size up to nearest megabyte */
3067		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
3068		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3069		numentries >>= 20 - PAGE_SHIFT;
3070		numentries <<= 20 - PAGE_SHIFT;
3071
3072		/* limit to 1 bucket per 2^scale bytes of low memory */
3073		if (scale > PAGE_SHIFT)
3074			numentries >>= (scale - PAGE_SHIFT);
3075		else
3076			numentries <<= (PAGE_SHIFT - scale);
3077	}
3078	numentries = roundup_pow_of_two(numentries);
3079
3080	/* limit allocation size to 1/16 total memory by default */
3081	if (max == 0) {
3082		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3083		do_div(max, bucketsize);
3084	}
3085
3086	if (numentries > max)
3087		numentries = max;
3088
3089	log2qty = long_log2(numentries);
3090
3091	do {
3092		size = bucketsize << log2qty;
3093		if (flags & HASH_EARLY)
3094			table = alloc_bootmem(size);
3095		else if (hashdist)
3096			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3097		else {
3098			unsigned long order;
3099			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3100				;
3101			table = (void*) __get_free_pages(GFP_ATOMIC, order);
3102		}
3103	} while (!table && size > PAGE_SIZE && --log2qty);
3104
3105	if (!table)
3106		panic("Failed to allocate %s hash table\n", tablename);
3107
3108	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3109	       tablename,
3110	       (1U << log2qty),
3111	       long_log2(size) - PAGE_SHIFT,
3112	       size);
3113
3114	if (_hash_shift)
3115		*_hash_shift = log2qty;
3116	if (_hash_mask)
3117		*_hash_mask = (1 << log2qty) - 1;
3118
3119	return table;
3120}
3121
3122#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3123struct page *pfn_to_page(unsigned long pfn)
3124{
3125	return __pfn_to_page(pfn);
3126}
3127unsigned long page_to_pfn(struct page *page)
3128{
3129	return __page_to_pfn(page);
3130}
3131EXPORT_SYMBOL(pfn_to_page);
3132EXPORT_SYMBOL(page_to_pfn);
3133#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3134